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Laburpena

Engranajeen portaera termikoa arreta gutxien jaso duen arazo mekanikoetako bat izan da
azken mendean. Sortutako beroaren jatorria dagoeneko ulertu arren, bere analisia olioaren
tenperatura egonkorraren iragarpenera mugatu da, engranajeen hutsegitean eragin zuzena
baitu. Alabaina, literatura zientifikoaren berrikuspenak erakutsi du dilatazio termikoaren
ondorioak ia ez direla aztertu. Bitartean, turbo-makinen industriako esperientziak frogatu
du termikoki eragindako geometriaren distortsioak zeregin garrantzitsua duela karga
banaketaren aldaketan hortzen haustura eragiten duelarik neurririk hartzen ez bada.

Doktorego tesi honen helburu nagusia termikoki eragindako engranaje zuzen eta
helikoidalen geometriaren distortsioak sortutako portaera mekaniko irregularra aur-
reikustea, ebaluatzea eta zuzentzea da. Asmo horrekin, engranaje parean sortutako
beroa kuantifikatu egin behar da eta tenperatura egonkorraren banaketa aurreikusi behar
da aldez aurretik. Ondoren, hortzen deformazio termikoa zehazteko eredu bat garatu
behar da karga banaketa kalkuluen ohiko fluxuan inplementatuz. Distortsio termiko mota
eta zenbatekoa jakiteak, kargapean duen portaeraren ulermenarekin batera, hortzaren
geometria zuzenketa ahalbidetuko du kontaktuaren portaera desegokia konpentsatuz.

Tesiaren lehen ataletan distortsio termikoaren jatorria deskribatzen da eta gaur
egungo egoera berrikusten da. Ondoren, engranaje zuzen eta helikoidalen geometria
eta zinematika aztertzen dira eta karga banaketa kalkulatzeko eredu analitiko bat
garatzen da "thin slice" izeneko metodoa erabiliz. Segidan, engranaje pareen irristaketa
marruskaduraren portaera aztertzen da, kontaktuan sortutako beroa kuantifikatzen da
eta gurpil parearen tenperatura-banaketa aurreikusten da sare termikoen kontzeptuan
oinarrituta. Kapitulu bakoitzean eredu berriak garatzen dira eta emaitzak literatura
zientifikoko datu esperimentalekin baliozkotzen dira. Distortsio termikoa aurreikusteko
eredua seigarren kapituluan aurkezten da, parametro ezberdinen analisia egiten da eta
adibide praktiko bat goitik behera aztertzen da, geometriaren distortsiotik abiatuta
portaera termomekanikoa ikusi arte. Kapitulu honen amaieran, termikoki eragindako
deformazioei aurre egiteko diseinu gomendioak biltzen dira eta hortzak zuzentzeko arauak
proposatzen dira. Azkenean, transmisio errorearen portaera termomekanikoa esperi-
mentalki aztertzen da, ondorioak laburbiltzen dira eta etorkizuneko ildoak azpimarratzen
dira. Emaitzen arabera, eta ohiko ustearen aurka, altzairuzko engranajeen distortsio
termikoak karga banaketan eta transmisio errorean eragina du eta, ondorioz, kontuan
hartu behar da haien kontaktu analisian.





Resumen

El comportamiento térmico de engranajes es uno de los temas que menos atención ha
recibido en el último siglo. Aunque el origen del calor generado es conocido, su estudio
se ha limitado a la predicción de la temperatura estacionaria del lubricante ya que tiene
una influencia directa en el fallo de los mismos. Sin embargo, la revisión de la literatura
científica ha puesto en evidencia que los efectos de su expansión térmica apenas han sido
analizados. Entretanto, la experiencia en turbo-máquinas indica que las distorsiones de
geometría de origen térmico tienen un papel fundamental en la alteración de los patrones
de contacto pudiendo incluso provocar la rotura del dentado si no se toman medidas.

El objetivo principal de esta tesis es predecir, evaluar y corregir el comportamiento
mecánico no uniforme de parejas de engranajes rectos y helicoidales debido a la distorsión
de la geometría inducida térmicamente. Para este fin, el calor generado por fricción
debe ser cuantificado y la distribución de temperatura estacionaria debe ser predicha.
Así mismo, debe desarrollarse un modelo de deformación térmica capaz de integrarse
en los algoritmos de cálculo de distribución de carga habituales. La comprensión del
tipo y magnitud de la distorsión térmica, junto a sus efectos en la distribución de carga,
permitirán corregir la geometría del dentado y compensar comportamientos no deseados.

En los primeros capítulos de esta tesis se analiza el origen de la distorsión térmica y se
revisa el estado del arte. Tras esto, se describen la geometría y cinemática de engranajes
rectos y helicoidales y se desarrolla un modelo de distribución de carga analítico basado
en el concepto de secciones delgadas. Posteriormente, se estudia el comportamiento del
rozamiento en el engrane, se cuantifica el calor generado por el mismo y se predice la
distribución de temperatura mediante el uso de redes térmicas. En cada uno de estos
capítulos se desarrollan nuevos modelos que son validados con datos experimentales de la
literatura científica. El modelo de distorsión térmica es introducido en el sexto capítulo,
se desarrolla un estudio paramétrico y se analiza un caso práctico, desde la distorsión de
la geometría hasta su comportamiento mecánico. Así mismo, se recogen recomendaciones
de diseño para hacer frente a este fenómeno y se proponen directrices de modificación del
dentado. Finalmente, se lleva a cabo un estudio experimental del error de transmisión
termomecánico, se extraen conclusiones generales y se definen las líneas de trabajo a
futuro. Los resultados presentados muestran que, contrariamente a la creencia común, la
distorsión térmica en engranajes de acero sí afecta a la distribución de carga y el error
de transmisión y, por lo tanto, debe ser considerado en el análisis de contacto.





Abstract

The thermal behaviour of geared transmissions has been one of the mechanical issues
receiving the least amount of attention in the last century. Although the origins of
heat generated in gearboxes is already understood, its analysis has been limited to the
prediction of steady-state oil temperature, which has a direct influence in gear failure.
However, scientific literature review has shown that the effects of thermal expansion have
been hardly analysed. Meanwhile, field experience in turbo-machinery industry, proofs
that thermally-induced geometry distortion does play a significant role on contact pattern
shift leading to tooth breakage if no counter-measures are provided.

The main objective of the present thesis is to predict, evaluate and correct uneven
mechanical behaviour of spur and helical gears due to thermally-induced flank geometry
distortion. For this purpose, heat generated in the gear mesh needs to be quantified and
resulting steady-state temperature distribution must be predicted. Then, a model to
determine thermal deformation of gear teeth must be developed and implemented on
common load distribution calculation flowcharts. The understanding of the type and
amount of thermal distortion, along with its effects on loaded behaviour, will allow to
correct tooth geometry and compensate for undesired contact behaviour.

In the first chapters of the present thesis, a brief description of the origins of thermal
distortion is presented and current state of art is reviewed. Then, spur and helical
gear teeth geometry and kinematics are described and an analytical load distribution
model following the so called “thin-slice” approach is developed. Next, sliding friction
behaviour in meshing gears is analysed, the amount of heat generated in the mesh is
quantified and temperature distribution is predicted based on the thermal-network concept.
New models are developed within each of these chapters and results are validated with
experimental measurements from literature. The thermal distortion model is introduced
in chapter six, a parameter analysis is carried out and a test case is fully analysed, from
geometry distortion to full thermo-mechanical behaviour. At the end of this chapter,
design recommendations to cope with thermally-induced deformations are gathered and
tooth modification rules are proposed. Finally, an experimental study on thermally-
induced transmission error behaviour is carried out, conclusions are withdrawn and future
work in the field is pointed out. Results show that, contrary to common belief, thermal
distortion in steel gears does affect load distribution and transmission error and therefore
it should be considered in gear tooth contact analysis.
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Nomenclature
List of symbols1

Sign Unit Description
aw [m] Working centre distance
aH [m] Semi-major axis of Hertzian contact region
b [m] Tooth face width
bH [m] Semi-minor axis of Hertzian contact region
bG [m] Distance between front and rear housing walls
c [m] Tip clearance
cp [m] Specific heat capacity
cy [m] Separating distance
d [m] Pitch diameter
da [m] Tip diameter
db [m] Base diameter
df [m] Root diameter
dNa [m] Active tip diameter
dNf [m] Active root diameter
dsh [m] Shaft diameter
dw [m] Working pitch diameter
dy [m] Y-circle diameter
e [m] Thermal effusivity
f [Hz] Frequency
fc [Hz] Cut-off frequency
fm [Hz] Mesh frequency
fpt [m] Pitch error
fs [Hz] Shaft rotation frequency
gα [m] Length of path of contact
h [m] Tooth height
h [-] Convection heat transfer coefficient
ha [m] Tooth addendum height
hc [m] Central oil film thickness
hf [m] Tooth dedendum height
hk [m] Amount of gear tip chamfer or rounding
hmin [m] Minimum oil film thickness
hG [m] Housing interior height
hW [m] Shaft centreline height from oil sump bottom
jbn [m] Normal backlash
jwt [m] Working circumferential backlash
k [W/m·K] Thermal conductivity.
k [m−1] Curvature

1For derivative parameters or additional meanings look for detailed explanations in each chapter.
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xxx Nomenclature

Sign Unit Description
l [m] Tooth slice thickness
lG [m] Housing interior width
m [kg] Mass
ṁ [kg/s] Mass flow rate
mn [m] Normal module
p [Pa] Pressure
pm [Pa] Mean contact pressure
pH [Pa] Maximum Hertz contact pressure
pbt [m] Transverse base pitch on the base cylinder
pet [m] Transverse base pitch on the path of contact
pyt [m] Transverse pitch on any diameter
q̇ [W/m2] Heat flux
r [m] Pitch radius
ra [m] Tip radius
rb [m] Base circle radius
ry [m] Y-circle radius
rNa [m] Active tip radius
rNf [m] Active root radius
sc [m] Chordal tooth thickness
t [s] Time
u [m/s] Rolling velocity of contact point relative to pinion or gear.
u [-] Gear ratio
w [N/m] Normal load per unit length
x [-] Profile shift coefficient
xE [-] Manufacturing profile shift coefficient
z [-] Number of teeth
A [m2] Surface area
ATE [rad] Amplitude of transmission error
C [m/N] Compliance
C [J/K] Heat capacity
Cα [µm] Amount of profile crowning (barrelling)
Cβ [µm] Amount of flank line crowning
Cm [-] Dimensionless churning drag torque
Ct [-] Dimensionless windage drag torque
De [-] Deborah number
E [Pa] Modulus of elasticity
E [m] Distance from shaft centreline to oil sump
Es [m] Tooth thickness tolerance
Fbt [N] Nominal transverse load in the base tangent plane
Fr [N] Rolling friction force
Fs [N] Sliding friction force
G [-] Materials parameter associated to film thickness
G [W/K] Thermal conductance
H [m] Immersion depth of gear
Hv [-] Power loss factor
HvL [-] Power loss factor considering stiffness
K [N/m] Stiffness
N [rpm] Rotation speed



Nomenclature xxxi

Sign Unit Description
NLTE [m] No-load transmission error
L [m] Characteristic dimension in Reynolds number
PTP [m] Peak-to-peak transmission error
PA [W] Input power
PV [W] Total gearbox power loss
PV D [W] No-load sealing power loss
PV L [W] Total bearing power loss
PV L0 [W] No-load bearing power loss
PV LP [W] Load-dependent bearing power loss
PV X [W] No-load auxiliary power loss
PV ZP [W] Load-dependent gear mesh power loss
PV Z0,C [W] No-load churning power loss
PV Z0,W [W] No-load windage power loss
Q [-] Gear manufacturing quality
Q [W] Heat
QG [W] Heat input in gearbox housing
QV D [W] Heat input from sealing power loss
QV L [W] Heat input from bearing power loss
QV Z0,C [W] Heat input from gear churning power loss
QV Z0,W [W] Heat input from gear windage power loss
QV ZP [W] Heat input from gear mesh power loss
U [W/m3] Power density
U [J] Elastic potential energy
U [m/s] Relative velocity of fluid in Reynolds number
U [-] Speed parameter associated to film thickness
R [K/W] Thermal resistance
Rc [K/W] Thermal resistance of contact associated to flash temperature rise
Rf [K/W] Thermal resistance of fluid film
Rfo [K/W] Thermal resistance of fling-off
Rh [K/W] Thermal resistance of convection
Rp [K/W] Thermal resistance of contact associated to part assembly
Rr [K/W] Radial thermal resistance
Rrd [K/W] Thermal resistance of radiation
Rs [K/W] Thermal resistance of constriction
Rz [K/W] Planar wall (axial) thermal resistance
Ra [m] Average surface roughness
Rq [m] Root mean square surface roughness
Rz [m] Average roughness depth
S [-] Slip ratio
Sm [m2] Immersed surface area of gear
Sr [m2] Heat conduction surface in the radial direction
Sz [m2] Heat conduction surface in the axial direction
SRR [-] Slide-to-roll ratio
T [Nm] Torque
TE [m] Transmission error
Tdrag [N·m] Oil drag torque loss in bearings
Trr [N·m] Rolling torque loss in bearings
Tseal [N·m] Sealing torque loss in bearings



xxxii Nomenclature

Sign Unit Description
Tsl [N·m] Sliding torque loss in bearings
TV [N·m] Total gearbox torque loss
TV D [N·m] No-load sealing torque loss
TV L [N·m] Total bearing torque loss
TV L0 [N·m] No-load bearing torque loss
TV LP [N·m] Load-dependent bearing torque loss
TV X [N·m] No-load auxiliary torque loss
TV Z0 [N·m] No-load torque loss associated to gears
TV ZP [N·m] Load-dependent gear mesh torque loss
V [m3] Volume
Va [m/s] Axial meshing velocity
Ve [m/s] Oil entrainment velocity in the contact
Vm [m/s] Mean velocity of oil flowing down the walls of the casing
Vr [m/s] Sum of rolling velocities in the contact
Vs [m/s] Sliding velocity in the contact
Vt [m/s] Tangential velocity at pitch circle
Va [m3] Casing interior air volume
Vo [m3] Oil sump volume
W [N] Total normal load
W [-] Load parameter associated to film thickness
XL [-] Lubricant factor associated to friction coefficient
g [m/s2] Acceleration of gravity
Fr [-] Froude number
Nu [-] Nusselt number
Pr [-] Prandtl number
Ra [-] Reyleigh number
Re [-] Reynolds number
Rec [-] Critical Reynolds number
A [-] Theoretical start of meshing
B [-] Theoretical start of single tooth contact region on driving gear
C [-] Pitch point
D [-] Theoretical end of single tooth contact region on driving gear
E [-] Theoretical end of meshing
Y [-] Any point on base tangent plane
α [Pa−1] Pressure viscosity coefficient
αi [-] Heat partitioning coefficient
αn [rad] Normal pressure angle
αy [rad] Pressure angle at Y-circle radius
αt [rad] Transverse pressure angle
αwt [rad] Transverse working pressure angle
αFy [rad] Local attack angle
αL [K−1] Coefficient of linear thermal expansion
β [rad] Helix angle
β [K−1] Coefficient of volume expansion for fluids
βb [rad] Base helix angle
γ [s−1] Shear rate
δ [m] Deflection under load
εα [-] Transverse contact ratio
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Sign Unit Description
εa [-] Approach contact ratio
εf [-] Recess contact ratio
ε [-] Surface emissivity associated to radiation
ε [m] Total flank normal deviation
η [Pa·s] Dynamic viscosity
η0 [Pa·s] Dynamic viscosity at ambient pressure
θ [◦] Absolute rotation angle in encoders
θ [◦] Available angle for fling-off
θ [rad] Half the chord angle defined by oil level
κ [-] Ellipticity ratio
λ [-] Specific film thickness
µ [-] Friction coefficient
µs [-] Sliding friction coefficient
µr [-] Rolling friction coefficient
ν [-] Poisson’s ratio
νk [m2/s] Kinematic viscosity
ξ [-] Asperity-load sharing factor
ξ [-] Oil fraction in air
ξy [K] Roll angle at Y-cylinder
ρ [m] Curvature radius if referred to geometry
ρ [kg/m3] Density if referred to material
ρa [kg/m3] Air density
ρo [kg/m3] Oil density
σF [Pa] Tooth root bending stress
σH [Pa] Contact stress
σrr [Pa] Radial stress
σφφ [Pa] Circunferential stress
τ [rad] Angular pitch
τE [Pa] Eyring stress
τL [Pa] Limiting stress
φj [rad] Backlash angle
φ1,2 [rad] Relative angular position of gear teeth
χ [m2/s] Thermal diffusivity
ψ [rad] Inclination angle
ψ1,2,... [-] Regression coefficients
ω [rad/s] Angular velocity
Θ [K] Temperature
Θb [K] Gear bulk temperature
Θa [K] Air temperature
Θc [K] Contact temperature
Θf [K] Oil film temperature in the contact
Θo [K] Oil temperature
Θsh [K] Shaft temperature
Θy [K] Y-cylinder temperature
Λ [-] Limiting stress pressure coefficient
ΦT [-] Film thickness reduction factor for shear heating
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Subscript Description
i, j Grid points. Counters in loops.
i, o Inner and outer respectively when referred to diameters
f, s Fluid and solid respectively when referred to friction coefficient
n, t Normal and transverse directions respectively
o, a Oil and air when referred to fluid thermophysical properties
r, s Rolling and sliding respectively when referred to kinematics
r, φ, z Cylindrical principal directions
x, y, z Cartesian principal direction
y Indicates Y-cylinder, associated to gear dimensions
H Indicates Hertzian parameter
I,II Engagement and exit sides in gear teeth face width
P0 For quantities associated to basick rack
1,2 Pinion and gear respectively

Acronym Description
AGMA American Gear Manufacturers Association
ANSI American National Standards Institute
API American Petroleum Institute
BL Boundary lubrication (regime)
CFD Computational Fluid Dynamics
CMM Coordinate Measuring Machine
COF Coefficient Of Friction
DIN Deutsches Institut für Normung, German Institute for Standardization
DRIVE Driving Research and Innovation for Vehicle efficiency and Energy sustainability
EAP End of Active Profile
EHL Elasto-Hydrodynamic Lubrication
FEM Finite Element Method
FFT Fast Fourier Transform
FVA Forschungsvereinigung Antriebstechnik, Drive Technology Research Association
FZG Forschungsstelle für Zahnräder und Getriebebau, Gear Research Centre
HEV Hybrid-Electric Vehicle
ISO International Organization for Standardization
KS Kraftstufe, Load stage
ML Mixed lubrication (regime)
LCP Linear Complementarity Problem
LOA Line Of Action
LTCA Loaded Tooth Contact Analysis
NVH Noise, Vibration and Harshness
ODE Ordinary Differential Equations
PAO Polyalphaolefin (oil)
PID Proportional–Integral–Derivative (controller)
PLC Programmable logic controller
PLV Pitch Line Velocity
PVC Pressure-Viscosity Coefficient
SAP Start of Active Profile
TEHL Thermo-Elasto-Hydrodynamic Lubrication
TVC Temperature-Viscosity Coefficient
VG Viscosity Grade
VPT Vicosity-Pressure-Temperature



A good traveler has no fixed plans
and is not intent upon arriving.
A good artist lets his intuition
lead him wherever it wants.
A good scientist has freed himself of concepts
and keeps his mind open to what is.

—Lao Tzu’s Tao Te Ching, poem 27, 4th century BC

1
Introduction

Contents
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1.2.1 Thermal rating of gear drives . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Thermal distortion of gear teeth . . . . . . . . . . . . . . . . . . 5

1.3 Hypothesis and research objectives . . . . . . . . . . . . . . . . 7
1.4 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . 8

This chapter describes the framework of the present PhD thesis, briefly
depicts thermal distortion effects in gear teeth and finally defines the
fundamental hypothesis and objectives that have led the development of
this research work. Background and motivation are described first. It will be
shown that current environmental concerns are pushing the electrification
of automotive and aeronautical vehicles where gearboxes are forced to
work at high speed due to power density requirements. In such conditions,
thermal issues are dominant and, as a consequence, machine element failure
probability increases and thermal expansion becomes noticeable. Then,
thermal distortion of gear teeth is briefly described, geometry expansion
effects are identified and the main consequences are highlighted based
on field experience from turbomachinery industry. It will be shown that
scientific literature review has long pointed towards this direction but little
analytical or numerical effort has been carried out on the topic. Finally,
based on the research opportunities identified in the literature review,
which is developed in the next chapter, an hypothesis is established, work
objectives are defined and the outline of this dissertation is described.
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2 1.1. Background

1.1 Background

In the past decade, environmental concerns have driven most of the research effort in
gear transmissions towards energy economy and fuel saving. The maximization of overall
efficiency and the increase of power density have received a considerable amount of
attention lately, and the number of research publications on the topic is a good indicator
of such interest. In particular, automotive transmissions, promoted by the development of
the electric vehicle (EV), search for a reduction in component size and mass along with
lubricating oil volume; where dip lubricated gearboxes are designed with low oil levels
to minimize churning power losses and increase power-to-weight ratios [1].

Moreover, the enhancement of power density is followed by an increase in rotational
speed. According to the U.S. Department of Energy’s Vehicle Technologies Office, electric
and hybrid vehicle’s traction motor speeds progressed from 6000 rpm in 2004 to 17000 rpm
in 2017 [2]. Figure 1.1 shows this trend where the power density and speed targets for
2020 and 2025 are highlighted. As it can be seen, some EV models in the market have
gone beyond the power density requirements for 2020 and others are very close to the
speed limits for 2025. Actually, the 2017 roadmap from the U.S. Driving Research
and Innovation for Vehicle efficiency and Energy sustainability office (DRIVE) expects
90% of volume reduction for 2025 which would translate into a 50 kW/l power density
requirement at the expected 20000 rpm output speed [3].
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Figure 1.1: Trend in electric and hybrid-electric vehicle traction motor speeds and power densities
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In order to accommodate electric traction motor speed to on-road car velocity, single-
speed gearboxes are usually designed with high gear ratios and just one or two stages
[4]. Some of the newest powertrain prototypes have been conceived to be driven by
permanent magnet synchronous machines with output speeds close to 30000 rpm [5];
and new research projects are on the way in the German Research Association for Drive
Technology (FVA) to even higher speeds, up to 50000 rpm [6]. According to Ayers [7],
at such conditions thermo-mechanical problems are expected, not only in the electric
traction motor but also in the gear transmission system, as bearings and gears are close
to their thermal limits. At this point, automotive industry seems to meet requirements
from aeronautical industry, and hence it may adopt its issues.

1.2 Motivation

In general, two different kinds of technical difficulties are inherent in a high speed gear
unit. The first difficulty is a matter of a high rotational speed which may be found in the
aerospace and aeronautical fields. The second difficulty is a matter of a high tangential
velocity which is typical in the oil and gas industry.

High Pitch Line Velocities (PLV) may be found in transmissions located at the
output of multi-megawatt turbo-machineries, like compressors and steam or gas turbines,
where a high reduction ratio is needed to accommodate power. The gear units for these
machineries become large in their size and consequently, the peripheral velocities of both
the gear and the journal bearings become high to the extent that special mechanical
and thermal considerations are necessary [8].

In high rotational speed gearboxes from the aeronautical industry (and soon expected
in the automotive as well), the required power to be transmitted by the gears is rather
small which allows the gears to be smaller and consequently not so high in pitch-line
velocities. However, tangential speeds up to 120 m/s may be reached [9] which means
that the number of tooth engagements per second is high and therefore the generated
heat can be significant. Taking into account the smaller size of such gears, not only their
mass is significantly reduced but their external surface too, which results in high bulk
temperatures due to poor convective heat transfer. Furthermore, considering that these
gears are often light-weighted, their thermal capacity is low and therefore, temperature
increases rapidly which may produce thermal stresses.

In both cases, the most important and usually the first calculations that are performed
account for mechanical loads such as bending and contact stresses. This may be done
using standards developed by AGMA [10] or ISO [11], using the finite element method or
a combination of analytical methods and experimental validation. However, if thermo-
mechanical behaviour of the gears needs to be considered as well, no information is
available through the open literature and the gear designer is faced with trying to improve
the operational behaviour as the prototype system is under development; by continuously
checking tooth contact patterns under load and applying modifications as recommended
by current standards [12], or turning to manufacturer’s field experience if available [13].
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The thermal behaviour of a system is known to turn a successful gear set from the
bending and contact stress point of view into a sudden failure from the resultant thermal
operational characteristics [14]: tempering of case carburized material, gear tooth scoring,
uneven load distribution, etc. Therefore, it is necessary to understand heat generation,
temperature distribution and related tribological/mechanical consequences in gears to
minimize risk of failure in these applications.

1.2.1 Thermal rating of gear drives

Heat generation in high speed gear sets can be broken down into the contributions of
friction between the teeth (sliding and rolling friction), lubrication losses (oil churning
or jet lubrication), the trapping and pumping of the air-lubricant mixture during the
meshing and the losses associated to air windage. If power losses in the gearbox system
are considered, then additional sources may appear such as those coming from bearings,
sealings and shaft driven accessories. A sample breakdown of how energy is dissipated
in high speed gears is found in Figure 1.2.

Bearing losses 
45%

Gear losses
55%

(a) System

Churning and
 windage losses

80%

Gear mesh 
friction losses

20%

(b) Gears

Figure 1.2: High speed gearbox power loss breakdown according to ANSI/AGMA 6011 [12]

In order to reach the thermal balance of the gearbox avoiding excessive temperature
increase, the total heat generated by each of the power loss sources needs to be dissipated
through the casing, the lubrication system or the cooling system. Current practice in
calculating thermal rating is based on finding the maximum power that a unit can carry for
3 hours without the sump temperature exceeding 95◦C when the ambient air temperature
is not over 25◦C [15, 16]. The prime variables in determining thermal capacity are the
gearbox size, the input pinion speed and the gear ratio. According to Dudley [14] if a
gear unit is built twice as large, the mechanical rating increases almost 8 to 1 and the
thermal rating increases only about 3 to 1. This predicts that large gear units will be
short of thermal capacity . The same happens when speed level is considered; literature
review in Chapter 2 will show that temperature increases with speed and therefore, high
speed gear units need further thermal analysis than common transmissions.

Gearbox life rating is closely related to operating temperatures and therefore it
is important to predict and control its thermal behaviour. According to Höhn and
Michaelis [17] typical gear failures like wear, scuffing, micropitting and pitting are
influenced by oil sump and teeth temperature, as high contact temperatures lead to
low viscosities and thus thin lubricant films increasing failure probability. Figure 1.3
shows some of the visible consequences of high temperatures on gear teeth.
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(a) Wear (b) Scuffing

(c) Micropitting (d) Pitting

Figure 1.3: Gear failures related to high temperatures [17]

Moreover, an excessive local temperature increase may also give rise to metallurgical
changes [14] because case carburized gear teeth are overheated enough to soften; leading
to gear failure as a consequence. And finally, temperature increase is always followed
by thermal expansion, and if the order of magnitude of the latter is large enough, tooth
contact behaviour is altered and teeth fail as the result of uneven load distribution [18].

1.2.2 Thermal distortion of gear teeth

In turbo-machinery industry it is well known that in high speed helical gear drives of
relatively large face width, the temperature of the teeth rises non-uniformly across the face
width at pitch line velocities of about 100 m/s [19]. Temperature gradients are originated
from the axial pumping of the oil-air mixture, which travels from the engagement side to
the exit side where the fluid is expelled between the teeth. The maximum temperature
is located approximately at 2/3 of the face width [20]. As a result of the non-uniform
temperature distribution, non-uniform thermal distortion occurs; which is experimentally
observed inspecting tooth contact pattern records like the one presented in Figure 1.4.

At higher pitch line velocities, from 120 m/s onward, depending on the face width to
diameter ratio, it is no longer possible to achieve a uniform load bearing diagram [21].
Furthermore, in such conditions thermal deformation is much higher in magnitude than
mechanical deflections and it is practically impossible to obtain uniform temperature
distributions [22]. Welch and Boron [18] described this phenomena as “regenerative
thermal instability”: a local increase in tooth load increases the heat generated in the
mesh in this section, thus raising the temperature, increasing the expansion and hence
the load and the heat generated. Meanwhile, unit loads in other areas are being slightly
decreased and, as a consequence, these other areas are slightly contracting. This process
can be thermally unstable (or regenerative), until tooth failure occurs (see Figure 1.5).
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End I
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End II
(exit)

Oil flow

(a) Pinion

End I
(eng.)

End II
(exit)

Oil flow

(b) Gear

Figure 1.4: Contact pattern shift due to thermal distortion in turbo-gears (adapted from [21])

Taking into account that the current trends in automotive and aeronautical industries
search for higher speeds, similar thermal phenomena can be expected even when the face
width to diameter ratio is not as large as in the oil and gas industry. The increase in the
number of engagements per second and in the transmitted power results in high power
losses while, at the same time, the reduction in volume and mass leads to a reduction
in heat transfer capacity. Such an increase in power-to-weight ratio will modify thermal
balance and as a consequence a higher steady-state temperature will be reached. Under
these conditions, thermal distortion could be significant.

Moreover, in these applications, significant temperature gradients are found between
pinion and gear. The reduction of the oil level to minimize churning losses increases
temperature difference between the driver and driven wheels, reaching 20◦C to 30◦C
as shown by Höhn et al. [23], because the small size of the pinion results in a lower
convection heat transfer due to the reduced oil-lubricated area. Such temperature
difference leads to relative pitch deviations [24] that affect load distribution in a similar
manner to manufacturing deviations [25].

Figure 1.5: Tooth bending fail-
ure due to thermal instability [18]

Furthermore, temperature increase not only affects
transverse pitch; Henriot [26] showed that pinion and
gear teeth profile and lead are also influenced by tem-
perature differences. Involute geometry is distorted by
a radial thermal expansion that increases the base pitch
while decreasing the pressure and helix angles at the same
time, the order of magnitude being close to that of profile
modifications [26]. Besides, radial expansion of both,
pinion and gear, reduces backlash and mesh jamming
may occur if insufficient allowance is provided. Thus,
relative pitch deviations, backlash reduction and profile
and helix angle errors coexist and may compensate each
other or cause an even higher mismatch between meshing
wheels than individual deviations. If thermally-induced
geometry distortions are not compensated for, they may
cause overloads in the tooth flanks, increasing contact
and root bending stresses that endanger gear operation
as shown by Welch and Boron [18] (see Figure 1.5).
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Profile and lead deviations between pinion and gear under load can be corrected
properly applying tooth modifications in the design stage, provided that manufacturing
deviation tolerances are known and mechanical deflections have been calculated. However,
thermal distortion in gears is not currently predictable and experimental measurements
(i.e. fully loaded contact pattern checks) are required to define tooth modifications [8].
Moreover, AGMA 927-A01 standard [27] for load distribution calculation recognizes the
existence and negative influence of thermal deformations but it does not provide a method
to calculate and compensate them. With this background, it seems necessary to fully
understand heat generation and heat transfer mechanisms in gears and to develop tools
to predict operating temperatures and thermal distortions.

1.3 Hypothesis and research objectives

In view of the research opportunities presented in the critical review of the state of art in
Chapter 2, the following research hypothesis is formulated:

Hypothesis

“Thermal gradients in cylindrical gear sets distort involute flanks in the same order
of magnitude of manufacturing deviations, thus causing a load distribution mismatch
that can be predicted and compensated by means of analytical methods.”

Therefore, in order to verify this hypothesis, the main objective of the present PhD
thesis is to predict, evaluate and correct uneven mechanical behaviour of spur
and helical gears due to thermally-induced flank geometry distortion, specially
oriented to high speed/high power external cylindrical gears. To this aim, the following
secondary objectives are defined:

� O.1: To analytically compute gear mesh kinematics, load distribution and trans-
mission error of cylindrical gear pairs with tooth modifications, subject to variable
torques and speeds.

� O.2: To predict heat flux and heat partition in the gear mesh as a function of
instantaneous load, sliding speed and friction coefficient along the line of action.

� O.3: To develop a comprehensive thermal model to predict temperature distri-
bution of cylindrical gear pairs as a function of geometry, running conditions
and lubrication method.

� O.4: To analytically predict the amount of tooth flank normal deviation due
to thermally induced geometry distortion and quantify the fluctuation of load
distribution and transmission error with respect to ambient temperature.

� O.5: To set design guidelines, rules or strategies to deal with uneven load distribution
due to combined elastic deflections and thermal distortion by defining the type
and amount of profile and/or flank line modifications.

� O.6: To design, manufacture and assemble a back-to-back gear test rig and
experimentally observe thermal distortion effects on mesh behaviour.
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1.4 Dissertation outline

The following dissertation is divided in eight chapters and four appendices organised
in a continuous manner as shown in Figure 1.6.
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Figure 1.6: Research methodology

Chapter 1 introduces the background and motivation of this thesis, supported by up-
to-date data on automotive gear transmissions and its relation with power density, high
speeds and thermal issues. Then, a brief description of the thermally induced geometry
distortion is provided which is followed by the definition of the research hypothesis and
the formulation of the main objectives of this thesis.

Chapter 2 presents the literature review on the topic which has been separated from
the introductory chapter for clarity. The main analytical, numerical and experimental
research works on heat generation, temperature distribution and thermal distortion of
gears are described here. A critical review of the state of the art is presented and research
opportunities are identified at the end of this chapter.

Chapter 3 meets the demands of objective O.1 in Section 1.3. The main concepts,
procedures and equations to compute gear geometry, kinematic behaviour and load
distribution of external cylindrical gears are presented. The parameters directly related to
thermal distortion are highlighted and the solution method is described in detail. Finally,
a finite element validation of the model is carried out.

Chapter 4 responds to objective O.2 in Section 1.3. First, the computation of power
losses and heat partitioning coefficient is presented. It will be shown that sliding friction
coefficient plays a decisive role in the precise calculation of the heat flux from the gear
mesh. Then, a new friction coefficient model and power loss prediction methodology are
introduced and both are validated with experimental measurements from literature.
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Chapter 5 addresses objective O.3 in Section 1.3. A novel thermal network model is
developed for dip lubricated gear pairs that produces radial and longitudinal temperature
distributions for thermal distortion modelling in the next chapter. Different heat sources
are analysed, heat transfer mechanisms are discussed and the solution method for steady-
state and transient regimes are introduced in this chapter. Finally, thermal lumped
parameter predictions are compared to experimental results from literature.

Chapter 6 focuses on objectives O.4 and O.5 in Section 1.3. Thermally induced
geometry distortion is predicted analytically for the first time and the latter is compared to
manufacturing deviations. The influence of gear size, temperature increase or gradient type
is discussed among other parameters and the effect on load distribution and transmission
error is evaluated. Then, a case study from the automotive sector is fully analysed
and the effect of thermal distortion on tooth contact behaviour is discussed. It is
shown that, contrary to common belief, thermal expansion does affect mesh behaviour
in medium-size cylindrical steel gears. At the end of the chapter, design guidelines
are compiled as required by objective O.5.

Chapter 7 meets the demands of objective O.6 in Section 1.3. First, the developed
back-to-back gear test rig is described and then, test methodology is presented. Thermo-
mechanical transmission error behaviour of two gear sets is measured and results are
compiled in terms of available normal backlash, transmission error mean level and peak
to peak values, all of which are presented as a function of torque and temperature. At
the end of the chapter, experimental results are discussed and some of the analytical
predictions made in the previous chapter are validated. To the author’s knowledge,
none of the experimental results presented in this chapter (or similar ones), have been
previously published in scientific literature.

Chapter 8 summarizes the major conclusions of the thesis classified per objective,
fundamental contributions are highlighted and future research areas are defined. Finally,
scientific contributions made during the PhD thesis period are also gathered.

Appendices present additional resources to understand the document, such as the
analytical - finite element comparison of thermal distortions, Hertz theory for elliptical
contacts, transmission error computation algorithm for absolute encoders and inspection
data of the experimental gear sets.

Finally, to enhance readability of the document and with the purpose of ensuring
the continuity of the different calculations, FZG gear type C-PT geometry [28] and its
derivatives [29] are used as reference gears in all chapters and new ones are introduced in
some of them to analyse specific mechanical/thermal behaviour. Similarly, standard FZG
gearbox dimensions are used unless otherwise stated [30], reference lubricant is FVA-3
mineral oil [31] and operating conditions are defined by DIN 51354 standard [32].





Two roads diverged in a wood, and I —
I took the one less traveled by,
And that has made all the difference.

—Robert Lee Frost’s The Road Not Taken, 1916
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This chapter presents the current state of the art relative to the thermal
distortion phenomena in external cylindrical gears and in geared trans-
missions in general. The purpose of this literature review is identifying
research opportunities on the aforementioned topic, such that a general
thesis objective can be defined and the underlying hypothesis can be
formulated. First of all, heat generation process and relevant heat transfer
mechanisms are presented. The former is classified as a function of the
load dependency of the heat source and the latter is grouped into radial
and axial heat transfer processes. Then, overall temperature distribution
in gears is presented. The key parameters in the development of the
steady-state temperature field are described and the main research works
on the prediction of bulk temperature of cylindrical gears are identified.
In this section, special attention is paid to the mechanisms that allow for
noticeable temperature gradients. Subsequently, the thermally-induced
geometry distortion phenomena is described in detail. Different types of
distortion are presented and compensation techniques to provide uniform
bearing patterns are reviewed. Finally, conclusions are inferred and a
critical review is developed in order to identify research opportunities on
this field of study.
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2.1 Heat generation and transfer in gears

2.1.1 Heat generation

Power losses lie at the origin of the heat flux to the pinion and gear, and therefore, they
are responsible for the resulting temperature distribution. Sources of power losses in a
gear drive are usually classified into two groups: i) load-dependent mechanical power
losses due to friction in loaded contacts of bearings and gears and ii) load-independent
losses (also known as “spin losses”) caused by viscous friction coming from oil churning
and windage. The latter results from oil-air mixture drag on the face and sides of such
machine elements, as well as pocketing/squeezing of lubricant in the in the surroundings
of the contact zone. Niemann and Winter [33] computed total power loss as the sum
of the individual contributions of gear, bearings, sealings and shaft driven accessories
as shown in Figure 2.1. It can be observed that while load-dependent and spin power
losses are comparable in magnitude under low speed conditions (below 7 m/s), spin
losses clearly dominate at the highest operating speeds.
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Figure 2.1: Sample torque loss breakdown from FZG gear test rig (adapted from [29])

Gear teeth steady-state temperature is mainly influenced by mesh-related losses, as well
as heat coming from oil churning and windage; while the temperature of the supporting
shaft and the gear hub is also affected by the heat coming from bearings and sealings.

Load dependent power losses

Power losses in the gear mesh, PV ZP , are the result of sliding and rolling friction forces
and velocities. The difference in instantaneous rolling velocities, u1 and u2, of the
contact points of the pinion and the gear respectively, generates sliding of the mating
surfaces. The product of the relative velocity, Vs, and the sliding friction force, Fs, created
by the transmitted normal load, W , results in power loss along the entire length of
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contact. Besides, the elastic deformation of the mating surfaces in the contact point
and the drag force generated by the continuously squeezing lubricant film creates and
additional source of power loss known as rolling force, Fr. Thus, the instantaneous
power loss in any point Y(x, z) on the base tangent plane can be expressed as the
sum of a sliding and a rolling term [34]:

PV ZP (x,z) = PV ZP,s+PV ZP,r = [Fs ·Vs] + [Fr ·Vr] (2.1)

where Vs(x,z) = |u1−u2| is the instantaneous sliding velocity and Vr(x,z) = |u1 +u2| is
the sum of rolling velocities at any point of the path of contact.

On the other hand, sliding friction force, Fs, is the product of normal load, W , and
sliding friction coefficient, µ, while the rolling friction force, Fr, is proportional to the
elastic deformation of the bodies and the lubricant film thickness between them [35].
Considering these relationships Equation 2.1 can be re-written as follows:

PV ZP (x,z) =
[
µ ·W · |u1−u2|

]
+
[
Fr · |u1 +u2|

]
(2.2)

From the previous equation it is deduced that the accurate prediction of load-dependent
power losses in a gear pair, and thus the prediction of generated heat, depends on the
friction coefficient model, the instantaneous load, surface velocities and the equations for
the rolling friction force. In Chapter 3 it is shown that kinematic behaviour and load
distribution can be predicted from gear geometry and operating conditions. However, there
is a significant scatter in predicted friction coefficients [36] as different lubrication regimes
can be encountered in the gear mesh (see Figure 2.2) and there is no general method
available that copes with the large range of operating conditions and gear geometries
found in gear transmissions. As a consequence, large deviations can be found in the
predicted heat flux leading to unreal temperature distributions. Therefore, sliding and
rolling friction coefficient models are reviewed next.

a) Sliding friction coefficient The contact between gear teeth is non-conformal and it
is characterized by a small area, significant body deformation and a high contact pressure.
Besides, there is a thin lubricant film between the mating surfaces which gives rise to
different situations depending on the degree of interaction between surface asperities:
i) boundary lubrication (BL), ii) mixed lubrication (ML) or iii) elastohydrodynamic
lubrication (EHL). Figure 2.2 depicts these regimes on a Stribeck curve for a line contact
subject to typical gear operating conditions where the shaded region indicates the range
of variation of loads (0.5 GPa to 2.5 GPa) and bulk temperatures (60◦C to 140◦C) for a
given lubricant and surface roughness. As it can be seen, depending on the operating
conditions, friction coefficient doubles or triples its value, and so does the generated
heat. Considering that gear teeth are subject to variable loads, temperatures and speeds
along the line of action, the friction coefficient changes proportionally and may even
shift from full to partial EHL regime. The prediction of such complex behaviour has
received a large amount of attention in the last decades.
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Figure 2.2: Simulated Stribeck curve for an
equivalent gear contact subject to common oper-
ating conditions (calculated following ref. [37])

Literature review stands out three main
approaches of increasing complexity to
predict friction coefficient and power losses
in gears: i) experimental methods based
on power loss factors, Hv, ii) empirical
equations from twin disc measurements
and iii) physics-based models. The first
group of models (see [38–40] for classical
models or more recently [41, 42]) are based
on Ohlendorf’s approach [43] who proposed
the power loss equation PV ZP = PA · µ̄ ·Hv

for standard spur gears depending exclu-
sively on gear geometry, Hv, the mean co-
efficient of friction, µ̄, and the input power,
PA. Experimentally measured power loss
from FZG tests is used to calculate the
mean coefficient of friction for different oils,
gear geometries, surface roughness and operating conditions. Then, the friction coefficient
model is developed from regression analysis. However, the power loss factor, Hv, was
not originally developed to account for the influence of helix angle, high contact ratio or
tooth modifications. In addition, Wimmer [36] found that these models largely simplify
load sharing between teeth and substantial deviations were predicted when mesh stiffness
was considered. Although several corrections are proposed for these variables, and similar
power loss factor models have been developed to prevent these shortcomings [44, 45],
the accuracy of the majority of these friction coefficient models is still limited to simple
gear geometries and specific operating conditions. Furthermore, power loss predictions
following Ohlendorf’s approach neglect the variation of lubrication regime in the path of
contact which may lead to significant errors when gears operate at high speeds and torques.

The second group of models (see [46–48] or more recently [49–51]) are based on
regression analysis of tribometer measurements (e.g twin disc or ball on disc machines).
Such tests allow to easily control the curvature radius, the contact width, disc/ball
materials, lubricant type, oil jet temperature and slide to roll ratio. Therefore, friction
behaviour is directly characterized under real contact pressures, velocities and temperatures
[52]. When these models are used in the prediction of power losses in gears, the contact
path must be discretized to compute instantaneous kinematic and load parameters which
serve as inputs for the empirical friction models. The method accounts for the variation
of friction coefficient along the line of action but some authors [50, 53, 54], point out that
these models cannot be directly applied to gears due to differences in surface topography
and roughness, large values of friction coefficient at the low slide-to-roll ratios found
near the pitch point and varying lubrication regimes along the line of action. Although
these authors have proposed different solutions to cope with these issues, all empirical
models are developed for specific lubricants and therefore they cannot be directly used
to predict friction with a different oil without loss of accuracy.
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Finally, the third group of models is based on a pure tribological-rheological approach.
Partial or full EHL friction coefficients are computed numerically following different
techniques; provided that contact geometry, normal load and rolling velocities are known.
The pioneering works by Oh [55], Okamura [56], Goglia [57] and Lubrecht [58], set the
foundations of different approaches to the solution of the elastohydrodynamic contact
problem: the differential deflection method [56], the iterative Newton-Raphson procedure
applied to finite difference scheme [57], the finite element method [55] and the multigrid
technique [58] are some of the most common in scientific literature.

Figure 2.3: Simulated EHL pressure and film
thickness distributions in a smooth contact com-
puted following the differential deflection method

In general, these methods discretize
thoroughly the contact region (assumed
paraboloid) and the lubricant film thick-
ness and pressure distributions are com-
puted by solving the Reynold’s equation
together with the energy, elasticity and
force balance equations across the contact
and taking into account the dependence
of lubricant viscosity on temperature and
pressure. Then, sliding traction is typically
computed from Eyring or limiting shear
stress models [59] and finally, instantaneous
power losses are predicted. Figure 2.3
depicts pressure and film thickness dis-
tributions for two different oils computed
following the differential deflection method.
Although the pressure distribution at high
load is approximately equal to the Hertz
solution in both cases, the film thickness
shape is very different as it depends on
lubricant rheology. Therefore, sliding trac-
tion, and hence power loss, for each oil will be different as well. The third group of
models can be applied either to smooth or rough surfaces with very accurate results
and, since both the pressure distribution and the film thickness shape are known, rolling
traction can also be computed as shown later in this section.

Recently, [34, 60, 61] have applied these numerical methods to the prediction of
friction coefficient in cylindrical gear contacts. Although the results are accurate over
a wide range of operating conditions, lubricants and lubrication regimes, the required
computational time to compute the full length of the path of contact is high, even when
efficient algorithms such as the multigrid method [60] are used. To solve this problem
Xu et al. [34], and later Li and Kahraman [62], developed simple full and partial EHL
friction coefficient models from the linear regression of thousands of numerical EHL
simulations covering typical gear contact parameter ranges (i.e. pressure, temperature,
slide-to-roll ratio, roughness, etc.). However, once again, both friction coefficient models
where developed for specific lubricants and therefore they cannot be extended to other oils.

Table 2.1 summarizes some of the most common friction coefficient models in gear
literature each of them representing a group of models respectively. As it can be observed,
these friction coefficients rely on five sets of parameters representing contact conditions:
i) geometry (b, ρ, R′), ii) kinematics (Vs, Vr, SRR), iii) load (w, Fbt, pH), iv) lubricant
(η0, XL) and v) surface roughness (Rq, Ra).
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Table 2.1: Common sliding friction coefficient models in gear literature

Author Equation

Schlenk [63] µ̄= 0.048 ·
(

Fbt/b

Vr,C ·ρC

)0.2
·η−0.05

0 ·Ra0.25 ·XL (2.3)

Benedict & Kelley [46] µ= 0.0127 ·
(

50
50−Rq

)
· log

(
3.17 ·108 ·w
η0 ·Vs ·V 2

r

)
(2.4)

Xu [34]
µ= ef ·pψ2

H · |SRR|
ψ3 ·V ψ6

e ·η
ψ7
0 ·R

′ψ8 (2.5)
f = ψ1 +ψ4|SRR|pH log(η0) +ψ5e

−|SRR|pH log(η0) +ψ9e
Rq (2.6)

b) Rolling friction force Rolling traction is the resistance to movement between two
surfaces rolling without sliding as the result of the non-symmetrical pressure distribution
under the EHL contact (see Figure 2.3). Crook [64] showed that in the full EHL
regime the rolling friction force is proportional to the lubricant film thickness and
independent of load. The total rolling traction force exerted on one body can be
computed following Equation 2.7:

Fr = 1
2 ·
∫ +∞

−∞
h(x) · ∂p(x)

∂x
dx (2.7)

Contrary to sliding friction, the number of analytical models to calculate rolling
traction is scarce and, to the author’s knowledge, there is no empirical equation. Anderson
and Loewenthal [65] applied a modified version of Crook’s [64] EHL rolling traction
formula for point contacts (see Table 2.2) to predict the efficiency of a spur gear system.
In a similar manner, Wu and Cheng [35], and later on Xu [34], used the equation developed
by Goksem and Hargreaves for full EHL line contacts [66] to evaluate power loss in spur
gears. In both cases, the order of magnitude of the rolling term was negligible compared
to the sliding one and hence, it is usually overlooked in similar research works.

However, Michlyn and Myunster [67] proved that near the pitch point, rolling friction
force prevails causing surface wear, which means that energy is being dissipated and,
therefore, it may be underestimated. Recently, Li and Kahraman [62] showed that the
conventional way to compute rolling power losses is inappropriate and proposed a new
method to derive such losses integrating the product of the local fluid shear stress and the
sliding velocity across the film thickness. They proved that in case of mixed lubricated
contacts, due to the extreme pressure gradients, rolling losses where underestimated.
This approach requires solving the Reynold’s equation for each contact point along the
line of action, in the same way as the sliding friction coefficient models in the third
group, which leads to time-consuming calculations.

Table 2.2 summarizes some of the most common rolling friction force models in gear
literature. All models have been developed considering isothermal isoviscous regime and
therefore, they may show errors at the highly loaded contacts of gear transmissions. To
solve this issue, Archard and Baglin [68] presented a modified version of their equation
to account for heavily loaded contacts but the calculation requires additional effort.
Finally, these equations are usually presented in terms of non-dimensional groups, U ,
G and W , similarly to film thickness equations, where each of them accounts for the
effect of speed, materials and load respectively.
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Table 2.2: Common rolling friction force equations in gear literature

Author Equation

Archard & Baglin [68] Fr = 2.08 · (η0 ·Ve ·w)0.5 (2.8)
Goksem & Hargreaves [66] Fr = 4.318 · (G ·U)0.658 ·W 0.0126 ·R′x ·α−1 (2.9)
Anderson & Loewenthal [65] Fr = 9 ·107 ·

[
2.69 ·U0.67 ·G0.53 ·W−0.067

]
·R′x · b (2.10)

Load independent power losses

Load independent power losses, also known as “spin losses”, are of primary importance in
high speed gears [69] and they are caused by a host of factors from the viscous dissipation
of gear oil churning to the squeezing of lubricant in the meshing zone. According to [70]
load independent losses can be classified in the following types:

1. Oil churning losses, defined as drag losses taking place on the periphery and faces
of a gears partially immersed in lubricant.

2. Root filling losses, defined as the energy losses due to the swirling motion of
lubricant in the cavity between adjacent teeth.

3. Oil pocketing/squeezing losses, caused by lubricant being squeezed out of the gear
mesh due to the pumping action of gear pairs.

4. Windage losses, resulting from the oil-air mixture drag force on the face and sides
of the gears as they rotate in free air.

5. Air pumping losses, due to the squeezing and pumping of compressible air from
the meshing zone towards the tooth ends.

However, literature review, has shown that load independent losses are usually
categorized in two principal contributions: churning and windage; while the rest of
the terms are considered secondary and they are usually grouped together. In this
sense, current CFD simulations [71] are helping understand the complex fluid flows
inside the gearbox and thus help to separate the different power loss contributions
as shown in Figure 2.4.

(a) Churning (b) Squeezing (c) Windage

Figure 2.4: CFD simulations of no-load losses by Liu [71]

In the following paragraphs, churning and windage power losses are described in
depth and other contributions are briefly introduced.
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a) Oil churning Churning power losses appear when gears are running in an oil bath
that generates a drag force on the face and sides of the gear. When gear teeth in rotation
enter the static oil bath they face a drag force due to the pressure of the lubricant on
the face of the teeth. Once the teeth exit the oil bath they throw the lubricant away by
centrifugal fling-off (see Figure 2.4a). The rotational movement of the gear pair partially
immersed in lubricant requires additional torque to overcome such drag forces.

There are several experimental studies on the churning drag torque, TV Z0,C , of
rotating disks and bladed rotors, but only a few of them are devoted to the gear
oil churning phenomena. Table 2.3 gathers some of the most recurring empirical
models in gear literature.

Table 2.3: Common churning power loss models in gear literature

Author Equation

Terekhov [72]
TV Z0,C = ρo ·ω2 · r4 · b ·Cm (2.11)

Cm = ψ1 ·
(
H

r

)ψ2

·
(
b

r

)ψ3

·
(
V

Vo

)ψ4

·Re
ψ6 ·Fr

ψ7 (2.12)

Mauz [63]

TV Z0,C = Csp ·C1 ·e
C2·
(
Vt
Vt0

)
(2.13)

Csp =
(

4 ·he,max
3 ·hc

)1.5
·
(

2 ·hc
lh

)
(2.14)

C1 = 0.063 ·
(he1 +he2

he0

)
+ 0.0128 ·

(
b

b0

)3
(2.15)

C2 = he1 +he2
80 ·he0

+ 0.2 (2.16)

Changenet [73]
TV Z0,C = 1

2 ·ρo ·ω2 · r3 ·Sm ·Cm (2.17)

Cm = ψ1 ·
(
mn

d

)ψ2

·
(
b

d

)ψ3

·
(
H

d

)ψ4

·
(
Vo
d3

)ψ5

·Re
ψ6 ·Fr

ψ7 (2.18)

In this table, TV Z0,C is the churning torque, ρo is the lubricant density, ω is the
rotational speed, r is the gear pitch radius, Sm is the surface area of contact between
the gear and the lubricant, Cm is the dimensionless drag torque, mn is the module, d is
the pitch diameter, H is the immersion depth, Vo is the oil volume, Re is the Reynolds
number and Fr is the Froude number. Other parameters are of secondary importance
and their meanings can be found in the original publications.

Terekhov [72] carried out several experiments with high viscosity oils, different modules
and low rotational speeds and he derived an empirical equation for the drag torque from
dimensionless analysis. Lauster and Boos [74] arrived to a similar expression from a
different set of experimental data. Later on, Boness [75] experimented with two spur
gears with small module immersed in water and obtained a different expression for the
drag torque where the parameter for the immersed area was also included. In [76] Luke
and Olver performed a number of experiments to determine churning loss in spur gear
pairs in mesh. They compared their experimental observations on spin power losses with
the previous formulations and found that, contrary to what Boness had predicted, the
spin power losses were not strongly affected by the viscosity of the lubricant.
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Furthermore, Luke and Olver’s observations [76] called into question the attempt
used to characterize spin power loss based on a Reynolds number dependent on lubricant
viscosity. More recently, Changenet and Velex [73] have presented a new model for
the prediction of churning losses in automotive transmissions which accounts for the
influence module, diameter, face width, speed, immersion depth and lubricant viscosity
(see Table 2.3); what’s more the proposed model accounts for the pinion and the gear
in mesh and the sense of rotation. Although the proposed equation initially included
the effect of the flow regime through the Reynolds’ number (see Equation 2.18), the
authors confirmed Luke and Olver’s claim on the latter in a second publication [77], thus
confirming that at high speeds the lubricant viscosity influence is negligible.

The models presented in the above paragraph have been developed from experimental
results and therefore they do not account for all gear types, geometries and gearbox
architectures. A deeper understanding of the physical phenomena responsible for viscous
losses is still needed in order to improve the existing models. In this sense, Seetharaman
[70] proposed a different approach for the computation of spin power losses. The
author developed a physics-based model to predict power losses of gear pairs due to
oil churning and windage that included individual formulations for evaluating drag and
pumping components. Besides, with the improvement of computational capabilities
CFD models are being used to better understand the fluid flows in both, oil churning
and windage phenomena [78].

b) Windage Windage power loss can be defined as the power required to rotate a
gear in free air when there is no frictional or viscous power loss in the gear mesh or the
bearings. When pitch-line velocity is above 120 m/s, windage losses can be half or more
of the total losses from the drive system [79]. However, windage power loss assessment
is the weakest of the analytical tools available for predicting gearbox losses. Table 2.4
presents some of the regular empirical models in scientific literature.

Table 2.4: Common windage power loss models in gear literature

Author Equation

Matsumoto [69] PV Z0,W = 3.8 ·10−22 ·N3 ·d5 ·ρa ·
[
0.006 + 0.02 ·

(
b

d

)0.8
+
(
h

d

)]
(2.19)

Dawson [80] PV Z0,W =N2.9 ·
(

0.16 ·df 3.9 +df
2.9 · b0.75 ·mn

1.15
)
·10−20 (2.20)

Diab [81]
PV Z0,W = 1

2 ·ρa ·ω3 · r5 ·Ct (2.21)

Ct = 60 ·Re−0.25 ·
(
b

r

)0.8
·z−0.4 ·

[(
h1
r

)0.56
+
(
h2
r

)0.56
]

(2.22)

Several research works quantify windage power loss in disks rotating in motionless
fluid but very few consider the energy dissipation in gears as the latter is a complex
phenomena that depends on many parameters as shown in Table 2.4 namely, face width,
b, gear blank diameter (represented by r, d or df ), number of teeth, z, module, mn,
speed (ω or N) and air density, ρa.
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Anderson and Loewenthal [65] developed an equation to quantify windage power
loss from work done on turbine rotor wheels. The authors modified the density and
viscosity of the surrounding fluid to account for the air-oil mixture environment inside the
gearbox. Matsumoto et al. presented a similar equation in [69] based on the same groups
of parameters and the influence of specific density. Later on, Dawson [80] carried out
an extensive experimental work with rough/smooth discs and gears with variable pitch
diameters, modules and face widths. The formula assumed that the side plates and the
toothed periphery could be treated separately and it also accounted for the effective density
of the fluid and the degree of enclosure. The author also found that, although the power
loss in spur and helical gears was similar in magnitude, the flow behaviour was significantly
different. Towsend and Dudley [82] presented an equation that included the effect of helix
angle in the fraction of total power loss corresponding to the toothed periphery; however,
the influence of effective density and degree of enclosure where not taken into account. A
more recent study by Diab [81] further developed analytically Dawson and Towsend’s
formulae considering the behaviour of fluid flow in rotating teeth. In addition, the author
developed a second approach for the windage phenomena based on dimensional analysis.
Both methods presented a good correlation with experimental results. And finally, as
in the case of churning losses, Seetharaman [70] also developed a physics based windage
model that accounted for air pocketing/pumping and drag forces on the lateral surfaces.

Finally, CFD models [83–85] are also used to better understand the fluid flow in
enclosed drives, the interaction between pinion and gear and the effect of helix angle.
CFD method is specially helpful in designing shrouding configuration, which helps reduce
total power loss significantly [86].

c) Oil and air trapping/squeezing/pumping According to the spin power loss
classification presented by Seetharaman [70] at the beginning of section 2.1.1, viscous
drag losses due to oil churning and windage are followed by secondary power loss sources
such as the power required to fill the tooth root with the oil-air mixture, the energy
needed to trap and deform the oil film between the meshing gear teeth and the power
required to pump the mixture towards the tooth ends.

Mizutani et al. [87] carried out an interesting research work on the significance of
different power loss sources in jet lubricated gears. The authors conducted various tests
with long addendum spur gears at high speeds (maximum rotational speed 12000 rpm and
pitch line velocities up to 75 m/s), loaded at different torque levels and subject to variable
oil pressures. They concluded that gear power loss was proportional to tooth load and
rate of oil flow at all gear speeds. However, at higher speeds the main sources of energy
dissipation were windage and churning phenomena where the pumping and mixing of oil-air
mist in the meshing teeth was found to be the main source of power loss. Such contribution
to the total power loss is explained by the short time duration of a mesh period in high
speed gears: the mixture of air and lubricant is successively accelerated, compressed and
expanded in the inter-tooth spaces giving rise to a significant power loss and heating.

Another study by Ariura et al. [88] in jet lubricated gears concluded that the trapping
of the oil in the tooth spaces dominates in the low speed range while in the high speed
range the acceleration of the oil is predominant. The oil captured in the tooth clearances
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is accelerated to the gear speed momentarily in two directions: rotating direction and
axial direction. Matsumoto [69] included both sources in the prediction of high speed
and high power helical gear power losses and the errors of the calculated values were less
than 10% of the measured gear loss. A more recent study by Diab [89] included the air
pumping action in the prediction of power losses in high speed gears. In this study the
contribution of gas trapping seems to be of secondary importance as it represents only
3% of the total power loss, however, it plays a significant role in the thermal distortion
of the gear flank causing a temperature difference of more than 30◦C between the tooth
engagement side and points situated about two-thirds of the width towards the exit
[90]. This phenomena will be discussed later.

The physics based model by Seetharaman [70] also proved analytically that, among
all the contributors to total spin power loss, oil-air squeezing is the major component,
followed by drag forces on the faces and periphery and finally root filling losses. As in the
previous viscous power loss sources, CFD numerical models are helping understand these
phenomena. In this sense the computational model by Concli [91] showed that squeezing
power loss increase with rotational speed and decrease with temperature, that is, viscosity.

2.1.2 Heat dissipation

Figure 2.5: Fundamental heat dissipation mech-
anisms in a gear transmission [28]

In general-purpose transmissions, the heat
generated in the pinion-gear contact is con-
ducted away from the mesh area towards
the room, through the body of the gear,
shaft, bearings, housing and foundation,
as shown in Figure 2.5. Besides, nearby
bearings and sealings generate heat as well
which is removed together with that com-
ing from gear mesh by forced convection
with the oil sump and the turbulent air
flows inside the gear case. Meanwhile,
the radiation effect is usually assumed to
be a small percentage of the whole due
to the relatively low temperatures of the
considered machine elements [92]. The
process of heat generation and transfer continues until the steady-state temperature
is reached. However, in transmissions with moderately high pitch line velocities, the
number of tooth engagements per second is high and the heat generated at the mesh
must be conducted away from the tooth flank at a sufficiently high rate to avoid sudden
temperature increases leading to gear scuffing. Thus, to avoid tooth failure, heat dissipation
by convection must be enhanced introducing oil jets or increasing the relative immersion
depth. In any case, high or low speeds, final temperature distribution depends on two main
factors: i) the geometry and ii) the relation between heat generation and dissipation rates.
In this section the latter is reviewed, focusing on heat transfer mechanisms typical from
gear applications: i) the fling-off cooling effect and ii) the axial oil-air mixture pumping.
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One of the most exhaustive scientific studies on heat dissipation processes in gear
transmissions was carried out by Funck [93], who analysed overall heat transfer mechanisms
in the gearbox. Funck measured heat transfer coefficients of the different parts of the
housing under composite effect of radiation and free/forced convection and found that, in
most geared transmissions, the governing heat transfer method was that due to external
convection because the heat exchange surface area of the gearbox is usually large and
radiation term is half its value in comparison, as shown by Figure 2.6a. Moreover, it was
experimentally proved that in real applications it is very unlikely to have free convection
due to the rotation of shafts, couplings and cooling fan of the motor; as a consequence,
2 to 3 W/m2K differences arise between values measured in laboratory and workshop.
Radiation effect was also analysed in this work by comparison of different surface finishing
methods with a reference varnished surface with known emissivity and it was found that,
for common gearboxes, surface emissivity could be considered constant an equal to 0.91.
From this work, several convection and radiation empirical heat transfer coefficients were
derived which are currently part of the ISO 14179-2 standard [16]. Similarly, Phillips [94]
proposed years later an overall heat dissipation coefficient for gear casings located in a
large indoor space and provided additional values for other conditions. This work is the
reference document for the American proposal of ISO 14179-1 standard [16].

(a) Free convection (b) Radiation

Figure 2.6: Gearbox external free convection and radiation heat transfer coefficients [63]

In a subsequent publication by Winter, Michaelis and Funck [95] it was shown that
splash lubricated gearbox temperature is almost constant within ± 5◦C provided that
immersion depth of the gears is adequate. However, if the oil level in the sump is too
low, the heat generated in the gear mesh cannot be evenly distributed to the inner walls
of the casing and dissipated to the room; as a consequence, gear temperature increases
inevitably [63]. This point is specially important in the current PhD thesis as immersion
depth is assumed to affect temperature distribution.

Similar publications can be found on specific heat dissipation processes in gear
transmissions. For instance, Winter and Michaelis [92, 96] experimentally analysed heat
transfer by conduction to the foundation; Funck [93] also studied the effect of casing
fins and gearbox exposure to the sun; Lossl [97] analysed heat dissipation by forced
convection on rotating shafts and couplings; and finally, Terauchi [98] experimentally
studied the amount of heat flowing from bearings to the shaft.
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Literature review has shown that almost all publications on gearbox heat dissipation
are experimental and most of them were carried out in the mid-eighties. Furthermore,
very few analytical or numerical works exist on the topic. In this sense, Joule et al.
[99] analysed steady state temperature distribution of a gearbox using the finite element
method and discussed the difficulties associated to calculating the thermal boundary
conditions. It was found that evaluating the internal heat transfer coefficients for an oil-
mist environment was questionable and experimentally measured surface heat fluxes were
used instead. To solve this issue, Yazdani et al. [100] have recently applied a numerical
multi-physics approach to the thermal mapping of dip-lubricated gear pairs including
the influence of gear teeth and shafts in fluid flow behaviour. Numerical predictions
were compared to experimental measurements with satisfactory results demonstrating
that the method can provide a valuable physical insight into the thermal behaviour of
gearboxes. Similarly, Christodoulias [101] has made an attempt to apply a numerical full
multi-physics approach to analyse composite effect of fluid flows and heat transfer in the
two-phase oil-air mixture inside the gearbox and also including heat transfer with the
room. Despite the gear geometry was largely simplified, the model resulted extremely
complex and computationlly demanding and no conclusive results were obtained.

Meanwhile, analytical attempts to study heat dissipation processes in gears have been
focused on the teeth region, where heat dissipation mechanisms are mainly ruled by cen-
trifugal fling-off and axial oil pumping effects. Both mechanisms are briefly reviewed here.

Fling-off cooling

Figure 2.7: Fling-off cooling in
rotating spur gears [102]

Generally, the oil supplied to the tooth face, either by
jet lubrication or oil bath, flows along the profile due
to the action of centrifugal force, generating an oil film
that absorbs heat from the tooth surface with which it is
in contact. Due to the action of centrifugal force, the oil
is flung-off progressively dissipating heat from teeth as
shown in Figure 2.7. Most gear drives are characterized
by intermittent fling-off cooling which means that the
oil is supplied to each tooth face once per revolution
(when teeth enter the oil bath or pass under the oil
jets). Besides, in dip lubricated gearboxes, if the oil level
is increased, the available angle for fling-off cooling is
reduced and so is the heat dissipated with this method.

Literature on the fling-off cooling of gear teeth is scarce. DeWinter and Blok
[103] analysed intermittent fling-off cooling and calculated the theoretical temperature
distribution of the oil film on the flank. They showed that even with an abundant supply
of oil and when the available rotation angle is largest, there is an upper limit to the
heat withdrawable from the tooth surface of a spur gear when there is a centrifugal
force. The maximum amount of heat, Q, removed from both flanks of all gear teeth
during rotation can be calculated as follows.

Q=
[5.6
π
·mn ·z · b ·ω1/2 ·e

]
·∆Θ (2.23)
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where mn is the module, z is the number of teeth, b is the tooth face width, ω is the
rotational speed, e=

√
ko ·ρo · cp,o is the thermal effusivity and ∆Θ is the temperature

difference between teeth surface and oil.
In a previous publication, Blok [104] reported a similar expression including the effect of

available rotation angle in dip lubricated gears and an equivalent equation for jet lubricated
systems was also proposed. Moreover, years later, Van Heijningen [102] extended Blok’s
analysis to include continuous fling-off cooling method. These equations are specially
useful in thermal lumped parameter models, as the term in brackets in Equation 2.23 can
be considered a thermal resistance of convection between the oil sump and the teeth.

Equations by Blok, DeWinter and Van Heijningen were developed under the assumption
that the quantity of lubricant is infinite at the start of the fling-off process which results
in large cooling capacities. Akin and Mross [105] further developed Blok’s approach and
included the effect of side windage in the oil atomization process taking place in the space
between adjacent teeth. Although their results highlighted the influence of the depth
of impingement in the heat removal by intermittent fling off, the proposed method was
not straightforward. Similarly, the study by Terauchi et al. [106] filled in this gap by
calculating the initial oil film thickness, and showed that this parameter has a strong
influence on the cooling effect. The authors also measured the average heat transfer
coefficient on the tooth face based on the temperature difference between the tooth and
the oil in experimental tests and they concluded that heat transfer coefficient increases
with speed and viscosity while it decreases with the number of teeth. All these models
give a qualitative measure of the parameters affecting heat dissipation in cylindrical gears.

Axial oil pumping

Figure 2.8: Axial oil pumping in
rotating spur gears [88]

During the time period in which a tooth first crosses
the addendum cylinder and proceeds to fill up most of
the volume between the teeth, a fraction of the oil and
the lubricant in the tooth space is expelled out of the
gear. In the case of spur gears, the oil gets into the tooth
space from both ends and the flow collides at the middle
of tooth width, being expelled towards both ends as a
consequence. Meanwhile, in helical gears the oil flow
is unidirectional (from engagement to exit side), thus
producing an axial oil pumping action that delivers oil
to the flank surface dissipating heat on the way.

Contrary to fling-off cooling effect, the determination of the heat dissipation rates due
to axial oil-air pumping is not easy as the compression of the fluid due to the action of
meshing gear teeth generates heat as well. In the case of spur gears, Ariura et al. [88]
experimentally measured the power required to pump the oil trapped between mating
teeth and they proposed a simple analytical model to explain the oil trapping phenomena.
Pechersky and Wittbrodt [107] analytically studied fluid flows in meshing spur gear pairs
to asses the order of magnitude of fluid velocity, pressure and temperature. They found
that fluid velocities were high and that significant temperature peaks arise when pressure
reached its maximum value. More recent works on the squeezing action of meshing spur
gear teeth can be found in power loss related literature, such as the analytical work
by Seetharaman [70] or the CFD simulations by Concli [91], however, none of them
studies heat transfer due to the oil pumping action.
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In the case of helical gears, a few references on the topic can be found. Matsumoto et
al. [69] analysed the pumping action effect of the oil trapped in tooth mesh clearances and
provided a power loss model for oil acceleration in the radial and axial directions. In their
work, the maximum quantity of oil trapped in the inter-tooth space was defined based on
a simplified representation of the gear mesh, and the velocity along the tooth trace of
the lubricating oil was assumed to be Va = Vt/tan(β). Thus, with this information, it is
possible to model heat transfer in the longitudinal direction as an advective transport
of energy following Equation 2.24.

Q= [ṁ · cp,o] ·∆Θ = [(ρo ·Va ·A) · cp,o] ·∆Θ (2.24)
A= C ·

[
2 ·mn · jbn+ 0.5 · (sca,1 +sca,2 + jbn) · (c1 + c2)

]
(2.25)

where mn is the normal module, jbn is the normal backlash, sca is the chordal tooth
thickness at the tip, c is the tip clearance, ρo is the oil density, cp,o is the specific heat
capacity of oil and ∆Θ is the temperature difference between teeth surface and oil.
Subscripts 1 and 2 indicate parameters relative to pinion and gear respectively and
finally, variable C was defined by Matsumoto et al. [69] as an empirical factor depending
on the oil jet flow rate which takes into account the reduction of the amount of oil
trapped in the mesh clearances at high speeds.

In the same way, Diab [89] developed an original one-dimensional semi-analytical
model to simulate the air-lubricant pumping between gear teeth. The proposed approach
sliced the spaces between the gear teeth into a number of finite volumes (connected by
radial or axial flow exchange surfaces) and applied the continuity equation assuming a
perfect gas submitted to isentropic compression-expansion cycles. Once critical conditions
are reached, the exit flows are bounded and the gas in the control volume is compressed
and heated. This model allows calculating fluid velocity, pressure and temperature
variations along the tooth face and predicts that the pumping of the fluid between the
teeth leads to over heating the gear face close to the trailing edge. The theoretical
predictions were compared with the experimental evidence from two turbo-gear sets
and it was found that the simulated temperature variations agreed reasonably well with
measured data [90]. Moreover, a different set of experimental results by Houjoh et al.
[108] confirm Diab’s conclusions on pressure distribution in the tooth spaces, and their
results also show that there is a exceptionally strong pressure at a point located at
about 2/3 of the face-width; where maximum temperatures are known to occur and
thermal distortion is maximum (see Figure 1.4).

Therefore, it seems that the uneven temperature distribution caused by the axial
oil pumping lies a the origin of the thermal distortion of the tooth face width. Rec-
ommendations from practical experience gathered by Dudley in reference [14], suggest
not using spur gear teeth when the pitch line velocity exceeds 50 m/s because the oil
trapping problem becomes too troublesome; and in the case of helical gears, the severity
of the oil trapping problem is evaluated with the axial meshing velocity, Va, following
recommendations on Table 2.5. According to Dudley [14], in a bad thermal situation, the
gear teeth may turn blue and the paint on the gear casing may be burned by the casing
hot spot. Furthermore, not only thermal problems arise when axial velocity is high, it
must be taken into account that an axial velocity of 700 m/s is equivalent to around
Mach 2 which also creates aerodynamic sound, as experimentally shown in [109].
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Table 2.5: Severity of thermal problems in helical gears according to Dudley [14]

Va [m/s] Severity

400 No trouble except in very large units where thermal distortion may be enough to
require correction. (Need good oil-jet system and generous size casing).

500 Probably no serious trouble. (Need very good oil-jet system and generous size
casing for gear sizes).

700 Probably have some trouble. May be manageable if gears are not too large and
thermal distortions are handled by compensations in tooth fit.

850 Usually difficult to handle. Much skill in tooth compensations needed plus special
quality of lubricant.

1000 Probably impractical to handle even with utmost design skill.

2.2 Temperature distribution in cylindrical gears

2.2.1 Experimental observations

Temperature distribution in gears has long be subject to study as gear scuffing failure is
known to be affected by the high temperature levels reached in the tooth flank. Seminal
experimental works by Teruchi and Miyao [110] or Niemann and Lechner [111] measured
flash temperatures in gear teeth in an attempt to explain gear teeth scoring. The former
analysed the relation between flank temperature rise and the contact position and showed
that Blok’s theory [112] for flash temperature increase correlates to local temperature
increases. Moreover, it was found that load distribution is an important factor on surface
temperatures and therefore, non-uniform contact patterns should be avoided as they
produce local pressure increases. Meanwhile, Niemann and Lechner [111] carried out an
extensive experimental work and additionally analysed the effects of gear geometry, surface
roughness and oil type. It was found that tooth surface temperature is proportional to
load and pitch line velocity, that is input power. Moreover, face width and longitudinal
crowning were also found to affect surface temperature as well through the contact pressure
increase. Figure 2.9 summarizes the influence of these parameters, where the difference
between the maximum and minimum flash temperatures on the gear surface is highlighted.
At the highest tangential speeds such difference reaches more than 50◦C; in any case,
flash temperature is always above the steady-state average tooth temperature.

Figure 2.9: Influence of speed, load and face width on flash temperature increase [111]
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Additional experiments conducted by Terauchi and Mori [113] on the influence of
dynamic effects on temperature rise, highlighted the importance of friction coefficient
and confirmed that maximum contact temperature is equal to the steady-state surface
temperature of the gear plus Blok’s flash temperature rise. This observation has defined
current practice for the calculation of contact temperatures in standards (e.g. [114]). In this
work, the authors considered surface temperature to be equal to oil temperature, however,
it was later shown by Deng et al. [115] that surface temperature is quite different from
that of oil, introducing an equation to compute the average temperature rise in the centre
of the gear, which is commonly referred to as bulk temperature increase, ∆Θb = Θb−Θo.

Similar equations can be found in scientific literature for the evaluation of the steady-
state gear temperature rise and Table 2.6 gathers some of the most common.

Table 2.6: Common bulk temperature rise equations in gear literature

Author Equation

Deng et al. [115] ∆Θb = Cv ·Cx ·Cq · b−1 ·PV ZP (2.26)

Oster [116] ∆Θb = 7400 ·
(
PV ZP
aw · b

)0.72
· XS
1.2 ·XCa

(2.27)

Terekhov [117] ∆Θb = C ·PV ·ReΨ1 ·PrΨ2

Vt ·H · b · cpo ·ρo
·
(
H

r

)Ψ3

·
(
V

Vo

)Ψ4

·
(
h

r

)Ψ5

·
(
h

b

)Ψ6

(2.28)

In this table parameter PV ZP , indicates mesh frictional power loss, b is the gear face
width, h the tooth height, r the pitch radius and aw is the operating centre distance.
Variables Cv, Cx and Cq in Equation 2.26 are coefficients accounting for the influence of
rotating speed, meshing position and oil supply rate respectively; while XS and XCa in
Equation 2.27 are the lubricant and tip relief factors. Finally, Equation 2.28 by Terekhov
is the result of non-dimensional analysis of several experiments accounting for the influence
of immersion depth, H, the ratio of gear volume, V , to the oil sump volume, Vo, the
tangential speed, Vt, and the properties of oil, namely, its specific heat capacity, cp,o and
its density, ρo. Finally, parameter C accounts for the influence of rotating direction.

Figure 2.10: Transverse thermal
gradient in spur gear tooth [118]

These equations usually assume that pinion and gear
are subject to the same temperature increase, however,
when multiplication or reduction gear ratios are used,
pinion and gear temperatures are usually different. More-
over, gear teeth temperature is not constant, specially in
large module gears where significant gradients may arise
between the loaded and unloaded flanks as shown by
Knauer [118] (see Figure 2.10). Therefore, an additional
temperature drop exists between the mating surface and
the tooth centre. Experiments by Knauer also showed
that temperature gradients between both flanks increase
with speed and that temperature difference between
tooth centre and unloaded flank is almost negligible.
As a consequence, it is concluded that temperature
gradients concentrate near the loaded flank.
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On the other hand, temperature differences between pinion and gear pairs have
long been observed [24] but few experimental measurements can be found in literature,
specially when middle size spur and helical gears are considered. In this sense, Mizutani
[87] measured high speed spur gear pair temperatures as a function of jet oil flow rate
and pressure for pinion and gears with 3 mm module and pitch diameters 120 mm
and 231 mm respectively. Although measurements included pinion and gear teeth bulk
temperatures along with those of the shafts and the oil mist, very few results were
reported and the steady-state values were not published. At the same time, Greiner
[119] analysed similar size helical gear teeth thermal behaviour subject to different jet
lubrication conditions and showed that appreciable temperature differences exist between
pinion and gear. Moreover, radial temperature gradients may become noticeable in
some lubrication conditions as shown in Figure 2.11. Temperature differences between
pinion and gear may reach 30◦C; with the pinion always hotter than the gear due to
its smaller size. Moreover, radial temperature gradients up to 20◦C are observed with
variable shape depending on direction of rotation.

Figure 2.11: Influence of oil flow rate and rotating sense on helical gear thermal behaviour [119]

More recently, Otto [28] has measured thermal behaviour of dip-lubricated spur gear
types FZG A and C-PT and the author has found that temperature increase depends
on relative immersion depth, with the highest temperatures reaching the tempering
region (above 170◦C). Furthermore, temperature differences between pinion and gear
almost reached 30◦C in these experiments. Following this work, Geiger [120] has recently
measured temperature distribution in the radial direction of FZG type C-PT gear pair
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with variable rotating speeds and load stages. From his experimental results, the author
has found that temperature differences between pinion and gear are negligible when
relative immersion depth is H/D = 0.5, with steady-state bulk temperature levels close
to that of the oil sump. However, temperature differences between tooth centre and
shaft may reach 8◦C even with favourable immersion depths.

Experiments conducted by Handschuh and Kilmain [9, 86] in high speed helical gears
from the aeronautical industry have confirmed the existence of additional heat dissipation
sources as previously described in Section 2.1.2. Temperature measurements of radially
and axially flung-off lubricant near the teeth were carried out for variable operating
conditions. Figure 2.12 shows non-dimensional experimental trends. At low speeds the
axial and radial flung-off oil temperature measurements are nearly the same but as the
rotational speed increases, the difference between the two locations becomes greater; which
confirms the additional heat source due to axial oil pumping described by Diab [89].

(a) Effect of speed (b) Effect of torque

Figure 2.12: Effect of speed and torque in radial and axial oil fling-off temperatures [9]

This effect has long been known to affect temperature distribution in large size helical
gear teeth from turbo-machinery industry. Preliminary investigations by Martinaglia [21],
Akazawa [121] and Matsumoto et al.[20] have shown that only a small part of the heat taken
up by the gear body is radiated out through the gear faces to dissipate in the air/oil mist
atmosphere, the remainder is given off via the tooth surface. As a consequence, appreciable
temperature gradients arise between gear teeth and shaft as shown in Figure 2.13a.

In contrast to the gear, the temperature difference between pinion teeth and shaft is
much smaller. Akazawa [121] found that the latter was approximately 5◦C at pitch line
velocity of 120 m/s, and it became smaller as its PLV increased. It was assumed that
this phenomenon was attributable to small heat mass of pinion, increasing of heat flow
into the pinion due to the greater number of engagements per second and also to the fact
that a large amount of heat was being transferred from the bearing to the pinion [121].
Because of these reasons the temperature of the pinion is usually higher than that of the
gear and therefore an important temperature gradient exists between both.

Furthermore, due to the pumping action of the oil-air mixture trapped in the gear mesh,
temperature distribution across the face width of such helical gears show a characteristic
shape (see Figure 2.13b) with almost constant temperatures over the first half of the
face-width and a steep rise up to a maximum temperature located at a point about
2/3 of the face width towards the exit side.
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(a) Temperature distribution (b) Influence of PLV

Figure 2.13: Temperature field of a high speed helical gear [21]

The most important research work on the temperature distribution of high speed
gears was carried out by Matsumoto et al. [20]. In this work, the authors investigated
the temperature field of high speed helical gears at PLV up to 150 m/s and output
power of 1100 kW. The authors found that the thermal disturbance is a function of
the square of PLV (see Figure 2.14), while the influence of torque on temperature can
be small; which is also supported by the experimental evidence by Handschuh and
Kilmain already shown in Figure 2.12b.

Figure 2.14: Temperature distribution relative to PLV and torque [20]
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However, in a previous study by Akazawa et al. [121], the authors did not observe such
temperature difference along the tooth trace. In this work the influence of the position of
oil spraying nozzles in helical gear temperature distribution was experimentally studied,
with a very similar test setup to that used by Matsumoto et al. in [20]. Nevertheless,
their results didn’t show an uneven temperature distribution along the face width, even
at the highest PLV (160 m/s). After analysis of both configurations the only difference
turns out to be the sense of the rotation and the teeth helix direction; which suggests
that the non-uniform temperature distribution is closely related to these parameters. Yet,
the author has not found additional experimental evidence on these variables except in
double helical gears, where the temperature distribution is somewhat different.

Several authors [18, 90, 122] showed that in double helical gears, some combinations
of rotating sense and helix direction could result in unfavourable temperature distribution.
One combination results in “mesh in” engagement, by which the contact line of the gear
mesh moves from both edges towards the gap. Opposite to “mesh in”, if the gear mesh
starts at the gap and meshes out towards the edges of the face width, the combination is
known as “mesh out”. In the first condition, the stream of the fluid flow is pumped from
both sides of the gear towards the gap; producing a temperature increase in the middle
of the gear while the ends are cooler due to increased forced convection heat transfer
on the side faces. Contrarily, in the second condition, fluid is pumped away from the
gap towards the tooth ends and therefore heat in the middle of the gear is dissipated
rapidly. Both temperature distributions are presented in Figure 2.15.

(a) “Mesh-in” (b) “Mesh-out”

Figure 2.15: Temperature difference in “mesh-in” and “mesh-out” situations [122]

More recently, Handschuh et al. [123] conducted experiments in double helical gear
sets with both oil pumping directions, inward and outward. Their study confirmed that
the outward pumping arrangement had the lowest temperature at the gap locations while
the inward pumping configuration had an increase in temperature towards the tooth
gap. Moreover, in Handschuh et al.’s work a comparison between double helical and
single helical gear temperatures and performance can also be found. Results showed that
double helical gears with outward pumping arrangement, give the highest performance
and lowest temperatures than its single-helical counterpart.
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2.2.2 Analytical and numerical studies

Analytical or numerical studies on gear temperature distribution have usually been focused
on either the prediction of the accurate surface temperature distribution or the overall
bulk temperature rise. Finite element models are commonly used for the former (e.g.
[124]) while thermal lumped parameter models prevail for the latter (e.g. [125]).

Up to date, very few numerical models have been developed for the analysis of
temperature distribution in gears. Fundamental finite element simulations by Patir and
Cheng [126] and El-Bayoumi [127] on steady-state and transient temperature distributions
respectively, analysed radial thermal gradients in spur gear teeth. Authors found that,
contrary to the popular assumption that the bulk temperature is constant along the
tooth, appreciable temperature gradients may exist. At high cooling rates, mesh frictional
heat is dissipated by convection from the tooth face rather than by conduction towards
the body. As a consequence high temperatures are confined to a thin layer below
the loaded flank which is consistent with experimental findings by Knauer [118]. If
on the contrary, cooling rates are reduced, the shape of the gradient is relaxed (see
Figure 2.16) and temperatures are almost constant. This conclusions were later validated
experimentally by Towsend and Akin [128] who analysed the influence of jet impingement
depth on temperature distribution.

HT

Figure 2.16: Transverse temperature distribution in gear body and tooth (adapted from [126])

Grekoussis and Retzepis [129] further developed Patir and Cheng’s model to analyse
the temperature distribution on the flank surface of pinion and gear, while Mihailidis
and Bakolas [130] analysed the steady state temperature fields in gear pairs including
the influence of adjacent teeth. Years later, Long et al. [131] presented one of the
most interesting works on the topic. The authors analysed the influence of operating
conditions and tooth geometry on frictional heat flux, average heat transfer coefficients
and temperature distribution of narrow high speed spur gears. It was found that increasing
the face width by a factor of three, increases the maximum surface temperature as much as
35% because the generated heat concentrates in the middle of the face width and it is not
dissipated by the cooling oil. Similarly, it was shown that surface temperature increases
with the normal module but so does the heat transfer coefficient; as a consequence,
maximum temperature may increase or decrease depending on the composite effect.
Finally, Long et al. stressed the influence of precise calculation of frictional heat flux (i.e.
friction coefficient), while the effect of deviations on surface heat transfer coefficient
were not as important.
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Figure 2.17 summarizes some of the results of the simulations by Long et al. [131]. It
is interesting to remark that, effectively, thermal gradients increase with speed due to the
effect of the enhanced cooling rate as shown by Patir and Cheng [126]. Furthermore, the
differences between the maximum and minimum surface temperatures also increase with
speed, which is consistent with experimental findings by Niemann and Lechner [111].

(a) 106.6 N/mm and 2000 rpm (b) 447.4 N/mm and 6000 rpm (c) 214.5 N/mm and 10000 rpm

Figure 2.17: Influence of speed and torque on 3D temperature distribution of spur gears [131]

Recently, Luo and Li [132] studied the influence of pressure angle, profile shift coefficient
and tooth modifications in the mesh frictional heat flux and the resulting temperature
distribution. Furthermore, in a second publication, Tian and Li [133] pointed out that
longitudinal temperature distribution on the pitch cylinder is not constant but rather
parabolic, with the maximum temperature located in the middle of the face width and
minimum symmetric values on both edges provided that load distribution is uniform.
This point was also discussed by Patir and Cheng [126] and Long et al. [131].

Subsequent publications by Li dig into the conditions that produce non-symmetrical
temperature distributions. For instance, it has been shown that in helical gears, temper-
ature distribution is no more symmetric in the tooth trace direction due to local heat
flux differences [134]. Similarly, manufacturing or assembly errors produce local pressure
increases that affect heat flux patterns and temperature distributions [135].

Finally, it must be outlined that although the use of finite element models for the
prediction of temperature field in gears is customary, other methods have also been
proposed in scientific literature such as the finite difference method (e.g. [136]), the thermal
network method (e.g. [137]) or purely analytical methods (e.g. [138]). However, the degree
of accuracy of these models with respect to the finite element method is usually reduced in
favour of the enhancement of computational time. In this sense, thermal lumped parameter
models are a good compromise between accuracy and performance and the number of
publications on the method is a good indicator of its interest (e.g. [120, 125, 137]).
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2.3 Thermally induced teeth geometry distortion

According to Henriot [26] temperature increase modifies involute geometry of gear teeth
due to base diameter expansion, leading to a base pitch error and a pressure angle deviation
of the flank with respect to that initially manufactured. Moreover, if a temperature
mismatch between pinion and gear exists, a relative profile slope and tooth pitch deviation
arises and as a consequence, tooth contact behaviour is no longer uniform as shown by
Sigg [24]. Depending on the temperature distribution of the gear pair, additional effects
may superimpose on the latter (e.g. housing expansion) and lead to transmission failure
as shown in Figure 1.5. In order to analyse the effects of the different types of thermally-
induced geometry distortion, the following classification is proposed for this section:

1. Transverse profile distortion
2. Thermally-induced longitudinal deviations
3. Other sources of thermal distortion

Furthermore, it is to be noted that these deformations are added to those caused by
purely mechanical strain and therefore, their composite effect must be closely observed.

a) Transverse profile distortion

Figure 2.18: Order of magnitude of thermal
growth with constant temperature increase [121]

Temperature increase of the gear produces
a thermal expansion of both, gear body and
teeth. If thermal gradients are neglected,
such expansion is purely radial; and if gear
size is sufficiently large, the order of mag-
nitude of the dilatations is comparable to
that of manufacturing deviations or tooth
modifications. From the close analysis of
Figure 2.18 it is concluded that the tip
of the pinion distorts more than the root
due to the greater radius and therefore,
premature contact should be expected in
meshing gear pairs. In effect, according to
Welch and Boron [18] and Akazawa [121],
the observation of tooth contact pattern
records after full power operation on gears
known to have excessively warm pinions,
clearly show a strong root heavy marking
on the teeth of the mating gear wheel in
spite of being profile-corrected, which is
explained by gear tip premature contact.

Thermal growth at constant temperature increase is ruled either by gear size or by
material’s linear expansion coefficient. Therefore, one would expect thermal distortion
in steel gears to become noticeable only in large wheels, typical from turbo-machinery
industry, or in plastic gears, where not only thermal expansion coefficient is large but
also mechanical properties are ruled by temperature.
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Literature review has shown that metallic gear teeth thermal expansion has not received
much attention, although there are some references to thermal distortion in plastic gear
teeth. One of the most detailed analysis of the influence of temperature in plastic gears is
the research work developed by Wang [139]. Wang carried out a finite element study of
non-metallic spur gears in mesh and concluded that in plastic gears, the static transmission
error, composite torsional mesh stiffness and load sharing ratio, depend strongly on both
input load and temperature. He concluded that as a consequence of temperature increase,
tooth load sharing can be widely expanded covering more than a complete mesh cycle with
more teeth coming into the contact zone (triple contact) so that the gears will be running
smoother (relative to transmission error and load share). The influence of temperature in
mesh stiffness and load sharing ratio in Nylon PA6 gears is shown in Figure 2.19.

(a) Composite mesh stiffness (b) Load sharing ratio

Figure 2.19: Effect of temperature on composite torsional mesh stiffness and load sharing ratio
in Nylon PA6 gears under 50Nm torque [139]

Similarly, in a recent study Kashyap et al. [140] analysed experimentally the thermal
expansion of Acetal spur gear teeth by heating them up and measuring their profile with
a coordinate measuring machine (CMM). The authors found that geometry change is
mainly due to local pressure angle deviations as shown in Figure 2.20, and they proposed
two analytical methods to compute the distorted geometry. Unloaded transmission error
behaviour of such gears was analysed following the latter and the authors concluded
that PTP transmission error at elevated temperatures is significant in plastic gears; in
the order of 3.2 µm for the considered gear geometries.

According to one of the analytical methods proposed by Kashyap et al. [140] the
outside diameter, tooth thickness and pressure angle slope increases with temperature in a
linear manner (see Figure 2.20) and therefore, the new pitch diameter, d′, normal module,
m′n and tooth thickness, s′c, resulting after thermal expansion, can be calculated as follows.

m′n = d′/z (2.29)
d′ = d · (1 +αL ·∆Θb) (2.30)
s′c = sc · (1 +αL ·∆Θb) (2.31)

Where αL is the coefficient of linear thermal expansion and ∆Θb is the bulk temperature
increase with respect to ambient temperature.
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Figure 2.20: Involute profile deviation with temperature increase [140]

Although, the thermal properties of plastics are different from metals’ (higher coefficient
of expansion, smaller conductivity, etc.) the same trends are expected in steel gears which
are usually subject to higher temperatures than its plastic counterparts. Furthermore,
similar equations to those presented above were already introduced by Henriot [26] for
steel gears three decades before. Henriot additionally related temperature increase to
base diameter expansion, pressure angle reduction and pitch error. From his equations it
is possible to estimate the order of magnitude of thermal distortion in steel gears. For
instance, for a 100 mm pitch diameter gear subject to a 100◦C temperature increase, flank
normal deviation at the tooth tip is approximately 32 µm which is not negligible.

Similarly, Sigg [24] described years before the thermal effects on large size speed
increasing/decreasing transmissions and related temperature differences between pinion
and gear teeth to relative pitch deviations. He noticed that temperature increase produces
a profile slope deviation and base pitch error which increases engagement shock. Although
Sigg did not provide any equation relating errors, his comments on profile distortion
are consistent with equations from Henriot [26]. What’s more, Sigg [24] highlighted
the composite effect of tooth deflections under load and thermal dilatations, and he
concluded that in a reduction gear unit both effects tend to compensate each other while
in a speed increasing one these two effects are additive.

Years later, Akazawa [121] measured a maximum temperature difference between
pinion and gear of 40◦C in turbo-gears running at PLV of 200 m/s and concluded that
such thermal gradient also brings about a difference in the normal pitch between the
pinion and the wheel that affects the smooth running of the gear set. His conclusions
are consistent with previous findings by Sigg and Henriot, and additionally, Akazawa
related temperature differences with gear ratio, thus indicating that transmissions with
large gear ratios are sensitive to pitch errors.

Even though, references on thermally-induced geometry distortion of middle-size steel
gears is scarce, recently Hensel et al. [141] have shown that temperature increase can
also affect gears from automotive industry when design contact ratios are close to an
integer value. In this study, transmission error harmonics were calculated for several
gear designs, torque and temperature levels; where thermally-induced profile distortion
was calculated following Equations 2.29 to 2.31 by Kashyap et al. [140]. The authors
found that some gear sets were sensitive to temperature increase; and further analysis
of results, showed a clear correlation between transverse contact ratio and temperature
on transmission error harmonic behaviour as shown in Figure 2.21.
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Figure 2.21: Sensitivity of TE harmonics to temperature increase and correlation to transverse
contact ratio according to Hensel et al. [141]

Hensel et al. [141] did not provide a clear explanation for this behaviour and it was
attributed to backlash reduction. However, it is possible that tip diameter expansion
caused by temperature increase extends the length of the path of contact and thus,
affects real contact ratio. If the latter is already in the vicinity of an integer value,
composite effect of load and thermal growth produce a shift over the closest integer
thus influencing transmission error harmonic behaviour.

In the same direction, a very recent experimental study by Luo and Li [142] on FZG
type C-PT gears has shown that temperature affects vibration amplitude of the system
through thermally-induced profile deviations; with temperature increases yielding larger
vibration amplitudes. Furthermore, the authors state that the resonance frequency of the
system is also affected by temperature as it changes meshing stiffness as well. Similarly,
a series of studies [143–150] have also related gear teeth profile thermal distortion to
transmission error behaviour, backlash reduction and even contact stresses. Although
some of the ideas described in these articles are interesting, the hypotheses are not clearly
stated and the results need further experimental or numerical validation.

b) Thermally-induced longitudinal deviations

In high speed transmissions with gear ratios other than unit, the pinion will have a higher
average temperature than the mating gear. In these applications, helical gears are usually
designed and therefore, profile slope deviations are followed by helix angle distortion.

Sigg [24] and Henriot [26] described the effect of a constant temperature increase on
helix angle and showed that in large face width helical gear teeth, contact patterns are
shifted towards the leading edge due to the composite effect of load and temperature.
However, the thermal distortion of the helix is not clearly understood. Sigg [24] concluded
that thermal gradient between pinion and gear causes a difference in base pitch, while
helix angle remains unchanged. On the contrary, Henriot [26] claims that the relative
thermal expansion in the axial direction produces a change in helix angle leading to an
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helix mismatch. In both cases, the result is the same; with heavier tooth contact towards
one of the ends. In the case of single helical gears, the relative thermal distortion can
compensate gear teeth and body bending and torsion deflections; but in double helical
gear sets, the effect can be more complex as shown in Figure 2.22.

Figure 2.22: Relative helical teeth distortion according to Henriot[26]

Besides, Henriot [26] proposed to evaluate the severity of this load concentration with
the “thermal distortion factor”, which is the ratio of the relative thermal distortion, ut,
to the total teeth deformation under load. The former is measured in the base tangent
plane as shown in Figure 2.22 and it can be calculated following Equation 2.32, while the
latter is computed as usual, by considering gear teeth stiffness and local loads [27].

ut = (b ·λ · δt) · tan(β) (2.32)

where, following the nomenclature in Figure 2.22, b is the face width, β is the helix angle,
λ is the coefficient of linear thermal expansion and δl is the temperature difference.

However, as shown in Section 2.2 temperature increase in large face width helical gears
is not uniform and longitudinal thermal gradients exist. Matsumoto et al. [20] found that
the tooth root bending stress correlates to PLV, as an increase of the latter produces
higher strain as shown in Figure 2.23. This behaviour was attributed to non-uniform
temperature increase with bending stresses affected by thermal deformation. The contact
pattern shift presented in Figure 1.4 is a physical evidence of this conclusion.

(a) Vt = 90m/s (b) Vt = 150m/s

Figure 2.23: Relationship between temperature and tooth root stress in large face width helical
gears subject to high pitch line velocities [20]



2. Literature Review 39

In a second report, Tozaki and Matsumoto [151] developed a calculation model for
the load distribution in high speed helical gears by adding the temperature distribution
and the thermal distortion to a conventional gear tooth contact calculation model which
only took into account mechanical deflections. The results of this study confirmed
that including the acceleration of the lubricating oil, along with the frictional losses
and the thermal distortions in gear and shaft, predicted temperature distribution and
tooth root stresses favourably.

Figure 2.24: Barrelling of high
speed double helical gear set [18]

In double helical gear sets, additional effects take
place in the longitudinal direction. Temperature distribu-
tion in these gears is ruled by the engagement direction
as shown by Wang [122]. In the “mesh-in” condition,
the gap is usually hotter than the ends thus giving rise
to a differential thermal expansion of the centre of the
gear and producing the “barrel” shaped pitch cylinder
depicted in Figure 2.24. Such thermal distortion may
lead to a higher load per unit of length of face-width
near the gap and a reduced unit load near the ends. This
behaviour is consistent with experimental findings by
Welch and Boron[18] who analysed the effect of tooth
loading direction and temperature differentials on double
helical gears by measuring tooth root strains. Results
showed that longitudinal thermal gradients in these gears
tends to affect tooth stresses in a triangular shape, with increasing values towards the
gap or the ends, and leading to a heavy marking of the teeth in these regions.

Longitudinal load distribution in double helical gears is very sensitive to thermal
gradients. Hayashi and Sayama [152] simulated the influence of a 5◦C temperature
difference between pinion and gear on longitudinal load distribution. Analytical results,
depicted in Figure 2.25, predicted a considerable unit load variation at the helix ends. This
effect, is superimposed to that caused by longitudinal thermal distortion and therefore,
tooth root bending stresses can either be compensated or considerably increased.

Figure 2.25: Effect of 5◦C temperature difference between pinion and gear on longitudinal load
distribution of double helical gears [152]
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Finally a different theory for thermally-induced geometry distortion was proposed
recently by Amendola [8]. The author suggests that localized temperatures across the tooth
flank can reach levels that cause metallurgical transformation wherein entrained austenite
transforms to martensite. This transformation results in an expansion of the case material
thereby affecting the tooth thickness which results in a contact pattern change on both
the loaded and non-loaded flanks. The mechanism of expansion is the result of the density
difference between austenite and martensite; and it does not occur in a uniform manner
since the temperature rise is asymmetrical over the tooth length. This theory is interesting
as it helps to understand why thermally-induced geometry distortion in these gears does
not disappear at ambient temperature after full power operation as shown in Figure 2.26.

Figure 2.26: Thermal distortion of high speed helical gears due to material transformation [8]

It has been observed in this section that the great majority of research works on helical
gear teeth thermal distortion are experimental and almost all of them date back to the
past century. Very few recent work exist on the topic. In this sense, Wang [153] has lately
provided a transformation matrix to calculate the position of the active tooth surface after
thermal distortion. The author performed a sample calculation of the thermally-distorted
geometry in a high speed helical gear application subject to a predefined temperature
field. Although the concept is very interesting from the analytical/numerical simulation
point of view, the study needs further refinement as the effect of helix angle is not clearly
stated and the influence of temperature gradients and thermal stresses is not discussed.
Similarly, a recent publication by Wang et al. [154] claims that the composite effect of
thermal and mechanical strains influences contacts stresses significantly. However, there
is no information on the temperature field, the finite element modelling assumptions are
not described and the influence of radial and longitudinal gradients is not discussed.
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c) Other sources of thermal distortion

The finite element study by Howells and Sciarra [155] proved that housing thermal
expansion plays an important role in tooth contact when casing material is different from
that of gears. The Vertol CH-47C helicopter transmission casing used in their study is
made of magnesium, whose coefficient of thermal expansion doubles that of steel. The
bearing outer races which are press-fitted into the housing result in a "floating" fit at
operating temperatures due to the differential thermal expansion between the magnesium
case and the bearing’s steel outer races. Besides, housing thermal distortion produces gear
mesh misalignment which has a detrimental effect on gear teeth contact, specially when
bevel gears are considered due to the displacement of their cone centres. The composite
effect of bearing clearances and gear centre distance expansion for this application is
depicted in Figure 2.27 where the order of magnitude of the thermal distortion is also
indicated. Furthermore, according to Dudley [14], in jet lubricated high speed helical
gears, the oil-air mixture that is being pumped towards the exit of the mesh strikes the
inner wall of the casing overheating it. The temperature difference between front and
rear walls additionally misaligns gears and modifies load distribution as well.

Figure 2.27: Displacements of internal components due to housing thermal growth [155]

The expansion of the housing, in combination with gear thermal growth, is also known
to affect available backlash. DIN 3967 standard [156] calculates working backlash for a
constant temperature increase taking into account that the expansion of the housing is
different from that of the gears. The amount of backlash modification due to temperature
rise can be calculated following Equation 2.33:

∆jwt = aw · (∆ΘH ·αL,H −∆ΘG ·αL,G) ·2 · tan(αn)
cos(β) (2.33)

where ∆jwt is the amount of working circumferential backlash modification due to
temperature rise, ∆ΘH and ∆ΘG are the temperature increase of housing and gear
respectively, αH and αG are the linear coefficients of thermal expansion for both and
αn and β are the normal pressure angle and helix angle respectively.
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Similarly to the helicopter housing dilatation effect on bevel gear contact, shaft thermal
growth can also influence bevel gear mesh behaviour. The experiments conducted by
Terauchi et al. [157] proved that the thermal expansion of the shaft affects tooth contact
pattern, gear tooth fillet stress and bearing preload in such gears. The tests where
conducted at constant tooth load of 400 Kgf and variable speeds from 225 rpm to 1875
rpm. Displacements of the gear in the three directions were measured and bearing preload
variation was recorded. Results, depicted in Figure 2.28, showed that preload increases
with operating time and that axial displacements were significant in the direction of the
apex, while the displacements in the horizontal and vertical directions did not vary.

(a) Preload (b) Axial displacement

Figure 2.28: Effect of shaft dilatation on bearing preload and bevel gear apex displacement [157]

Shaft thermal expansion does not only affect bevel gears. Eldridge et al. [158]
presented a series of examples in double helical gears showing that shaft transient thermal
expansion can consume the axial clearance in the gearset and bind the mesh; which results
in a gear set running without backlash. In the first example, depicted in Figure 2.29, the
pinion undergoes a substantial axial displacement, as much as 0.43 mm. The comparison
of pinion and gear positions reveals that the former moves considerably further axially
than the latter due to transient thermal growth, leading to gear jamming if axial dilatation
is large enough. The mechanical coupling of torsional and lateral motion results in the
torsional vibration producing a lateral response; and depending on the stiffness of the
bearings varying levels of lateral response where measured.

Figure 2.29: Double helical gear mesh axial bound due to shaft thermal growth [158]



2. Literature Review 43

2.3.1 Compensation of thermal distortion

As it has been described at the very beginning of this chapter, under normal circumstances
gear teeth profile and helix are assumed to be deflected only under the effects of load.
However, it has been shown that temperature differences do exist in gear pairs which
cause pitch errors, profile slope deviations and helix angle mismatch, leading to non-
uniform load distributions. In some cases, specially in helical gears running at the highest
speeds, uneven temperature distributions exist across the face with as well and contact
conditions are even more detrimental, with bearing patterns localized towards the tooth
ends accelerating tooth failure. To ensure a uniform tooth contact under these conditions,
profile and longitudinal corrections must be applied to pinion and gear teeth.

Literature review shows that currently there is no analytical or numerical method
to predict load distribution due to thermal distortions and hence tooth modifications
can’t be designed beforehand. Although some standards such as AGMA 927 [27] consider
including thermal effects in the future, current standards suggest in-site full speed and full
load dynamic tests to observe the cumulative effect of gear tooth deviations, deflections
under load and temperature on contact pattern before applying tooth modifications [12].

Much of the field knowledge is not available in the open literature and therefore, it is
not possible to fully understand the effects of uneven temperature distribution on load
distribution. Among the few published studies reference [24] by Sigg from Maag Gear
Company gives some valuable guidelines to cope with the thermal distortion phenomena.
In this AGMA fall technical meeting report, the author suggests calculating the base pitch
deviation of the pinion relative to the gear due to temperature differences between both.
Corresponding profile corrections are made by changing the inclination of the tolerance
zone as shown in Figure 2.30, that is by modifying profile slope.

(a) Speed reduction unit (b) Speed increasing unit

Figure 2.30: Profile correction recommendations to compensate temperature increase effects [24]

According to the author, in the case of speed reduction units the higher temperature of
the pinion produces a larger base pitch and this effect helps in reducing tooth engagement
shock because the effects of temperature difference and tooth deflection tend to compensate
each other. On the contrary, in speed increasing units the situation is reversed, increasing
tooth engagement shock because the effect of deflections under load and temperature
are additive. In order to compensate thermal distortion effects in both cases Sigg [24]
suggested the profile correction guidelines presented in Figure 2.30.
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Furthermore, Maag Gear Company [159] also points out that the unequal heating of
the gear pair influences mesh alignment in service as the pinion tooth assumes a slightly
smaller helix angle due to larger temperature increase than its mating gear. Thus, to
compensate this effect, the pinion is designed with a steeper helix angle. However, no
recommendation is provided on the amount of modification and therefore, field experience
is required to design such tooth corrections.

In the study by Martinaglia [21], the author considers that the thermal distortion of
the pinion is large but also irregular so that the desired even load distribution must be
ascertained by means of special concave/convex longitudinal flank corrections. Figure 2.31
presents the layout of the flank line correction for high PLV gears with cumulative thermal
distortion problems. The degree of correction of these gears is in the order of 40 µm.

Figure 2.31: Flank line correction to compensate for thermal expansion [21]

Nageli [22] also points out that in these gears thermal distortion is higher in magnitude
than mechanical deflections and therefore tooth modification is mandatory. Furthermore,
if composite effect of mechanical loads and thermal effects is considered in Figure 2.32, the
shape of lead modifications is very different compared to those designed to compensate
purely mechanical loads. Moreover, Nageli performed a sample safety calculation of a
turbo gear set including and neglecting lead modifications. Results showed that tooth
corrections reduced face load factor from 1.7 to 1.1 increasing contact stress and bending
safety factors from 1.9 to 2.4 and from 2.2 to 3.4 respectively.

(a) Helical gears (b) Double-helical gears

Figure 2.32: Lead modification guidelines to compensate thermo-mechanical deviations [160]
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In a more recent paper, J.B. Amendola [8] also suggests adding a deep lead correction
in the highest temperature gradient particularly for wide face helical gears at high PLV.
Although it may not be the optimum lead correction it eases the stress on the lube oil film
as it is squeezed through the mesh in the hottest section of the flank, thereby reducing
the tendency of varnished particles adhering to the gear teeth in that regime [8]. It will
not however appreciably change the heat gradient or shift the hot section.

Finally, current ANSI/AGMA 6011 [12], API 613 [161] and ISO 13691:2002 [162]
standards also indicate that gears with pitch line velocities in excess of 100 m/s are
susceptible to thermal distortion and consideration should be given to helix modifications
in such cases. According to all standards if the total helix mismatch, including combined
bending, torsional deflection and thermal distortion of the tooth and rotor, exceeds 25 µm
for through hardened gears, or 15 µm for case or surface hardened gears, then helix
modification should be applied to provide a uniform load distribution across the entire
face width. However, there is no method currently available to predict the composite
effect of mechanical and thermal loads and therefore, gearbox testing at full power is
required to determine the shape and amount of modification.

2.4 Critical review of the state of the art

The review of the state of art has revealed that gearbox thermal distortion does affect
load distribution, mechanical stresses and transmission error. However, most of the
references point towards high speed large size gears from the oil and gas industry, where
most of the knowledge is the result of years of field experience devoted to the analysis
of bearing patterns [13]. In such cases, the method to predict tooth load distribution
and corresponding tooth modifications is strictly empirical [162] and any attempts to
correlate temperature distribution to thermal distortion have been deemed useless [13].
Furthermore, very few up-to-date publications are available in the open literature as most
of the references are 30 years old (or more) and much of the data still remains unpublished
due to proprietary reasons (e.g. [163]). As a consequence of this lack of information, it is
not possible to fully understand the thermally induced geometry distortion phenomena
and their interactions with mechanical deflections or tooth modifications.

Early research works by Martinaglia in 1973 [21] and more recent ones by Matsumoto
in 2001 [20] experimentally showed that uneven temperature distribution across the face
width is due to the axial pumping of the oil-air mixture. Such temperature difference
causes an increase in root bending stress that may lead to failure [20]. On the other hand,
Welch and Boron [18] and Akazawa [121] experimentally observed heavy marking of the
tooth root of similar turbo gears. In both cases, the authors explain these phenomena by
the teeth expansion in both directions, radial and axial, that cause a mismatch of lead and
profile. Preliminary finite element analyses were conducted to predict such temperature
mismatch and load increase [121, 151] but several questions remain unanswered. Although
the authors do enumerate the different geometry distortion mechanisms, namely tooth
expansion, helix mismatch or pitch cylinder barrelling; they do not refer to the order of
magnitude of the individual profile or lead deviations and their composite effect when
pinion and gear are considered. Moreover, their results only refer to helical gears and
the impact of temperature increase on spur gear contact remains unpublished.
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In such cases, tooth modifications are applied on the basis of experience [24]. Contrary
to mechanical deflections, thermal distortions are not currently predicted, hence, neither
compensated for (at least in the design stage). Several research works on temperature
distribution of steel cylindrical gears are found in literature (e.g. [133, 164]) but none of
them calculates thermal distortion. However in the case of plastic gears, Raghuraman et
al. [136] have recently studied the influence of microgeometry on steady-state temperature
field and the resulting flank distortion. Although they did not compensate micro-geometry
after the thermal expansion, they did show the effects of such modifications in temperature
distribution. Therefore, it is expected that the inverse procedure can be applied to correct
non-uniformities. Besides, if gear teeth geometry is modified at ambient temperature,
considering only predicted elastic deflections, apparently those modifications are no longer
valid at operating temperatures. It seems that, tooth modifications should be predicted
considering both, load and temperature distributions.

It has also been shown that the temperature dependent properties of plastic gears
affect considerably transmission error and load distribution [139]; and profile errors on
such gears have also been experimentally confirmed [140]. Moreover, contrary to gears
in the oil and gas industry, these studies have been performed in small to medium size
gears with pitch diameters close to 100 mm. However, very few results on steel cylindrical
gears of this size have been found. Among these, the research work by Hensel et al. [141]
stands out as they showed that the harmonics of TE have a significant sensitivity to
thermal changes when contact ratios are close to an integer value. Yet, these research
works only considered equal temperature for both pinion and gear and the existence of
temperature gradients inside the gear itself was neglected. Furthermore, Hensel et al.’s
work [141] was based on Kashyap et al.’s [140] who presented two methods to analytically
compute geometry distortion: i) module change and ii) profile slope change. However,
Henriot [26] showed that gear teeth expansion is affected by both at the same time. At
this point it seems that the gear teeth geometry distortion is not clearly understood.

It is also of interest to stress that gear pairs may be subject to different temperatures
[23] and thermal gradients within the body [119]. Such temperature differences are
the result of operating conditions, gear geometry and lubrication system. Gradients
result in thermal stresses that affect the amount of distortion [165] and therefore a
thermo-mechanical analysis must be carried out [166]. The computation of temperature
distribution in cylindrical gears is usually performed by means of the finite element
method [167], the finite difference method [136] or the thermal network method [168].
Although the finite element or finite difference methods provide accurate temperature
distributions, the required computational time is high; therefore, such numerical models
are usually devoted to the temperature field of one of the gears [167] with auxiliary
elements or heat inputs being usually neglected (e.g. shafts or bearings). Additionally,
convection coefficients and/or frictional heat flux are usually constant and they are not
updated with transient temperatures. On the other hand, thermal network models provide
fast and accurate results but the degree of discretization to compute radial and axial
temperature distributions is not sufficient. In this sense, the development of a fast and
reliable thermal model of the gear pair is desired, as the understanding of temperature
distribution and its influencing parameters will allow to predict the amount of thermal
distortion and compensate geometry deviations.
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For this purpose, heat generated in the gear mesh and the surroundings must be
accurately predicted. Different heat sources have been identified at the beginning of
this chapter and prediction models have also been introduced. It has been observed
that current research efforts are oriented towards a deeper understanding of spin power
losses that dominate at high speeds; as the sliding friction losses that rule at low speeds
present a significant amount of analytical and empirical solutions [34]. Different friction
coefficient models have been presented in Table 2.1 and it has been shown that these
models present a strong dependency on experimental conditions, especially the selected
lubricants, and therefore they can’t be generalized to other oils. Some authors [50]
clearly state that even a small difference in friction coefficient can lead to significant
errors in the prediction of power losses, and as a consequence, temperature distribution
as well. Therefore, it is also of interest to develop a general tool for the prediction of
friction coefficient and power losses for different oils.

Finally, it has been observed that thermally-induced geometry distortion effects seem
to be limited to high speed gears. The reason for such assumption may be related to the
fact that temperature increase is proportional to the square of PLV while mechanical
deflections depend on torque [14]. However, if strictly examined, thermal deformation due
to frictional heat generated in the gear mesh or the bearings can occur even in low-speed
gears. Furthermore, temperature differences between pinion and gear have also been
observed at low speeds [28] and therefore, relative pitch errors and profile slope deviations
can be influential as well. From a practical point of view, it is usually assumed that
thermal distortion does not affect tooth geometry in such cases but an accurate prediction
of tooth contact behaviour taking thermal deformations into considerations can provide
a significant advance in the calculation of the optimum tooth modifications. What’s
more, several articles [20, 89, 90] and standards [12, 27] support the idea of improving
common loaded tooth contact analysis methods (LTCA) adding a thermal deformation
calculation procedure to the conventional work-flow.

Research opportunities

The critical review of the state of art has exposed several research opportunities on
the field of thermally induced geometry distortions of cylindrical gears. Some of the
most relevant topics are summarized here:

� The quantification of individual sources of thermal distortion: pitch errors, profile
and helix slope deviations and flank line form errors.

� The prediction of the total amount of active flank thermal distortion for a given
temperature distribution.

� The analysis of the interaction between elastic deflections an thermal distortions
on tooth contact parameters.

� The evaluation of the impact of thermal distortion in tooth contact parameters
of low speed middle-size steel cylindrical gears.

� The study of teeth modifications to compensate thermal distortions.

� The experimental observation of the effects of thermal distortion on tooth contact
parameters, namely: load distribution, transmission error and backlash behaviour.
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Additionally, secondary research opportunities have also been identified in the more
general context of efficiency and thermal behaviour of cylindrical gear transmissions:

� The development of a simple sliding friction coefficient model for gears based on pri-
mary rheological behaviour of the lubricant and flank surface topography parameters.

� The development of a power loss computation procedure for gears that accounts for
local fluid film behaviour through instantaneous temperatures and pressures.

� The prediction of local frictional heat flux and heat partition in gears as a function
of geometry and operating conditions.

� The development of a fast and reliable model for the prediction of temperature
distribution in cylindrical shaft-gear pairs, including heat from bearings and sealings.

� The experimental measurement of thermal gradients in cylindrical gear pairs under
variable operating conditions.

� The empirical correlation of mesh power losses with gear pair bulk temperature
subject to variable lubricating conditions.

The research opportunities identified herein have been grouped and restated in terms
of several thesis objectives in Section 1.3.
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This chapter lays the foundations of analytical modelling of load distribution
and kinematic behaviour of cylindrical gears, which are necessary to
understand the heat generation mechanism in the gear mesh. The
first section introduces basic concepts of gear teeth geometry from the
involute surface generation perspective. Manufacturing processes are briefly
described and the fundamental law of gearing is defined. Then, kinematic
relations between pinion and gear are established focusing on backlash and
tooth separation which affect load distribution and transmission error. Gear
teeth behaviour under applied load is discussed next where the different
stiffness components are described; and finally, the load distribution problem
is stated and the solution method is presented. A FE model will be developed
at the end of this chapter to validate analytical results for common spur
gear geometries with modifications, results will be discussed and conclusions
are withdrawn.
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3.1 Involute teeth geometry description

The involute curve is the basis of the most commonly used gear geometry in machinery.
Although other types of geometries such as the Wildhaber-Novikov or cycloidal are also
present in some sectors such as mechanical clocks, involute gears are the most extended
gear type in industry. Among the main advantages of involute teeth it can be highlighted
that manufacturing process is largely facilitated with respect to other geometries, carried
out by simple straight-sided tools that can be used by several techniques, as shown later
in this chapter. Furthermore, the tooth force direction is constant and mesh behaviour
is insensitive to centre distance variation which helps gearbox assembly. However, it is
often claimed that the main disadvantage of this geometry is that contact surfaces are
non-conformal making difficult hydrodynamic lubrication and leading to high pressures
that cause undesired failures (e.g. pitting or wear). Moreover, manufacturing process
may result in undercut when a small number of teeth is required, which reduces bending
load capacity as a consequence. In spite of these criticisms involute gears still represent
the main geometry in common transmissions.

3.1.1 Fundamental law of gearing and conditions of existence

The involute of a circle is the curve traced by the free end of a taut string which is
unwinding from a fixed circle named “base circle” (see Figure 3.1). At any instant,
the direction of the normal to the curve is pointed out by the taut string, and the
instantaneous radius of curvature, ρy, is the distance between the free end, Py, and
the tangent point to the base circle, T.
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Figure 3.1: Graphical description of involute curve generation

From Figure 3.1 the following mathematical relation results:

rb · tan(αy) = rb · ξy = rb · (αy + invαy) (3.1)
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From which the so called “involute function”, invαy, is obtained:

invαy = tan(αy)−αy (3.2)
αy = arctan(ξy) (3.3)

In the following, angles αy and ξy will be referred to as “pressure angle” and “roll
angle” respectively. The latter can be related to the radial distance of the free end
of the taut string following:

rb · ξy =
√
r2− r2

b → r(ξy) = rb ·
√

1 + ξ2
y (3.4)

Which gives rise to the parametrical representation of the involute curve:

r(ξy) = rb ·
√

1 + ξ2
y ·
{

sin[ξy−arctan(ξy)]
cos[ξy−arctan(ξy)]

}
(3.5)

Equation 3.5 will be later used to compute gear teeth geometry by the generating method
as well as derived geometrical properties such as curvature radius or normal directions.

Law of gearing

Involute profiles are the result of the rolling motion between the taut string and the base
circle shown in Figure 3.1. However, it can also be concluded that the same relative
motion is reproduced when the string is the one kept fixed and the base circle rolls
over it. If instead of considering a single circle one considers two wheels sharing the
same cord, it is possible to foresee that both bodies must rotate at a constant ratio,
i= ω1/ω2, to avoid phase difference in common points Py. For a gear transmission, it is
of primary importance to be able to determine the counter-profile of a given involute that
allows transmitting such a continuous motion with constant speed ratio. This problem
is known as the “fundamental law of gearing”.

Let two imaginary concave-convex involute profiles, with arbitrary base circle centres
O1 and O2, meet at any point Py in space. The motion of this point must follow the
common normal direction to prevent flank separation, in this manner, continuous action is
achieved. The direction of the common normal is defined by the tangent line to both base
circles, therefore, the velocity, vy, of point Py along this line is mathematically defined by:

vy = cos(αy,1) ·ω1 · ry,1 =−cos(αy,2) ·ω2 · ry,2 (3.6)

Setting cos(αy) = rb/ry in each side of Equation 3.6:

vy = rb,1 ·ω1 =−rb,2 ·ω2 (3.7)

Relating Equation 3.7 with the speed ratio, i:

i= ω1
ω2

=−rb,2
rb,1

=−r2
r1

(3.8)

Where r1,2 is the known as the pitch radius which is the distance between the centre of
the base circle of each body and the intersecting point between the common tangent line
and the line joining centres. This relationship allows determining the counter-profile of
any given involute as well as the geometry of the manufacturing tool. In this sense, if
each of the points Py in Figure 3.1 are considered the cutting edges of an imaginary tool,
it is possible to see that such tool must have straight sides and the generating process
can be regarded as a series of inclined segments which intersect a circular gear blank.
The envelope of all the line segments forms the involute tooth profile.
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Generating methods

Gear teeth can be manufactured by several methods: machining, casting, rolling, etc. In
this work, only generating methods are described where gear teeth geometry is obtained
based on the law of gearing presented above. The machining techniques shown in
Figure 3.2 share this principle of operation. These methods are the most common gear
manufacturing techniques and all of them can be regarded as the rolling-off of a perfectly
plastic cylindrical gear blank over an infinitely long rack where the footprint forms the
gear tooth profile. This rack is known as “basic rack”.

Planing
HobbingHobbing

Shaping
Skiving

Figure 3.2: Generation processes for gear manufacturing [169]

Each of the methods in Figure 3.2 is characterized by a distinctive relative motion
between a trapezoidal-shaped blade (rack, hob, shaper cutter, etc.) and the workpiece.
The type of motion combination depends on the technique but all of them are characterized
by a cutting movement and a feed motion which generate the same virtual basic profile:
the basic rack (grey-colored in Figure 3.2). For instance, the planing method is the
combination of a vertical reciprocal cutting motion and a radial feed of the rack, combined
with the rotation of the circular gear blank which is followed by a tangential displacement
of the rack tool. The motion of the rack-type cutter removes material chips per stroke
thus shaping or “generating” the teeth. Similarly, gear shaping process replaces the
tangential displacement of the rack by a rotational motion that follows the workpiece.
In both cases, the so called “basic rack” is embodied by the cutting face of the tool.
Additional processes, tools and motion combinations are shown in Figure 3.2 where gear
hobbing stands out for being the most versatile in industry.

Basic rack

Although each of the processes above has its own distinctive features, from a theoretical
geometry generation point of view, they all can be represented by the basic rack. The main
advantage of such representation is that it is possible to standardize the main dimensions
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and geometry proportions. Moreover, a pinion and a gear with the same basic rack mesh
together as they have the same pitch. This characteristic is known as “interchangeable
property” and allows combining different gear sets regardless of their size. The basic rack
is standardized in ISO 53 [170] and the main dimensions are shown in Figure 3.3.

Standard basic rack
Mating basic rack

  

hP

hfP

haP

hwP

cP

hFfP

PP

cP

Figure 3.3: Basic rack dimensions according to ISO 53

The standard profile according to ISO 53 is characterized by having a constant pressure
angle of αP= 20 ◦. Other quantities are summarized in Table 3.1 where each dimension
has been non-dimensionalized dividing by the normal module, mn, which varies from 1
mm to 50 mm for common industrial applications according to ISO 54 [171].

Table 3.1: Basic rack coefficients for standard profiles according to ISO 53 [170]

A B C D

haP /mn 1 1 1 1
hfP /mn 1.25 1.25 1.25 1.4
ρfP /mn 0.38 0.3 0.25 0.39
cP /mn 0.25 0.25 0.25 0.4

When the datum line P-P of the rack cutter in Figure 3.3 is tangent to the pitch circle
of the work-piece both are in their nominal positions and the tooth thickness of the basic
rack equals the space width of the gear blank as a consequence. In this situation gears
are called “without profile shift”. However, the reference line of the basic rack can be
positioned within arbitrary bounds which affects teeth radial position and thickness. The
concept profile shift or addendum modification refers to the amount by which the position
of the rack cutter is shifted relative to the nominal position and it is usually made non
dimensional dividing by the normal module. In such case the quantity, x, is called profile
shift coefficient. Gears are usually profile shifted to enhance load capacity by increasing
tooth thickness, design a given gear ratio at a specified centre distance or enhance sliding
conditions to minimize wear. These advantages are achieved with the same basic rack but
special rules must be observed to guarantee proper manufacturing and meshing conditions.
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Conditions of existence

Pinion and gear must fulfil a certain number of conditions to ensure continuous meshing
and avoid interferences during operation or during the cutting process. First, from the
manufacturing point of view the following situations must be avoided:

1. When a small number of teeth is required interference between the manufacturing
tool and the work-piece produces gear root undercut. The latter should be avoided
by selecting a proper profile shift coefficient; otherwise, undercut weakens tooth
root bending capacity.

2. On the opposite, if too large addendum modification is designed, zero thickness at
the tooth tip result and produce pointed teeth.

Second, from an operating point of view, the following criteria applies to guar-
antee proper meshing:

1. Similarly to manufacturing, if the tip corner of a gear enters the fillet of its mate
interference in operation arises and profiles are damaged. This must be avoided.

2. To ensure a constant output rotational speed contact ratios less than unity must be
discarded as it results in intermittent operation.

Finally, although theoretically perfect gears fulfilling these criteria work properly,
it is desirable that real gears are provided sufficient backlash allowance to cope with
manufacturing and assembly errors, tooth deflections produced by mechanical loads and,
in this work, thermally-induced geometry distortions. For this reason, an additional
criteria will be added to the preceding.

The conditions stated below are written in terms of the basic rack dimensions, the
number of teeth, z, the base radius, rb, the face width, b, and the profile shift coefficient,
x. Furthermore, the guidelines have been generalized for either spur or helical gears by
introducing the helix angle, β, and the normal and transverse pressure angles, αn and
αt respectively, which are related by tan(αn) = tan(αt) · cos(β).

a) Undercut: In order to avoid gear teeth undercut, the minimum number of teeth
must be greater than the following quantity:

z ≥ zmin =
2 ·
[
hfP −x−ρfP ·

(
1− sin(αn)

)
· cos(β)

]
sin2(αt)

(3.9)

According to Equation 3.9 the minimum number of teeth to avoid undercutting basically
depends on the profile shift coefficient, x, the helix angle, β and the height of the basic
rack dedendum, hfP . For the general case of standard spur gears manufactured with
the ISO 53-A basic rack profile without profile shift, the minimum number of teeth is
approximately 17. This condition could also be written in terms of minimum profile shift
coefficient to avoid undercut for a given number of teeth. In such case we have:

x≥ xmin = hfP −ρfP ·
(
1− sin(αn)

)
− z · sin

2(αt)
2 · cos(β) (3.10)
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b) Thickness at tooth tip: To avoid pointed teeth during manufacturing, profile
shift coefficient should be chosen following:

π+ 4 ·x · tan(αn)
z

+ 2 ·
[
tan(αt)−αt

]
− tan

(
arccos

( rb
ra

))
+ arccos

( rb
ra

)
> 0 (3.11)

To ensure a minimum thickness in the tip AGMA standard usually prescribes a
limiting value of sc,min = 0.3 ·mn · r−1

a , where the tip radius ra = 0.5 ·mn ·z+x ·mn+haP

c) Interference in operation: If the pinion and the gear are not undercut (see
Equation 3.9), this requirement is met if:

r2
b,1 +

[
(rb,1 + rb,2) · tan(αw,t)−

√
r2
a,2− r2

b,2

]2
≥ r2

lim (3.12)

rlim =mn ·

√[
z−haP +x+ρfP ·

(
1− sin(αn)

)]2
+
[

cos(β)
tan(αn) ·

[
haP −x−ρfP ·

(
1− sin(αn)

)]]2
(3.13)

Where rlim represents the limit radius resulting from the intersection between the
involute profile and the trochoidal path of the tool. Basically, this condition states
that if the involute profile of the mating wheel meshes below the limit diameter of the
reference gear, interference in operation exists and wedges the gears. In Equation 3.13,
parameter αw,t represents the working pressure angle resulting from gears meshing at
their mounting centre distance, aw,

αw,t = arccos
[
(z1 +z2) ·

(
mn · cos(αt)
2 ·aw · cos(β)

)]
(3.14)

d) Continuous motion: In order to ensure continuous action a new teeth must enter
the mesh zone before the previous one leaves. This is represented by the contact ratio, ε,
which is the average number of teeth in contact along the line of action. To ensure this
condition the gear contact ratio must be greater than unity which is ensured by:

ε=

√
r2
a,1− r2

b,1 +
√
r2
a,2− r2

b,2−mn · z1+z2
2·cos(β) · cos(αt) · tan(αn)

π·mn
cos(β) · cos(αt)

+ b · sin(β)
π ·mn

(3.15)

d) Backlash: From a practical perspective it is not possible to operate with zero
backlash due to the combined effect of assembly tolerances, manufacturing allowances and
thermal expansion on theoretical mesh behaviour. It is therefore necessary to manufacture
teeth with a smaller tooth thickness, which is reached decreasing the design profile shift
coefficient, x, by a prescribed machining allowance, q, and the desired tooth thickness
tolerance, Es. The resulting addendum modification coefficient is named “generating
profile shift coefficient” and it is denoted by xE .

xE = x+ Es
2 ·mn · tan(αn) + q

mn · sin(αn) (3.16)

From pinion and gear generating addendum modifications it is possible to compute the
available normal backlash in the mesh, jbn, following:

jbn =mn · [cos(αn) · (z1 +z2) · (invαwt− invαt)−2 · (xE,1 +xE,2) · sin(αn)] (3.17)
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From Equation 3.16 it is concluded that high speed gear units with large backlash al-
lowances to accommodate thermal expansion but with small modules (such as those used in
aeronautical or automotive fields), the difference between the design and generating profile
shift can be significant which affects tooth thickness and root stresses as a consequence.
Therefore, it is of primary importance to keep manufacturing tolerances to a minimum.

3.1.2 Generation and modification of teeth geometry

The generation of gear teeth by rolling the tool over the gear blank is computed based on
Padieth’s approach [172] where the counterpart of the basic rack is rolled over the pitch
diameter, d. Thus, the addendum height of the basic rack in Figure 3.3, becomes the
dedendum of its counterpart and the bottom radius of the former is the tip radius of the
latter. This way, the addendum of the counterpart generates the gear teeth dedendum.
Figure 3.4 shows the reference geometry for the generation process where the subscript
0 is used to differentiate from the same quantities in ISO 53 basic rack.
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Figure 3.4: Local system of coordinates and main dimensions of basic rack counterpart

The local system of coordinates (u,v) has been attached to the reference line of the tool
which is tangent to the pitch circle in the rolling process (see Figure 3.5). However, the
datum line P-P of the basic rack counterpart can be shifted with respect to the reference
line by the profile shift amount. The latter will allow to vary generated tooth thickness as
stated in previous sections. Four different regions are considered, where the intersecting
points A to E can be easily determined from the basic rack dimensions. Thus, we have:

1. Region 1 (segment A-B) that generates the tooth tip.

2. Region 2 (segment B-C) producing the tooth flank.

3. Region 3 (rounding C-D) which gives rise to the tooth fillet.

4. Region 4 (segment D-E) that generates the tooth bottom.
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Although the basic rack dimensions are standardized, the gear teeth generating process
explained next is not limited to the dimensions in Table 3.1, the only limitation is that
pinion and gear must be generated with the same basic rack. Table 3.2 summarizes
the limits and coordinates of each section of the counterpart in the normal plane which
are generalized for arbitrary dimensions:

Table 3.2: Boundaries of regions in basic rack counterpart

Point Coordinates

A
Ax = 0 (3.18)
Ay = hfP0 +x ·mn (3.19)

B
Bx = π ·mn/4−hfP0 · tan(αP0) (3.20)
By =Ay (3.21)

C
Cx = π ·mn/4 + (haP0−ρaP0 · [1− sin(αP0)]) · tan(αP0) (3.22)
Cy = x ·mn−haP0 +ρaP0 · [1− sin(αP0)] (3.23)

D
Dx = Cx+ρaP0 · cos(αP0) (3.24)
Dy = x ·mn−haP0 (3.25)

E
Ex = π ·mn/2 (3.26)
Ey =Dy (3.27)

Analytical determination of tooth profile

When the counterpart to the basic rack is continuously rotated an angle ξy around the gear
blank, the generated tooth profile is obtained from the envelope of all the instantaneous
positions of the rack. To this end, the latter must be expressed in the (x,y) system of
coordinates first; which is attached to the fixed workpiece as shown in Figure 3.5.
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Figure 3.5: Graphical description of tooth profile generation method
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For a given roll angle ξ, the location of the origin O of the local system of coordinates
(u,v) attached to the tool relative to the fixed system of coordinates (x,y) is calculated
from the parametric representation of the involute curve in Equation 3.5. The coordinate
transformation between the local and global system of coordinates yields the following
parametrical equation:

r(ξ) = r ·
√

1 + ξ2 ·
{

sin[ξ−arctan(ξ)]
cos[ξ−arctan(ξ)]

}
+u ·

{
cos(ξ)
−sin(ξ)

}
+v ·

{
sin(ξ)
cos(ξ)

}
(3.28)

Which describes the basic rack counterpart in the fixed system of coordinates (x,y)
at any instant of the tool rotation.

Now, in order to compute the tooth profile, the envelope theorem is applied [172]:

∂x

∂ξ
· ∂y
∂u
− ∂y
∂ξ
· ∂x
∂u

= 0 (3.29)

Which yields the following relation between the rotation angle ξ and the local coordinates
(u,v) to construct the envelope:

ξ = 1
r
·
(
u+v · dv

du

)
(3.30)

Therefore, from the local coordinates of the counterpart rack in Table 3.3, it is possible
to determine the full tooth profile applying Equations 3.28 and 3.30.

Table 3.3: Gear teeth generating functions per segment

Region Boundaries Functions

1 Ax < u < Bx
v(u) =Ay =By (3.31)
dv/du= 0 (3.32)

2 Bx ≤ u≤ Cx
v(u) =By− (u−Bx) · cot(αP0) (3.33)
dv/du=−cot(αP0) (3.34)

3 Cx < u <Dx

v(u) =Dy +ρaP0−
[
ρ2
aP0− (u−Dx)2

]1/2
(3.35)

dv/du= (u−Dx) ·
[
ρ2
aP0− (u−Dx)2

]−1/2
(3.36)

4 Dx ≤ u≤ Ex
v(u) =Dy = Ey (3.37)
dv/du= 0 (3.38)

The tooth geometry computed this way is represented in the normal plane. To compute
profile geometry in the transverse plane at any axial position, z, it is only necessary to
twist the tooth an angle γ ·z where γ = sin(β)/r. Thus, for a given roll angle, ξ, and axial
position, z, the parametrical representation of the curve in the transverse plane is given by:

r(ξ,z) =
[
cos(γ ·z) −sin(γ ·z)
sin(γ ·z) cos(γ ·z)

]
×
{
rx(ξ)
ry(ξ)

}
(3.39)

Where rx(ξ) and ry(ξ) are the x and y components of the parametric representation of
the profile in the normal plane computed from Equation 3.28.
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Finally, the start and end of each region in the tooth profile is determined by the
intersection of the different envelopes. In this sense, in order to determine a unique
intersection between the envelope of the flank and the trochoidal path of the tip rounding,
an interative procedure must be used [172] which is specially useful when undercut arises.

Application of tooth modifications

From a theoretical point of view gear teeth profile obtained following generating methods
are conjugate and thus they allow homokinetic transmission of rotational motion. However,
profile inaccuracies caused by manufacturing or heat treatment methods, positioning
errors in the assembly process and/or elastic deflections under load may lead to alterations
in the load distribution pattern giving rise to noise and local contact pressure increases
that end up in gear teeth failure. In order to avoid such undesired bearing patterns
teeth modifications are usually applied which are desired alterations of the tooth face
on its normal direction compared to its original involute geometry. Such alterations are
applied after the heat treatment process by generating grinding methods (similarly to
the machining procedure described earlier) and they are usually in the order of a few
dozens of microns in the normal direction to the initial flank. In the following paragraphs,
the main types of modifications are described:

a) Profile modifications: They are intended to avoid premature contact as the result
of teeth deflections under load making the gear drive operate quietly. Profile modifications
enable a gradual entry and exit into and out of the mesh and therefore they reduce
dynamic loadings. Transverse profile modifications can be applied to one or both ends of
the active profile (known as “tip/root reliefs”) or to the whole profile (“profile crowning” or
“profile slope modification”). They are usually defined by the length of roll, the maximum
depth of the relief measured in the profile normal direction at the tip/root and the type
of modification. Figure 3.6 depicts the main types of profile modifications.

(a) Tip and root relief (b) Profile slope modification (c) Profile barreling

Figure 3.6: Different types of profile modification

b) Flank line modifications: Flank line modifications are intended deviations applied
along the axial direction in order to reduce the load concentration caused by elastic
deformations of shafts, bearings supports and housing, as well as to accommodate gear
assembly misalignments. There are three types of flank line modifications (see Figure
3.7): i) end reliefs, ii) helix angle modifications and iii) flank line crowning. As in the
case of profile modifications these can also be applied to the tooth surface partially or
totally, and they are defined by the length and depth of the relief over the original surface
and they can follow a linear or parabolic equation.
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(a) Flank line end reliefs (b) Lead modification (c) Longitudinal crowning

Figure 3.7: Different types of flank line modification

c) Topological modifications: A good contact pattern must ensure that individual
lines of contact are as long as possible as they reduce the contact pressure acting on
the gear and pinion. Relieving the gear teeth flanks using standard modifications in the
profile and longitudinal directions entails changes to the geometry and the maximum
length of each line of contact depends to a great extent on the type and amount of
end reliefs. This means that profile and flank modifications do not necessarily have a
beneficial effect on gear mesh behaviour. To ensure a proper tooth contact when several
parameters are involved “topological modifications” can be applied [173]. In this type of
modification gear tooth active flank is deviated from the nominal surface point by point
using a multi-axis numerical control grinder. These type of modification is not covered
in this work but it has been presented here for completeness.

Figure 3.8 graphically summarizes the main characteristics and dimensions of profile
modifications. As it can be seen, the generated profile deviates from the theoretical
involute by the backlash allowance, κ = cos(αn) ·Es/2, where Es it the chordal tooth
thickness tolerance. The latter has been automatically introduced when the generating
profiles shift, xE , from Equation 3.16, substitutes the design addendum modification, x,
in Table 3.2. Therefore, in the following, the term “theoretical profile” will be used for
profiles with no-backlash and design addendum modification and the term “generated”
will refer to that including manufacturing tolerances and backlash.

Tooth modifications, δ, must be applied in the normal direction to each point in
the flank. The following can be achieved by modifying the basic rack counterpart
geometry presented in Figure 3.4 for each of the aforementioned modification types
and then derivate the appropriate expressions in Tables 3.2 and 3.3. However, this
procedure requires a different tool for all possible combinations and the application of
longitudinal modifications results costly. Instead, a different approach is proposed. From
the parametrical representation of the theoretical active flank with Equation 3.28, normal
directions are easily computed and modified geometry, R(ξy) results from:

R(ξy) = r(ξy)− n̂(ξy) · δ(ξy) (3.40)

n̂(ξy) =
{
−cos(ξy)
sin(ξy)

}
(3.41)

Where δ(ξy) is a polynomial expression representing the amount of tip or root relief
for each roll angle in the relief region.
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Figure 3.8: Profile modifications relative to theoretical and generated tooth geometry

In order to generalize the procedure for profile and longitudinal modifications, the
modification diagram depicted in Figure 3.9 is defined. The horizontal axis, repre-
sents the roll angle or the axial position (in brackets) and the vertical axis the total
amount of modification.

Root relief Tip reliefBarrelling

Generated

Parabolic barrelling (n=2)
Linear relief (n=1)

(End I relief) (Crowning) (End II relief)

Backlash allowance, 

Amount of modification, 

Progressive relief (n=3) 

Theoretical

Modified

Figure 3.9: Generalized tooth profile and longitudinal modification scheme

From Figure 3.9 it is concluded that the different types of modifications presented
at the beginning of this section (linear end reliefs, parabolic barrelling, progressive tip
reliefs, etc.) can all be defined with the same type of equation:

δ(ξ) = Cα ·
(
ξ− ξi
ξo− ξi

)n
(3.42)

δ(z) = Cβ ·
(
z−zi
zo−zi

)m
(3.43)

Where ξi (zi) and ξo (zo) are the beginning and end of the relief respectively, Cα (Cβ) is the
amount of modification at the end of the active profile (face) and parameters n(m) regulate
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the type of modification: 1 for linear, 2 for parabolic, etc. For instance, for a simple linear
tip relief, n is set to 1 and ξo = ξFa is the roll angle at the tip diameter; the designer
only needs to define the amount of modification at the tip Cα and the start roll angle or
diameter for modification, ξα,a or rα,a respectively which are inter-related by Equation 3.5.

One of the main advantages of the method is that it easily allows to stack up different
types of modifications as they all follow the same normal direction in Equation 3.41.
However, the method is only valid in the flank region as the intersection between the fillet
rounding and the root relief is discontinuous giving rise to a notch that does not exist in
real generated gears. For accurate geometry modelling basic rack must be modified and
envelope must be computed similarly to the procedure explained in Section 3.1.2.

Determination of curvature radius and normal directions

The determination of the curvature radius in the principal directions is a key parameter
to compute contact stresses by the Hertz theory. In the case of a theoretically perfect
involute profile, the principal radius of curvatures are contained in the base tangent
plane. The first principal curvature radius is the distance in the normal direction from
the reference point, Py, to the tangent to the base circle, T , which is the instantaneous
centre of rotation (see Figure 3.1) and the second principal curvature radius is infinite
if profiles are not modified. Therefore, in theoretically perfect spur gears:

ρy(ξy) = rb · tan(αy) = rb · tan[arctan(ξy)] (3.44)

However, in presence of profile and/or longitudinal modifications the instantaneous centre
of rotation is no longer located in the base cylinder and a different approach is required.
From the parametrical representation of the modified profile in Equation 3.40 the principal
curvature k in the normal plane at any roll angle, ξ, is computed from [174]:

k(ξ) =
dRx
dξ ·

d2Ry
dξ2 − dRy

dξ ·
d2Rx
dξ2[(

dRx
dξ

)2
+
(
dRy
dξ

)2]3/2 (3.45)

From this equation the local radius of curvature is simply de inverse of the absolute value
of curvature, ρy = |k(ξy)|−1. Similarly, the unit normal vector is given by [174]:

n̂(ξ) = 1√(
dRx
dξ

)2
+
(
dRy
dξ

)2
·
{−dRy

dξ
dRx
dξ

}
(3.46)

Where the derivative terms are computed from the previous parametrical representations
of the flank and the sign convention is given by the product of unit normal vectors
n̂ = k̂× t̂; with k̂ and t̂ the unit normals in axial and tangent directions.

In the case of spur gears, the instantaneous contact between meshing teeth is equivalent
to two cylinders in contact whose principal radius in the normal plane varies along the
line of action but the common contact line remains parallel to the axis of rotation at any
instant of time. However, in the case of helical gears, such contact is represented by two
cones with the same conicity, equal to the base helix angle, βb, and the common contact
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line is bent an angle ψ = arctan
(
sin(αn) · tan(βb)

)
with respect to the tooth trace which

is known as ‘inclination angle” (see Figure 3.10b). As a consequence, not only curvature
radius varies along the line of action but also along the axial direction. Following Euler’s
transformation [175] the radius of curvature in the rolling direction at any roll angle is:

ρy(ξy)|η̂ = ρy(ξy) ·
cos(ψ)
cos(βb)

(3.47)

Where η̂ is the rolling direction according to the local system of coordinates in Figure 3.10.
Finally, the second principal radius of curvature can be computed similarly from the

base tangent plane representation of the flank. In such case, in Equations 3.45 and 3.46, the
x and y axis do not follow the system of coordinates attached to the gear in the normal plane
but that fixed to the tooth trace and the line of action respectively. For instance, in case of
longitudinally crowned cylindrical gears, the paraboloidal approximation δ(z) = z2/(2 ·R)
leads to the second principal radius of curvature ρ(z) = b2/(8 ·Cβ)) which is useful to
compute elliptical contacts based on the Hertzian assumption.

3.2 Kinematic behaviour

The kinematic behaviour of the gear mesh determines power losses and heat flux to
a great extent. Therefore, in order to understand friction and thermal behaviour in
depth, it is necessary to analyse the geometrical boundaries of the line of action, the
kinematic relations between pinion and gear along this path and the different velocity
components in the mesh. Moreover, when theoretical gears mesh together, rotational
motion is transmitted perfectly but generated gears show a phase difference due to the
existence of backlash or modifications. This leads to a relative positioning error that
affects load distribution and generated heat as a consequence. In this section, kinematic
behaviour and related parameters are described.

3.2.1 Determination of kinematic relations

Geometrical boundaries of the conjugate action

The conjugate action of a pair of cylindrical gears in mesh has a delimited length and it
is comprised between the tangent points to the base cylinders, T1 and T2, from which
pinion and gear involute profiles are developed. When the tip of the gear tooth contacts
the bottom of the corresponding pinion mate, the start of the active profile is defined
(see point A in Figure 3.10a). Similarly, the end of the path of contact is defined by
tip of the pinion touching the bottom of the gear (point E). The distance between both
ends, A and E, determines the full length of the path of contact, gα. Figure 3.10 depicts
the base tangent plane and the systems of coordinates to be used in the following. The
global system of coordinates applies to the load distribution problem while the local
system of coordinates will be used for contact analysis.

In the case of theoretical profiles, the total length is calculated from:

gα =
√
r2
a,1− r2

b,1 +
√
r2
a,2− r2

b,2−aw · sin(αw,t) (3.48)
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Figure 3.10: Geometrical boundaries and systems of coordinates within the base tangent plane

Moreover, the line of action is divided by the pitch point in approach and recess paths
of contact, ga and gf respectively, with gα = ga + gf . Thus, we have:

ga,1 = gf,2 =
√
r2
a,1− r2

b,1− rb,1 · tan(αw,t) (3.49)

gf,1 = ga,2 =
√
r2
a,2− r2

b,2− rb,2 · tan(αw,t) (3.50)

If the length of the line of action is compared to the transverse base pitch, pbt, it is
possible to determine the average number of teeth in contact in the mesh, εα, which
is known as “contact ratio”:

εα = gα
pbt

= ga+gf
pbt

= εa+ εf (3.51)

Where pbt = rb ·τ with τ being the angular pitch (see Figure 3.1). From previous equations,
it is deduced that the length of the mesh period depends on the tip and base radius
as well as on operating parameters such as the centre distance or the working pressure
angle. Any significant change to the active flank tip diameter (e.g. by applying chamfers,
roundings, etc.) shortens the available length for contact and the contact ratio is reduced
as a consequence (see corresponding condition of existence in Equation 3.15).

The contact ratio, indicates the maximum and minimum number of teeth in contact
in the mesh and it is possible to derive the regions where single, double or multiple
contact exist, calculating the available number of base pitches from the geometrical
boundaries. The transition points will be referred to as “characteristic points”. Thus,
for a standard contact ratios and considering that the distance to the pitch point is
given by T1C = rb,1 · tan(αw,t), we have:

T1E = T1C+ga,1; (3.52)
T1A= T1C−gf,1; (3.53)
T1B = T1E−1 ·pbt; (3.54)
T1D = T1A+ 1 ·pbt; (3.55)
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Sections AB and DE are double teeth contact regions and section BD has a single pair of
teeth in contact. In this case 1< εα < 2 but it is also possible to derive the characteristic
points for higher contact ratios following the same procedure.

Transmitted load is shared between the different number of teeth pairs in contact along
the line of action: normal load is reduced when multiple teeth pairs are meshing together
and increases abruptly in the single tooth region if modifications are not applied. Moreover,
the geometrical boundaries, A to E, can be displaced due to the elastic behaviour of the
teeth under applied load (points A’ and E’ in Figure 3.10a), giving rise to an increased
length of the path of contact and higher contact ratio. Meshing teeth enter these regions
before than expected which gives rise to a premature contact; and if the enlarged length
accommodates an additional base pitch, load distribution is changed completely. This
behaviour will be further discussed in Section 3.3.

Finally, in the case of helical gears the end of a tooth trace can overlap the beginning
of the next and therefore, an overlap length, gβ and an overlap contact ratio, εβ, exist:

gβ = b · tan(βb) (3.56)

εβ = gβ
pbt

(3.57)

The sum of the transverse and overlap contact ratios is known as total contact ratio,
εγ = εα+ εβ . Although several other quantities regarding mesh behaviour and geometrical
boundaries can be introduced, the aforementioned parameters are sufficient to understand
this document. The reader is referred to ISO 21771 for further information [176].

Mesh phase relations

Mesh phase relations are fundamental to understand the rolling-sliding behaviour of the
contact point moving along the base tangent. Furthermore, composite stiffness, affecting
load distribution and transmission error, requires the accurate calculation of instantaneous
geometry parameters, and hence, it demands relating kinematically pinion and gear during
their rotational movement. From the law of gearing in Section 3.1.1 it is possible to relate
the geometrical quantities of any tooth in the pinion with the corresponding parameters
of its mate in the gear, while the angular pitch, τ , relates the variables of that tooth
with those of the preceding and succeeding teeth. From these relations, it is possible
to solve the full system of kinematic and geometric equations.

Figure 3.11 shows the main angular quantities and velocity parameters for a reference
tooth in the pinion, named “master” in the following. The phase angle, φy, is selected
as the reference parameter to relate teeth angular variables; and the radial distances to
the point of contact, ry,1 and ry,2, will be used to relate pinion and gear.

Assuming an odd number of teeth in the pinion, the master tooth is the one located
in the middle (identified by subscript N). For a given angular position of the latter,
the phase of the preceeding (N − 1) and succeding teeth (N + 1) is calculated from
the angular pitch, τ , following:

φy,N−1 = φy,N −1 · τ (3.58)
φy,N+1 = φy,N + 1 · τ (3.59)
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Figure 3.11: Position and velocity parameters in the gear mesh

The same procedure applies for teeth next to the adjacent ones which are separated by
several angular pitches from the master tooth. This way, when the latter is located inside
the engagement region, the angular position of those teeth close to it is perfectly defined.

On the other hand, from triangle 4O1PyO2 it is possible to determine the radius
of the contact point Py from the gear side, ry,2. However, two situations must be
considered: i) in mesh and ii) out of mesh. The former is easily computed applying
the law of cosines but the latter, necessary to identify premature contact when gears
are loaded, requires an additional parameter known as “separating distance”, cy (see
Figure 3.11b). For in-mesh condition we have:

ry,2 =
√
a2
w + r2

y,1−2 ·aw · ry,1 · cos(θy,1) (3.60)

Where aw is the centre distance and ry,1 is the distance to the point of contact from the
pinion rotation centre which is calculated from the parametrical representation of the
tooth in Equation 3.28. Angle θy,1 is computed from Figure 3.11a and yields:

θy,1 = κy,1 +ψy,1 (3.61)
κy,1 = φy,1−αw,t (3.62)

ψy,1 = π+ 4 ·x · tanαn
2 ·z + invαt− invαy,1,t (3.63)

Where ψy is known as “tooth thickness half angle” [176] and determines the transverse
tooth thickness, sy, and the attack angle, αF,y of the tooth at any angular position, which
are necessary to compute tooth stiffness in Section 3.3.2.

sy = 2 · ry ·ψy (3.64)
αF,y = tan(αy)− (ψy + invαy,t) (3.65)
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In the case of out of mesh condition the following equation applies:

r′y,2 =

√√√√(√r2
y,2− r2

b,2− cy
)2

+ r2
b,2 (3.66)

Separating distance, cy, is defined as the distance along the line of action between mating
flanks when they lie outside the geometrically defined phase of mesh. Thus, when gears
are meshing such separation is zero and r′y,2 = ry,2. A graphical example of this parameter
is shown in Figure 3.11b: if the pinion rotates in the clockwise direction the line of action
is reversed and the distance between the new flanks, which are still not in touch, is
described by parameter cy. This variable is further discussed in Section 3.2.2.

Consequently, from Equations 3.58, 3.59 and 3.66 the phase of mesh of any tooth
of the gear pair can be fully defined from base parameters φy and ry and from now
on, a tooth is considered to be “potentially in mesh” if its phase angle, φy, fulfils the
condition: φA′ ≤ φy ≤ φE′ , where A′ and E′ are the start and end of the path of contact
when load is applied (see Figure 3.10a)

Velocity components and derivative parameters

In spur gears, when the tangential velocity of the contact point, Py, relative to pinion or
gear, is decomposed on the common tangent direction, the relative velocity at which the
pinion flank rolls over that of the gear is obtained (and viceversa). The latter is known
as rolling velocity, uy, and from Figure 3.11b it is calculated as:

uy,1 = Vy,1 · sin(αy,1) = (ω1 · ry,1) · sin(αy,1) = ω1 ·ρy,1 (3.67)
uy,2 = Vy,2 · sin(αy,2) = (ω2 · ry,2) · sin(αy,2) = ω2 ·ρy,2 (3.68)

Similarly, in the case of helical gears, the rolling velocity of any point Py follows
the perpendicular direction to the contact line which is inclined with respect to the
tooth trace as shown in Figure 3.10b. In the global system of coordinates attached
to the base tangent plane we have:

uy,1(x,z) = ω1 ·
(
x+z · tan(βb)

)
· cos(ψ) (3.69)

uy,2(x,z) = ω2 ·
(
T1T2−x−z · tan(βb)

)
· cos(ψ) (3.70)

Where x= T1M = rb,1 · tan(αMt) corresponds to the distance between the tangent to the
pinion base cylinder and the contact point M located in the tooth end in Figure 3.10b.

From the above equations, it is seen that rolling velocities mainly depend on the local
pressure angle and the radial distance, thus, they change during the engagement. Moreover,
pinion and gear rolling velocities are not equal which causes sliding of the surfaces. Only
at the pitch point C, tangential velocities and local pressure angles are equal and therefore
pure rolling exists. The main derivative velocity parameters are summarized below:

V sy = |uy,1−uy,2| (3.71)
V ry = uy,1 +uy,2 (3.72)

V ey = uy,1 +uy,2
2 (3.73)
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Sliding and rolling velocities, V sy and V ry, are directly related to power losses in the line
of action while entraining velocity, V ey, indicates the rate at which the oil film enters the
Hertzian contact region. Both parameters are fundamental to understand mesh losses in
Chapter 4. From these parameters additional relations can be computed, namely:

S = uy,1−uy,2
uy,1

(3.74)

SRR= 2 · (uy,1−uy,2)
uy,1 +uy,2

(3.75)

Where S is known as slip ratio, and SRR is the slide to roll ratio, which are frequently
used to analyse traction behaviour at high speeds.

Figure 3.12: Kinematic behaviour of the FZG
Type C-PT spur gear set at Vt = 8.3 m/s

Figure 3.12 depicts the common kine-
matic behaviour of a pair of spur gear
teeth. As it can be seen, sliding velocity is
maximum in the profile ends and zero at
the pitch point with a linear slope between
both ends. This means that maximum
power losses, heat or even wear will occur
at the tip/root of the gear. Moreover,
rolling velocity is not constant indicating
that the gear ratio is other than unity. As
a consequence, the slide-to-roll and slip
ratios are not symmetric indicating that
thermal effects in the lubricant are more
prominent towards the root of the pinion,
leading to a thinner oil film and a higher
probability of flank wear.

3.2.2 No-load transmission error behaviour

When theoretically perfect gears mesh together, the ratio of rotational speeds is constant;
but manufactured profiles are not free of inaccuracies and profile errors produce a phase
difference in the motion. Besides, backlash allowance to accommodate thermal growth or
tooth modifications applied to compensate deflections under load, also produce a deviation
from the theoretical rigid-body motion. Therefore, in order to fully characterize kinematic
behaviour of generated teeth it is necessary to analyse this parameters.

No-load separation

As it has been described in Section 3.2.1 gear teeth motion develops between single and
multiple teeth contact regions with abrupt normal load changes in between. However,
thanks to the elasticity of gear teeth, engagement shock occurs progressively as teeth
contact before expected, thus sharing load gradually. The parameter controlling this
behaviour is strictly geometric and it is known as no-load separation. The latter is
defined as the additional rotation necessary to contact a tooth held fixed in the mating
gear. When the rotation is translated to distance along the line of action separating
distance, cy, as presented in Equation 3.66 is obtained.
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Kinematic behaviour of the separating distance was first studied by Richardson [177]
who found that the latter depends mainly on the diameter and pressure angle at the tip of
pinion and gear, and depending on which one is held fixed, no-load separation is different.
A rather complex algorithm was developed with two different equations for the approach
and recess paths of contact; and due to the small differences between both, a simple
general model was proposed based on the polinomial approximation of the curves. Later,
Seager et al. [178] further developed this simplification and studied the effect of geometry
parameters, namely pitch and pressure angle, and found that considerable corner contact
may occur due to pitch errors. Lin and Wang [179] presented an alternative exact method
which was used to analyse dynamic effects and concluded that neglecting this parameter
underestimates resonant speeds and overestimates dynamic loads. Finally, in an attempt
to simplify the calculation methods presented previously, and trying to minimize error in
approximate equations, Munro [180] et al. proposed a new model with a straight-forward
procedure with which no-load transmission error could be analysed in depth.

The approximate equation proposed by Munro et al. in [180] is used in this work and
it has been developed herein for the case of pinion approach and recess.

cy

∣∣∣∣
Rec

= 1
2 ·
( 1
ρa,1

+ 1
ρa,2

)
·
[
ra,1 ·∆θa,1 · cos

(
arcsin

( rb,1
ra,1

)
−∆θa,1

2

)]2
(3.76)

cy

∣∣∣∣
App

= 1
2 · i ·

( 1
ρa,1

+ 1
ρa,2

)
·
[
ra,1 ·∆θa,1 · cos

(
arcsin

( rb,2
ra,2

)
−∆θa,1

2 · i

)]2
(3.77)

Where ∆Θa,1 is the angle of rotation of the driving gear (see Figure 3.11a) measured
from the theoretical start or end of the line of action depending on the approach or recess
condition. All the rest of the parameters refer to the tip of pinion or gear.

Figure 3.13: Separating distance of the theoret-
ical FZG Type C-PT spur gear set

Figure 3.13 depicts the behaviour of
the separating distance for a common spur
gear set. Separation during engagement
is zero but when the start or end of the
active profile (known as SAP or EAP
respectively) is close, tooth separation in-
creases progressively following a parabolic
function of rotation. In reduction units,
separation in recess is usually smaller than
in approach but both are very similar as
observed. It is also interesting to note
that even at significant distances from the
tip, the separation is very small indicating
that premature contact can be expected.
For example, at a distance of 1 mm along
the line of action from the tip, no-load
separation is 50 µm which can be exceeded by mechanical deflections causing corner contact
unless tip relief is provided. In this sense, backlash allowance and profile modifications
play an important role as they tend to separate theoretical flanks to avoid interference,
however, such alterations of the theoretical profile produce a phase difference in the
rigid-body motion which will be known as no-load transmission error.
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No-load transmission error

The rigid-body motion of a gear pair is defined by the law of gearing presented in Section
3.1.1. However, any manufacturing error, backlash allowance or intended modification
distorts the theoretical continuous motion along the line of action. Introducing the local
velocity difference, ∆vy, in Equation 3.7 describing the rigid body motion one obtains:

ω1 · rb,1 +ω2 · rb,2 + ∆vy = 0 (3.78)

Where ∆vy can be mathematically related to geometry deviations in the flank normal by:

∆vy = d∆xy
dt

= 1
cos(βb)

· d∆ηy
dt

(3.79)

Introducing Equation 3.79 in 3.78 and integrating, local no-load transmission error results:

NLTEy =− ∆ηy
cos(βb)

=− εT,y
cos(βb)

(3.80)

Where εT,y = max[εy,1(z) + εy,2(z) + cy] is the maximum composite deviation among all
potential contact points in the contact line considering that normal deviations from the
theoretical profile are negative if material is removed from the ideal involute profile
(see Figure 3.8). Individual surface deviations, εy,i, defined this way include flank
modifications and backlash allowance, which have been defined with parameters δ
and κ respectively in Figure 3.8.

In the case of teeth generated with tooth thickness tolerance Es according to Equation
3.16 the computation of the no-load transmission error yields a constant value equal
to half the normal backlash jb,n which is a negative value indicating that the driven
gear lags behind its theoretical position. However, if teeth are manufactured including
modifications, no-load transmission error along the line of action depends on the sum of
pinion and gear local deviations for each position in the mesh. Figure 3.14 graphically
describes this situation where the theoretical profiles of the standard FZG Type C-
PT gear pair have been modified.

(a) Relative position of flank deviations (b) No load transmission error

Figure 3.14: Sample calculation of no-load transmission error in modified FZG type C gear
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Pinion teeth profile include a linear tip relief while gear flank has been double-crowned
in the profile and lead directions. The relative deviations in the normal direction are
shown in Figure 3.14a and the grey coloured reference plane shows the contour plot
of the composite ∆ηy values which result from the sum of local deviations in pinion
and gear. If the latter is computed for each position along the line of action no load
transmission error results as depicted by Figure 3.14b. It is observed that the continuous
motion is no longer kept and two bumps arise as the result of the profile modifications.
In this case, longitudinal crowning does not change transmission error behaviour because
the pinion is not modified in the lead direction.

3.3 Load distribution and transmission error

It has been shown in previous sections that gear teeth are subject to a variable number
of teeth in contact during the engagement. Geometrical boundaries of multiple teeth
contact regions have been shown to be dependent on the contact ratio and the base
pitch, but instantaneous load on these regions is not uniformly distributed among all
teeth pairs in mesh as one would expect. This is due to the variable stiffness along the
line of action and the surface modifications or errors that prevent gear teeth contact.
Moreover, the continuous rotational motion defined in the fundamental law of gearing is
also interrupted by local loads that induce a phase difference due to elastic deformation
of the teeth. The latter must be added to the no-load transmission error explained in
Section 3.2.2 and, therefore, the final kinematic behaviour of the gear pair will not be
completely defined unless the load distribution problem is solved.

3.3.1 Statement of the problem

Load distribution in cylindrical gears has been analysed by a number of researchers. The
early works by Poritsky et al. [181], Weber and Banaschek [182] and Trbojevic [183]
reported the influence of teeth bending, twisting and contact stiffness in spur and helical
gear load distribution under plane stress or plane strain conditions. Later, Hayashi [184]
introduced convective effects in infinite width helical gears and discussed the difficulty of
solving the 3D load distribution problem analytically. A numerical integration procedure
based on the second kind integral equation of Fredholm was introduced and the solution was
experimentally validated. Similarly, Umezawa et al. [185] presented a 3D finite difference
based solution and Seager [186] developed the so-called “thin slice” approach including
longitudinal convective effects to solve finite width helical gear load distribution problems.
Finally, while transmission error was computed separately in Seager’s work, and those of
the previous authors, Conry and Seireg [187] introduced the full formulation of the load
distribution problem including coupled transmission error computation for the first time.

Successive research works have reinforced the original analytical/numerical solutions
and have contributed to the understanding of the load distribution problem. Among
others, Schmidt [188] and Plackzek [189] analysed the effects of profile modifications;
Vedmar [190], Steward [191] and Kunert [192] introduced hybrid analytical-numerical 3D
stiffness models obtained from regression of FEM simulations and analysed the influence
of misalignments and profile errors; Neupert [193] and Guilbault [194] developed simplified
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finite element and finite strip techniques respectively to accelerate computation and
analyse root stress behaviour; Ajmi and Velex [195] introduced dynamic effects and a new
longitudinal coupling model; and more recently, Pedrero et al. [196] have presented a new
analytical solution technique based on the minimization of the elastic potential energy.

Although there are a number of research works in literature taking advantage of
these load distribution models to analyse different phenomena on several types of gear
geometries, currently, finite element models have become a popular tool to analyse gear
mesh problems [197]. However, the solution time and the required computational capacity
of these models is large, the accuracy of the result varies significantly with the type
of element and boundary conditions and the method is not suited to contact problems
because very fine meshes are required. Thus, analytical-numerical models based on the
thin-slice approach are still dominant giving very accurate results (with experimentally
proved effectiveness [198]) and efficient solution times.

Governing equations

According to Conry and Seireg [187] the load distribution problem is defined as the
simultaneous solution of the set of equations representing the conditions of compatibility
of motions, equilibrium of moments and existence of contact for each engagement position.
Each of these conditions is mathematically described by:

δT,1 + δT,2− εT ≥ rb,i ·θi = TE (3.81)

Ti = rb,i
cos(βb)

·
N∑
j=1

∫ zn

z1
wj(z) dz (3.82)

wj(z)≥ 0 (3.83)

Equation 3.81, known as “condition of compatibility”, states that the sum of pinion
and gear elastic deformations under load, δT,1 and δT,2, minus the initial gap between
teeth, εT , must be greater than or equal to the rigid body rotation. Small deflections are
assumed for steel gears, therefore, contact always remains in the base tangent plane (x,z)
and the rigid body motion (known as transmission error, TE, in the following) is taken
as the product of the base circle radius and the angular displacement of pinion or gear.
The “condition of equilibrium”, represented by Equation 3.82, implies that the sum of all
moments applied on the gear must equal the input torque, Ti, with N the total number of
simultaneous contact lines. Finally, the “condition of contact existence” in Equation 3.83
states that two surfaces must be in contact at a point for a pressure to exist and therefore,
loads must be positive or zero. When the load distribution problem is solved for each
position in the path of contact, the solution yields the distribution of normal loads along
the profile and longitudinal directions as well as the loaded transmission error behaviour.

Neglecting the influence of shaft, bearing or housing deflections under load, common
cylindrical gears are affected by several deflection types as shown by the following equation:

δT,i = 1
cos(βb)

·
N∑
j=1

∫ zn

z1
[Cb,i+Cs,i+Cc,i+Ct,i+Cr,i+CH,i](z,z′) ·wj(z) dz (3.84)
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Where the individual compliance contributions of the gear, i, are: i) body rotation
compliance, Cr, ii) teeth bending, shearing and compressive compliances, Cb, Cs and Cc
respectively, iii) gear teeth base tilting compliance, Ct, and iv) contact compliance, CH .
From these terms, that of contact deflection is very localised and therefore, convective
effects can be neglected. In other words, it is a function of the local load and cross
influences are not considered which allows subtracting this term from the integral.
Restating Equation 3.84 yields:

δT,i = 1
cos(βb)

·
N∑
j=1

[∫ zn

z1
CT,i(z,z′) ·wj(z) dz+CH,i(z) ·wj(z)

]
(3.85)

Where CT,i(z,z′) refers to the total compliance influence function for gear, i, including all
terms except that of contact. Note that the integral must be evaluated at the instantaneous
length of the contact line for tooth j which is variable in the case of helical gears [199].

On the other hand, initial total gap is the sum of pinion and gear backlash allowance,
κ, local values of surface modifications, δ, and unloaded separating distance, cy, for the
considered phase of mesh; all of which are negative values if material is removed from the
theoretical profile following the local tangential-normal system of coordinates in Figure
3.8. Note that, in the absence of elastic deflections in Equation 3.81, the initial gap, εT , is
equivalent to the no-load transmission error parameter, NLTE, presented in Equation 3.80:

εT = 1
cos(βb)

· [εT,1 + εT,2 + cy] = 1
cos(βb)

· [(δ1 + δ2) + (κ1 +κ2) + cy] (3.86)

Numerical approximation

The analytical integration of the set of Equations 3.81 to 3.86 is complex [184] and
numerical integration is used instead following two point Gauss-Legendre quadrature rule
[191, 200]. Hence, the load distribution problem restated numerically reads:

1
cos(βb)

·
N∑
j=1

[∆
2 ·

2·m∑
k=1

CT,1,2(z,zk) ·wj(zk) +CH,1,2(zk) ·wj(zk)
]
− εT ≥ rb,i ·θi (3.87)

Ti = rb,i
cos(βb)

·
N∑
j=1

[∆
2 ·

2·m∑
k=1

wj(zk)
]

(3.88)

wj(zk)≥ 0 (3.89)

Where CT,1,2 and CH,1,2, are equivalent compliance terms which consider pinion and gear
composite influence (see Section 3.3.2), ∆ is the Gauss interval size, m is the number
of gauss intervals and zk is the axial coordinate of the Gauss query points which are
strategically located along the tooth face width for numerical integration.

Figure 3.15 depicts the parameters involved in the numerical integration of a general
case with two gauss intervals dividing the potential engagement region in two halfs. The
interval size ∆ is computed dividing the tooth face width, b, by the number of gauss
intervals, m. Moreover, in the case of successive two point Gauss integration, each of the
intervals has two query points with axial coordinate zk which can be calculated from:

zk = ∆
2 · (2 ·mk +K−1) (3.90)
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Figure 3.15: Discretization of the base tangent plane for numerical integration

Where mk is an integer value indicating the gauss interval number with mk ∈ [1, m] and
K =±1/

√
3 is the quadrature function argument for two point Gauss integration.

As it can be seen in Figure 3.15 the integration points are uniformly distributed along
the face width and if higher accuracy is required in the computation, the number of
intervals can be increased producing additional query points on each flank. Although a
higher number of query points can be used in each interval, Steward [191] pointed out
that high order polynomial approximations lead to unstable modelling while repeated two
point integration minimizes numerical errors efficiently, thus a maximum of two query
points is kept for each interval. Besides, with the aim of detecting premature contact, the
region under study has been enlarged by k base pitches with respect to the theoretical
bounds (points A to E). This way, and a tooth is assumed to be potentially in mesh if any
of its Gauss points is within the new limits A′E′ . The solution of the system of equations
will determine if the incoming or outgoing teeth are effectively in contact or not.

Solution method

Following [187] the compatibility condition can be converted to equality constraint by
introducing a slack variable Y ≥ 0 such that δT,1 + δT,2− εT − rb ·θ−Y = 0. Furthermore,
multiplying by 2/∆ at both sides of Equation 3.87 and rearranging terms one we obtains
the following system of equations in matrix form:[

[CT] + 2
∆ · [CH]

]
·w− 2

∆ · (εT + i · rb,i ·θi)−Y = 0 (3.91)

2
∆ ·

Ti
rb,i

= iT ·w (3.92)

Either wk = 0 or Yk = 0 (3.93)

Where i is the identity column vector, ∆ = b/(m · cos(βb)) and subscripts i and k refer
to the analysed gear and the Gauss query point respectively.

To solve the system of equations, a new method is proposed in this work, which is
a different approach compared to similar algorithms presented in [187, 191, 195]. To
compute the exact solution efficiently, the system of equations is restated as a Linear
Complementarity Problem (LCP) by rewriting Equations 3.91 and 3.92 under the form
Y = [C] ·w+q and restating the contact existence condition in Equation 3.93 as Yk ·wk = 0:
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

Y11
Y21
...
Yn1

Y(n+1)1
...

Y(N ·n+1)1


=



CT11 + 2
∆ ·CH11 CT12 ... CT1n CadjT1(n+1)

... − 2
∆

CT21 CT22 + 2
∆ ·CH22 ... CT2n CadjT2(n+1)

... − 2
∆

... ... ... ... ... ... ...
CTn1 CTn2 ... CTnn + 2

∆ ·CHnn CadjTn(n+1)
... − 2

∆
CadjT(n+1)1

CadjT(n+1)2
... CadjT(n+1)n

CT(n+1)(n+1) + 2
∆ ·CH(n+1)(n+1) ... − 2

∆
... ... ... ... ... ... ...
1 1 ... 1 1 ... 0


·



w11
w21
...
wn1

w(n+1)1
...

rb,i ·θi


− 2

∆



εT11

εT21

...
εTn1

εT(n+1)1

...
Ti/rb,i


(3.94)

This way, the system of equations can be solved efficiently within a few iterations using
Lemke’s pivoting algorithm [201], without any need to modify the compliance matrix terms
as in [191, 195]. For instance, the solution time for a 33×33 matrix kernel corresponding
to 8 Gauss intervals and two teeth in the potential engagement region (total number of 32
Gauss query points) is below 5 msec. The full path of contact is covered in a few seconds
where most of the time is spent in the construction of the compliance matrix by addition
of the different terms and the inversion of the slice coupling stiffness components.

The terms in the main diagonal of the matrix in Equation 3.94 correspond to the
position of load application while the off-diagonal terms represent convective effects.
As described by Equation 3.85, contact compliance, CH , is localized and therefore
coupling effects are neglected which means that it only affects the terms in the principal
diagonal. However, the total compliance term, CT , which is the sum of several deflection
contributions (i.e. bending, tilting, body rotation, etc.) from pinion and gear, does
influence all the rest of the query points. Furthermore, it is to be noted that the distant
upper and lower diagonal sub-matrices are off-diagonal coupling terms (denoted by
superscript “adj.”) which are related to remote deflections of the adjacent teeth due to
the rotation of the gear body and tooth base tilting. The latter specially affects load
distribution in large diameter gear wheels and in case of pitch errors that cause the next
tooth to come into contact before expected. If the master tooth is located in the first
positions, the terms affecting the adjacent teeth are located at positions i, j > n with n
the number of query points on the same tooth, thus n = 2 ·m.

Equation 3.94 has been presented in general form and it must be redefined for each
position along the contact line. For spur gears of standard proportions, no more than two
pairs of teeth are simultaneously in contact and therefore it is only necessary to include
the compliance of the preceding and succeeding teeth. However, in high contact ratio spur
gears (or helical gears) it is possible for three or more tooth pairs to be simultaneously in
mesh which means that the compliance of the next to the adjacent teeth must also be
considered. Therefore, the size of the kernel matrix is variable and it is ruled by the number
of gauss points in the potential engagement region with size =N ·n+1 = 2 ·N ·m+1; where
N is the number of teeth in potential contact and m is the number of Gauss intervals. For
instance, in the case of a spur gear pair with 1< εα < 3 a minimum set of 5 teeth should be
analysed during rotation. If the master tooth (named T3 for being the one in the middle
of the set) is located at the beginning of the approach path of contact, there are two teeth
preceding it (T4 and T5) and the system of equations should be formulated as follows:

YT3
YT4
YT5
Y

=


[T3] [Adj.] [Next] − 2

∆
[Adj.] [T4] [Adj.] − 2

∆
[Next] [Adj.] [T5] − 2

∆
1 1 1 0

 ·

wT3
wT4
wT5
rb,i ·θi

−
2
∆


εT3
εT4
εT5
Ti/rb,i

 (3.95)
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At each phase of mesh, the potential number of teeth in contact must be evaluated,
the compliance matrix is redefined and the system of equations is solved for the load
vector (which includes transmission error). However, two inconvenients may arise during
the solution process. On the one hand, a singular matrix may result when the compliance
matrix is inverted. Although a number of reasons may explain this behaviour (e.g. sparse
matrix) the problem is usually related to the floating point precision of the machine
because compliances have been expressed in SI units which gives rise to very low values
in steel gears. To solve this issue variables must be scaled or non-dimensionalized. In
this work, length parameters such as, δ, or ∆, are expressed in µm, unit normal loads,
w, in N/ µm, total compliances in µm/N and contact compliances in µm/N/µm. On the
other hand, contact compliance, CH , is slightly non-linear and decreases with normal
load, therefore, an iterative procedure is required where the initial guess for normal load
per unit length can be approximated by wk = Ti · cos(βb)/(2 · rb,i · b). Such an iterative
procedure may increase computational time; alternatively, it is also possible to linearise
contact compliance by using the first term of the Taylor expansion which helps minimize
computational cost without great loss of accuracy [202].

3.3.2 Thin slice approach for 3D gear contact problems

The numerical integration procedure described earlier introduces the notion of Gauss
query points which are optimal longitudinal locations for the exact integration of a general
polynomial function representing line load w = f(z). In the case of two point integration
a third order polynomial function is used to fit the latter. As a consequence, tooth
deflections, surface deviations and normal loads are only calculated at this reference points
and therefore, gear face width can be sliced around them as shown by Figure 3.15 where
the length of each section is half the interval size l = ∆/2 = b/(2 ·m · cos(βb)). Hence,
the kernel matrix in Equation 3.94 only requires the main compliance terms, CT,nn and
CH,nn, at the query points plus coupling terms, CT,n(n+1) for the convective effects which
relate the deformation of each individual slice to the adjacent ones (see Figure 3.16).

At a particular phase of mesh, total deflection of a single slice is the sum of:

1. Contact deflection of curved flanks pushing against each other.
2. Tooth bending, shearing and compression when subject to a normal load.
3. Tooth foundation tilting due to the reaction moment to the applied load.
4. Gear body rotation or twisting produced by the transmitted torque.
5. Other: gear rim/web deformation, shaft/housing deflections, bearing stiffness, etc.

Neglecting distant deflection terms, total compliance, CT,nn, in the principal diagonal
of the matrix in Equation 3.94, can be calculated as the equivalent compliance of several
springs in series (see Figure 3.16a). Therefore we have:

CT,nn = CT,1,nn+CT,2,nn (3.96)
CT,i,nn = Cb,i,nn+Cs,i,nn+Cc,i,nn+Ct,i,nn+Cr,i,nn (3.97)

Where each of the terms varies along the line of action due to the changing distances
from the gear centreline to the point of load application during rotation.
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Figure 3.16: Thin slice compliance model representation

Besides, the coupling off-diagonal terms, CT,n(n+1), relate the deflection of an individual
slice to the neighbouring ones. Experimental evidence has shown that such convective
effects are very important in misaligned gears or when lead modifications are applied
[192]. Coupling terms should interrelate the deflection of all query points in a tooth,
however, in this model only the deflections of the immediately adjacent slices will be
considered as shown in Figure 3.16b. Moreover, slices located at the tooth ends are
only connected to the next slice and therefore, a higher deflection results for them
which is the expected behaviour.

Tooth bending, shearing and compression compliance

Considering gear teeth as a built-in beam with variable cross section, the bending, shearing
and compression compliance terms of a single slice can be computed from the internal
energy at each phase of mesh, y. Moving the global system of coordinates to the gear
tooth base as shown in Figure 3.17, the different terms are computed following the
classical assumptions from material resistance:

Ub,y = 1
2 ·
∫ yp

0

M2
b,y

E·l·(2·x)3

12
dy (3.98)

Us,y = 1
2 ·
∫ yp

0

C ·Q2
y

G · l · (2 ·x) dy (3.99)

Uc,y = 1
2 ·
∫ yp

0

N2
y

E · l · (2 ·x) dy (3.100)

Where x and y are the half chordal thickness and position of the differential section
respectively, l is the slice width, E and G are the Young’s modulus and transverse
modulus of elasticity respectively and C is the shear correction factor which takes the
approximate value 1.2 according to [182]. From Figure 3.17 normal and shearing force,
Ny and Qy, and bending moment, Mb,y, are computed as:

Mb,y =Wy · cos(αFy) · (yP −y) (3.101)
Qy =Wy · cos(αFy) (3.102)
Ny =Wy · sin(αFy) (3.103)

where Wy is the local normal load, which is inclined angle, αF,y, known as attack angle
and already defined in Equation 3.65.
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Rearranging terms and equating G = E/(2 · (1 +ν)) for plane stress conditions (i.e.
thin plates) we obtain the total composite bending, shearing and compression compliance.

Cbsc,i,nn =A ·
[
12 ·

∫ yp

0

(yp−y)2

(2 ·x)3 dy+
[ 2.4
(1−ν) + tan2(αFy)

]
·
∫ yp

0

dy

(2 ·x)

]
(3.104)

A= (1−ν2) · cos2(αFy)
l ·E

(3.105)

Note that the computation of the composite compliance depends on the location of
the origin of the system of coordinates through parameter yp in Figure 3.17. According
to Weber and Banaschek [182] the latter is defined by the intersection of the root circle
with the tangent line to the fillet radius at an angle αP = 20 ◦ with the tooth centreline .
This position can be easily computed from generated geometry and it is the reference
section for the bending, shearing and compression integrals in Equation 3.104.
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Figure 3.17: Main dimensions and local coordinates for tooth slice compliance calculation

Tooth foundation tilting and body rotation compliance

On the other hand, for the tooth base tilting term, Weber and Banaschek [182] developed
a solution from the elastic half-space approach, assuming that a rigid teeth transmits
normal loads, shearing forces and bending moments directly on a flexible foundation
which causes tooth centreline to tilt around its reference position. Considering a linear
distribution of normal stress and a constant shear stress over the elastic half plane the
tooth foundation compliance for plane stress is:

Ctr,i,nn =A ·
[
L∗ ·

(
yp
sf

)2
+M∗ ·

(
yp
sf

)
+P ∗ ·

[
1 +Q∗ · tan2(αFy)

]]
(3.106)

With A already defined in Equation 3.105 and L∗ = 18/π, M∗ = 2 · (1− 2 · ν)/(1− ν),
P ∗ = 4.8/π and Q∗ = (1− ν)/2.4.
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Although the solution presented by reference [182] is very accurate and seems to be
sufficient for small diameter gear wheels, it fails when the rotation of the gear body is
not negligible with respect to the tilting term. In such cases, the gear body twisting
compliance should be added separately. However, Sainsot et al. [203] developed a far
more interesting solution which combines body rotation and tooth foundation tilting
based on the theory of Muskhelishvili for circular elastic rings. The analytical solution
was developed for the same stress distribution assumptions in [182] and a polynomial
function fit was found for the terms L∗, M∗, P ∗ and Q∗ in Equation 3.106. In this
work, the solution by Sainsot et al. will be used for the combined tilting and rotation
compliance Ctr. The reader is referred to the original article [203] for detailed information
on the analytical solution and numerical approximation.

Furthermore, adjacent teeth deflection terms, CadjT , in Equation 3.94 are largely due to
the rotation of the gear body and they are almost independent of the loading diameter and
the axial position of the load [191]. Under this conditions the rotation of the preceding
and succeeding teeth is equal and the same twisting compliance term can be used to
represent both. Moreover, next-to-adjacent teeth in Equation 3.95 are also affected by
the same rotation which allows to fulfil the remaining terms in the matrix. In order to
counterbalance the foundation tilting term and compute the remaining body rotation
compliance from the previous models, it is possible to use the difference between the
deflection calculated by Equation 3.106 according to Sainsot et al. [203] and that calculated
by Weber and Banaschek [182]. In this work, this terms are neglected for simplicity.

Longitudinal convective effects

Up to this point the compliance matrix has been fulfilled with the main diagonal terms,
CT,nn, which correspond to each slice in the model. Therefore, the kernel matrix is non-
coupled and the deflection of a single slice does not affect the surrounding ones. If the gear
is uniformly loaded along the face width, the deflection of all slices will be nearly the same
and the coupling terms do not affect load distribution. However, when rapidly changing
loads due to mesh misalignments or tooth modifications act on the gear pair, convective
effects are very important to accurately compute load distribution. Therefore, in order to
complete the matrix, coupling terms must be added to the off-diagonal positions.

In this work, Börner’s method [204] is used, which has been developed from regression
of multiple finite element simulations and it has been experimentally validated through
several years of automotive field applications [198]. According to Börner the coupling
stiffness between two adjacent slices n and n+ 1 is given by:

KT,n(n+1) = 2.75 ·
(
mn

b

)2
·
KT,n+KT,(n+1)

2 (3.107)

Where mn is the normal module, b is the tooth face width and the terms KT,i are
the stiffness of the linked sections. This terms must be added to the compliance sub-
matrix of the teeth under consideration, which is first inverted before the summation
and it is later inverted back again before contact compliance terms are introduced. The
procedure is mathematically described by Equation 3.108 which is applicable for any
sub-matrix representing a tooth N in mesh.
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[CT,N] =




CT,11 0 0 ... 0

0 CT,22 0 ... 0
0 0 CT,33 ... 0
... ... ... ... ...
0 0 0 ... CT,nn



−1

+


KT,12 −KT,12 0 ... 0
−KT,12 KT,12 +KT,23 −KT,23 ... 0

0 −KT,23 KT,23 +KT,34 ... 0
... ... ... ... ...
0 0 0 ... KT,(n−1)n





−1

(3.108)
From this equation it is observed that the bandwidth of the stiffness matrix is reduced
to a principal diagonal and two neighbours which accelerates load distribution calcu-
lation with respect to other methods including all influence coefficients fulfilling the
matrix such as [192].

The inversion of the stiffness matrix as proposed by Equation 3.108 gives rise to
the full compliance map representing transverse and longitudinal deflections of any slice
when a line load is applied at an arbitrary query point. Figure 3.18 shows such elastic
deformations when a torque of 142 Nm is applied to a common FZG type C gear, which is
equivalent to a line load of w = 300 N/mm. The different contributions to total deflection
are depicted in Figure 3.18a. Note that in case of the FZG type C pinion the contribution
of the web deformation is very small because the bottom diameter of the teeth is close
to that of the supporting shaft, and therefore the size of the bulk gear body is small.
Moreover, contrary to the rest of the terms, the difference between a load applied at the
tip or at the root of the tooth does not affect the body rotation compliance. However,
it is seen that tooth foundation tilting and bending are affected by the position of load
and deformations are higher when loads are applied at the tip. Contact compliance
term as presented in Section 3.3.2 has been added for completeness. The latter depends
on the size of the Hertzian contact half width, material properties and distance to the
tooth centreline , ty, as shown in Figure 3.17; therefore, differences between tip and
root are mainly due to local geometry differences.

(a) Transverse deflection (b) Longitudinal deflection

Figure 3.18: Tooth transverse and longitudinal compliance

On the other hand, Figure 3.18b shows the influence of load application position.
As expected, maximum deflections are computed at tooth ends because slices at these
positions are only linked to a single adjacent section and therefore they only include one
coupling term (see Figure 3.16 and Equation 3.108). However, if the load is centered with
respect to the full face width, deflections are symmetric. This behaviour is specially useful
for load distribution computation in presence of misalignments or when longitudinal
modifications are applied.
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Teeth contact compliance

Finally, contact compliance, CH,nn, must be added to the principal diagonal of the resulting
kernel matrix in Equation 3.108. Although several analytical models can be found in
literature for this term, in most cases contact deflection is computed from the elastic
half-space approach where a 2D Hertzian pressure distribution is applied on a elastic
foundation. This type of solution is very extended in load distribution related literature
[182, 190, 195] and in this work the approach by Steward [191] is used. The latter is based
on Weber and Banaschek’s assumptions [182] for the contact of two elastic bodies but it is
later corrected for increased compliance near the tooth tip using a semi-empirical correction
factor. Hence, Steward’s model for composite pinion and gear contact compliance reads:

CH,nn = C ′H,1,nn+C ′H,2,nn (3.109)
C ′H,i,nn =Mi,y ·CH,i,nn (3.110)

Mi,y = 0.0338 ·h2
i,y−0.282 ·hi,y + 1.627⇐⇒ hi,y < 4.1716 (3.111)

CH,i,nn = 1
π

[1−ν2
i

Ei
· ln
(
b2H,y

4 · t2i,y

)
+ νi · (1 +νi)

Ei

]
(3.112)

Where the correction factor My is only applied in the vicinity of the tip and increases
contact compliance up to 60 %. The distances to the tooth tip, hy, and to the tooth
centerline, ty, are calculated from Figure 3.17 following:

hi,y = (ra,i− ri,y) · [bH,y · cos(αy)]−1 (3.113)
ti,y = rb,i · [tan(αy)− tan(αF,y)] (3.114)

Finally, bH,y, is the Hertzian region half width for line contacts of infinite length, which
is a non-linear function of the local normal load, Wy.

bH,y =
√

4
π
·Wy

l
· ρy,1 ·ρy,2
ρy,1 +ρy,2

·
(1−ν2

1
E1

+ 1−ν2
2

E2

)
(3.115)

This non-linearity implies that load distribution must be known in advance for
accurately computing contact compliance, and therefore an iterative procedure must be
used, solving load distribution several times until difference in predicted and computed
loads is within a predefined tolerance.

3.3.3 Load capacity

According to the main standards ISO 6336 [11] and AGMA [10] gear teeth are affected by
two main failure phenomena: i) root fillet breakage due to excessive teeth bending and ii)
pitting failure due to contact pressure overload. Both of them depend on the geometry
of gear teeth and instantaneous loads, thus, at any phase of mesh tooth root fillet and
contact stress fields must be monitored to avoid exceeding material strength limits. In
this section the underlying calculation procedures for both cases are briefly described.
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Tooth root bending stress

Essentially, a gear tooth can be seen as a stubby cantilever beam as shown in Figure 3.17.
At the base of the beam, there is tensile stress on the loaded side and compressive stress
on the opposite side. When gear teeth break, they usually fail by a crack propagation
at the base of the tooth on the tensile stress side. The ability of gear teeth to resist
such breakage is usually referred to as their flexural strength, σF , which can be derived
considering traditional material resistance equations. From Figure 3.17 one yields:

σF0,y = Mb,y ·xmax
Iz

=
[Wy · cos(αFy) ·yP ] ·

(
sf
2

)
1
12 · b ·s

3
f

(3.116)

Where Wy is the local normal load, αFy is the attack angle, yP is the bending lever
arm, b is gear teeth face width and sf is the critical section size. AGMA [10] and ISO 6336
[11] standards mainly differ in the way of computing the position of the critical section,
which affects not only its size but also the bending lever arm. The former inscribes the
largest possible parabola into the gear tooth profile known as “Lewis parabola” while the
latter forms a triangle with 30 ◦ vertex angle between the tooth centreline and the tangent
to the fillet radius. The critical section is located at the point at which the parabola or
the triangle become tangent to the surface of the gear root fillet. In both standards, shear
stresses across the root of the tooth are neglected, while radial stresses are included in
AGMA but not in ISO. Furthermore, AGMA assumes that the load is applied at the tip
of the gear while ISO considers that it is applied in the vicinity of the pitch point. Such
differences, lead to considerable deviations when compared to experimental measurements
as shown by recent studies [205]. Although new analytical techniques have been derived
lately to compute the exact stress field [206] the methods proposed above are still largely
used. In this work the method according to ISO is further developed due to its simplicity
to compute the position of the critical section from generated geometry.

In order to take into account different geometry-induced phenomena such as the stress
concentration effect in the root fillet or the effect of helix angle, ISO introduces several
correction factors, which are derived empirically and multiply Equation 3.116. Thus, for
common gears manufactured with the basic rack according to ISO 53 [170] we have:

YS,y =
(

1.2 + 0.13 · sf
yP

)
·
[
sf

2 ·ρf

](1.21+2.3· yP
sf

)−1

(3.117)

Yβ = 1− εβ ·
β

120 (3.118)

Where YS is the stress correction factor accounting for the notch effect in the root fillet
which has a radius ρf in the critical section and Yβ is the helix angle factor. Furthermore,
ISO additionally considers the effect of external factors affecting mesh operation such
as the influence of uneven load distributions, dynamic effects or torque variations in
the work cycle. However, in this work quasi-static conditions are assumed, no torque
variation is expected and local loads are derived from the solution of the load distribution
as presented in Section 3.3, thus, the maximum root stress evolution along the line
of action can be computed following:

σF,y(x,z) = σF0,y(x,z) ·YS,y ·Yβ = [6 ·wy(x,z) · cos(αFy) ·yP ·s−2
f ] ·YS,y ·Yβ (3.119)
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Although root stresses in ISO 6336-3 are presented in a slightly different form and account
only for the end point of single tooth contact, the method presented here has been modified
to compute bending stresses along the entire line of action and the tooth face width from
a given unit normal load distribution wy(x,z). Equation 3.119 neglects convective effects
for the bending moment arm [207] and it has been shown that it largely simplifies the
stress field in the fillet region due to a number of reasons cited above, but in this work it is
considered sufficient to give an order of magnitude of the maximum stresses in the root fillet.

Tooth flank contact stress

Similarly, tooth flank contact stress evolution along the line of action can be computed
from Hertz theory as gear teeth contact is equivalent to two cylinders with variable
curvature radius pressing against each other. AGMA [10] and ISO [11] standards are
based on the latter and, in the same way as bending stresses, they introduce the impact of
non-uniform load distribution, the effect of velocity or variable torques and the influence
of specific geometry by means of several correction factors. However, in this work, non-
uniformities in load distribution are already considered in the quasi-static load distribution
and local geometry parameters for each phase of mesh are also known. Therefore, from
Hertz theory for line contacts the instantaneous contact stress can be calculated following:

σH,y(x,z) =

√√√√√√wy(x,z) ·
(
ρy,1+ρy,2
ρy,1·ρy,2

)
π ·
(1−ν2

1
E1

+ 1−ν2
2

E2

) (3.120)

This equation is presented in a slightly different manner in AGMA and ISO standards
as correction factors are included to translate the maximum contact stress to the lowest
point of pinion double teeth contact and incorporate the effect of contact ratio or the
influence of helix angle. However, the general form in Equation 3.120 is preferred as the
maximum contact stress position is derived from local conditions.

Finally, Figure 3.19 compares bending and contact stress along the line of action
for generated and modified FZG type C-PT gears.

(a) Bending stresses (b) Contact stresses

Figure 3.19: Bending and contact stresses for generated and modified FZG type C gear
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For a given root geometry, bending stress according to Equation 3.119 is strictly
governed by the load distribution. When tip relief is applied to both gears (as in Figure
3.19) there is a smooth transition from double to single tooth contact and therefore loads
increase progressively and so does the maximum root stress. However, contact stresses
not only depend on local loads, they also depend on instantaneous curvature radius (see
Equation 3.120). As a result, when tip relief is applied, an abrupt curvature change
is predicted from Equation 3.45 at the start of modifications, which results in contact
stress spikes at these positions as shown by Vijayakar [174].

3.4 Finite element validation

In order to validate the analytical load distribution model, a two-dimensional quasi-static
finite element model of a gear pair is developed in this section. The objective of this
validation is further studying the sensitivity of the analytical model to loaded transmission
error behaviour and normal force variation during engagement. Special attention is paid
to premature contact phenomena, the increase of mean level and peak to peak TE with
torque, contact ratio shift due to large deflections and the influence of random tooth
modifications on load distribution reference behaviour. This parameters are representative
of the forthcoming thermal distortion phenomena and the analytical model should be
capable of accurately describing this features. Additionally, 2D results will be completed
with existing 3D data from scientific literature in order to fully validate the model.

3.4.1 Description of the model and test cases

The main characteristics of the reference geometry for the finite element simulation
are summarized in Table 3.4.

Table 3.4: Reference spur gear geometry for finite element validation

Parameter Symbol Value

Face width b [mm] 100
Shaft diameter ds1,2 [mm] 80, 80
Normal module mn [mm] 4
Number of teeth z1,2 [-] 25, 25
Normal pressure angle αn [◦] 20
Profile shift coefficient x1,2 [-] 0, 0
Operating centre distance aw [mm] 100
Reference tool acc. ISO 53 [-] C (1.25/1.0/0.25)
Tolerance field acc. DIN 3967 Es,n [mm] cd25 (-0.11,-0.07)

This reference gear pair has been previously used by several authors [191, 195]
and it is characterized by being a symmetrical mesh with equal lengths of approach
and recess as well as the same tooth thickness variation along the tooth height (i.e.
same manufacturing profile shift coefficients, xE) ensuring that they have the same
bending and foundation stiffness at any point. With this approach, load distribution
and transmission error diagrams are symmetrical if no profile modifications are applied
and any difference in loaded behaviour can be easily identified from the horizontal and
vertical displacements from the reference diagrams.
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Finite element mesh and boundary conditions

Pinion and gear are meshed with the methodology proposed by Litvin et al. [208] which
is characterized by a higher mesh density in the teeth region with respect to the bulk
gear body (see Figure 3.20a). The mesh generation process has been automated and
three different regions are distinguished for any gear geometry: i) gear teeth (region
1), ii) root fillet radius (region 2) and iii) gear body (region 3). Additionally, a bias
factor has been introduced allowing for a progressive transition of the mesh size from
the tooth centreline towards the flank surface. The latter is defined as the ratio of the
flank element size to that of the tooth centreline.

Tip
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(a) Mesh size and regions

O1 O2

(b) Boundary conditions

Figure 3.20: Gear pair finite element mesh and boundary conditions

A four-node, iso-parametric, arbitrary quadrilateral element for plane stress appli-
cations is used (element type 3 in MSC Marc software). The stiffness of the element is
defined by 4 Gaussian integration points and it uses bilineal interpolation functions for
deflection computation which is constant along the element. The material properties of
the selected case-hardened 16MnCr5 gear steel for the finite element simulation are
shown in Table 3.5.

Table 3.5: Material properties of case hardened 16MnCr5 steel for finite element simulation

Parameter Symbol Value

Density ρ [kg/m3] 7830
Young’s modulus E [GPa] 206
Poisson’s coefficient ν [-] 0.3
Yield strength Rp [MPa] 695

Furthermore, two different boundary conditions are applied to pinion and gear: on
the one hand, the rotational movement is imposed to the pinion with very low angular
velocity (1 rpm) to avoid dynamic effects and, on the other hand, resisting torque is
applied to the gear; both of which follow the counter-clockwise direction as it can be
seen in Figure 3.20b. Moreover, rigid connectors have been defined between the central
node located in the axis of rotation and the nodes in the gear-shaft interface. The
contact type used for the simulation is of the “node-to-segment” type which does not
consider tangential forces because friction coefficient is very low in EHL contacts and
therefore frictional effects can be neglected.
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In order to minimize the effect of boundary conditions on numerical results a finite
element parameter analysis has been carried out before any test case is studied. The
results of this preliminary analysis have been published in a conference paper [209] and the
simulation parameters for the forthcoming tests have been defined based on its conclusions.
It has been found that boundary conditions affect stiffness significantly which modifies
the key parameters of transmission error (mean level and peak-to-peak value) and the
length of contact under load. It is specially remarkable the influence of the gear body
stiffness term and the effect of modelling the full gear with respect to partial models
frequently used in literature [208] with a reduced set of teeth (usually 3 or 5). In this
work, the full pinion and gear have been modelled and the influence of the gear body up
to the shaft diameter has been considered. The number of elements in the flank without
re-meshing is 75 which is not sufficient to consider the influence of contact compliance,
and therefore contact stresses are neither computed. However, for root bending stress
calculation the optimum number of elements in the fillet has been found to be 15. On
the other hand, gear tip and bottom only have 8 and 2 elements respectively and the
bias factor is set to 8. Finally, the selected time step for simulation is 0.094 ◦/inc in
order to accurately describe load distribution and transmission error features. Once the
simulation is finished, the result files are post-processed in search of normal load per
phase of mesh and the instantaneous rotation angle of the gear.

Test cases

Table 3.6 summarizes the complete set of test cases which have been defined to pursue two
different objectives. On the one hand, load distribution and transmission error behaviour
under load are studied and on the other, the effect of geometry modifications is analysed.

Table 3.6: Test cases for finite element validation

Parameter Symbol Value

Torque levels T [kNm] 0.625, 1.25, 2.5, 5, 10
Face widths b [mm] 15, 100
Shaft diameters ds [mm] 30, 80
Linear tip relief Cαa,1 [µm] 35
Profile slope mod. CHα,1 [µm] 17.5
Profile barrelling Cα,1 [µm] 17.5
Lead crowning Cβ,1 [µm] 30
Mesh misalignment f∑β,1 [µm] 70

In order to study the overall transmission error and load distribution variation with
torque five load levels are selected from 625 Nm to 10.000 Nm. Then, a narrow face
width of 15 mm is tested for the same load levels, in search of premature contact, contact
ratio increase under load and even with the aim of detecting triple contact when large
deflections arise. Similarly, the influence of web size will also be analysed as it increases
total deflection under load and alters TE mean level and peak to peak value. On a second
stage, the influence of random profile modifications is analysed where only the pinion will
be modified with tip reliefs, profile slope modifications and profile barrelling. Finally, the
numerical validation will be completed with the analysis of the influence of longitudinal
modifications and mesh misalignment based on results from literature [195].
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3.4.2 Results and discussion

The reference gear pair in Table 3.4 and its narrow counterpart with 15 mm face width have
been loaded up to 10 kNm in search of large deflections that produce a significant extension
of the path of contact and multiple teeth in mesh. These load levels produce a maximum
root stress of 10 times the yield stress in Table 3.5 for the narrow case, which is fictitious
but ensures that sufficiently large deformations arise. It will be shown that in such case, the
hypothesis of small deflections is no longer kept and the statement of the load distribution
problem in section 3.3.1 is not valid which leads to computation errors. Figure 3.21 groups
load distribution and transmission error results for both geometries and different torques.

(a) Load distribution with b= 100 mm (b) Transmission error with b= 100 mm

(c) Load distribution with b= 15 mm (d) Transmission error with b= 15 mm

Figure 3.21: Influence of torque and face width on load distribution and transmission error

General loaded behaviour

Overall results in Figure 3.21 show that the analytical model accurately describes load
distribution and transmission error behaviour of both gears. Only in the case of the
narrow face width subject to the highest load stages the differences become significant in
the vicinity of the pitch point where single tooth contact shifts to double as a result of a
second tooth pair coming into mesh due to extremely large deformations. The effect of the
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separating distance, cy, on premature contact is depicted in load distribution diagrams.
The theoretically abrupt shift from double to single tooth contact is progressively smoothed
as load is increased and the analytical model and finite element simulation show the same
trend. The length of the line of action is clearly enlarged increasing the contact ratio,
and in the case of the narrow face width, contact ratio even shifts to values above 2.

Figure 3.22: Contact ratio increase with load

Figure 3.22 shows the influence of load
on the latter. In effect, at an approximate
torque of 2.5 kNm the deflection of the
teeth is large enough to shift the design
contact ratio of 1.61 to values above 2
indicating that the minimum number of
teeth in contact in the vicinity of the pitch
point is 2; which can be observed in the
corresponding load distribution diagrams
in Figure 3.21c. On the other hand, trans-
mission error behaviour above this load is
also altered where the peak-to-peak value
and the mean level are distorted due to
the effect of multiple teeth contact with
increasing errors with load.

If the accuracy of the premature contact prediction is measured from the increase of
contact ratio, the errors are below 1% for the highest torques on the large face width and
below 3% on the narrow face width, showing the same trend in both cases. If attention
is paid to the quality of the predicted transmission error mean level and peak to peak
values in Figure 3.23, it is found that large face width gears behave similarly to numerical
results with errors below 1% for the mean level and 10% for the peak-to-peak at the
highest torque. However, in the case of the narrow face width, transmission error mean
level and peak-to-peak values are within 5% and 55% accuracy respectively.

(a) Mean level of transmission error (b) Peak-to-peak transmission error

Figure 3.23: Influence of load and face width on mean level and peak-to-peak transmission error
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Two reasons explain such differences. On the one hand, the load distribution model is
constructed on the assumption that elastic deflections are small enough such that original
geometry remains unchanged and contact takes place in the base tangent plane. It is
observed in Figure 3.21c that the load distribution diagram for the highest torque is
not symmetric in the pitch point, thus, indicating that contact is outside the theoretical
line of action. Moreover, if deflections are large, the rigid body motion is no longer
the product of the base circle radius and the angular displacement of the pinion, which
alters transmission error behaviour. On the other hand, when multiple teeth are in
contact, the deflection of a tooth influences the adjacent ones and therefore adjacent teeth
compliance terms should be added to the kernel matrix in Equation 3.94. In spite of
these differences, the developed load distribution model is accurate enough to capture
the characteristic elastic behaviour in normal cases where tooth root bending stresses
are below the yield strength of the material.

The influence of web thickness is also analysed and results are shown in Figure 3.24.
It is observed that increasing web thickness through a minor shaft diameter extends the
length of the line of action with respect to the reference case because higher deflections arise
due to the additional body rotation. Transmission error behaviour also supports this trend
with increased mean level and higher peak-to-peak values. However, analytical results
seem to overestimate deflections which result in slightly different premature contact.

(a) Normalized load distribution (b) Transmission error

Figure 3.24: Influence of shaft diameter on load distribution and transmission error for large
face width gear subject to T = 1250Nm

Moreover, the load share in the double teeth contact region in Figure 3.24a is slightly
tilted when web thickness is increased which indicates that additional deflections tend to
evenly distribute loads on pinion and gear. Although the results presented here do not
include the effect of contact compliance for comparison with the FEM model, a similar
trend results when this term is included in the load distribution model, which has recently
been confirmed by [210]. On the contrary, the introduction of the adjacent teeth compliance
term stiffens the gear mesh, thus reducing deflections and premature contact behaviour and
increasing again the slope of the load sharing diagram in the double teeth contact region.
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Influence of modifications and misalignments

Tooth modifications are known to significantly alter load distribution and transmission
error [198]. In order to validate the model when such intended geometry deviations
are applied, random profile and longitudinal modifications have been defined in Table
3.6. Besides, a sufficient number of elements has been introduced in the finite element
model to capture such characteristic behaviour.

Figure 3.25 shows the comparison between analytical and numerical solutions for profile
modified gears proving the good correlation between both. Analytical results deviate a
maximum of 4% with respect to numerical values and follow the overall trend closely. For
instance, the 35 µm linear tip relief in the pinion begins at a diameter of 104.5mm, at
a midpoint between the pitch and tip diameters. No modification has been applied to
the gear thus, the load distribution diagram is not symmetric and there is not a smooth
transition between the single and double teeth contact regions. In spite of being a random
modification, the analytical model has calculated the same unit normal loads that the
finite element model and the beginning and end of each section has been identified properly.
In the case of profile slope and profile crowning modifications the results are similar with
slight differences of the unit normal load in each section due to errors in compliance terms.

(a) Tip relief (b) Profile slope (c) Profile barrelling

Figure 3.25: Influence of profile modifications applied on pinion

Furthermore, the bi-dimensional finite element model results have been completed
with additional 3D FEM data from literature [195]. Two situations are studied: a 30 µm
lead crowning and a 70 µm deviation misalignment in the pinion, both characterized by
the strong influence of convective effects on load distribution. It is shown in Figure 3.26a
that the analytical model computes unit normal loads with a maximum error of 3% at
the middle of the face width where maximum loads occur. Moreover, both the numerical
and analytical results predict a symmetrical behaviour with zero load at the face ends.
Similarly, the start point and slope of the line load in the misalignment case in Figure
3.26b are correctly identified but the maximum loads at the front end is considerably lower.
This is because the stiffness matrix bandwidth is 3 and therefore it is not fulfilled with
influence coefficients as described previously. Additionally, the correct modelling of edge
effects requires mirroring the deflections near the edge as suggested by Jaramillo [211] and
in this work the latter is not considered. To deal with this situations Börner [204] suggests
adjusting the stiffness matrix proportionally to the number of unloaded sections but this
requires an iterative procedure. Alternatively, the decay function proposed by Kunert [192]
can be used which fulfils all terms in the compliance matrix including mirroring behaviour.
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(a) Lead crowning modification (b) Pinion deviation misalignment

Figure 3.26: Influence of longitudinal modifications and mesh misalignments

3.5 Conclusions of Chapter 3

In this chapter the main concepts and methods for cylindrical gear load distribution and
kinematic behaviour modelling have been introduced. It has been shown that accurate
load distribution and transmission error predictions can be carried out analytically with
minimum computational cost. Furthermore, the parameters presented in this chapter
represent the foundations for the next ones, and they will be resumed throughout the work.

In the first section, the main parameters of the involute geometry have been described,
the conditions of existence of a gear pair have been defined and the tooth generation
procedure by the envelope theorem has been presented. Later, a general method for
the profile and lead modification of the teeth has been presented and the corresponding
equations for local normal directions and curvature radius have been derived. It has
been shown that the profile and lead modifications can be easily grouped without any
need for modifying basic rack geometry and tool trajectory.

On a second section, the kinematic behaviour of the cylindrical gear pair has been
presented. The geometrical boundaries of theoretical conjugate action have been described
and the mesh phase relations among teeth and between pinion and gear have been presented.
Then, the main velocity parameters and derived quantities have been presented and it
has been shown that kinematic behaviour is closely related to wear or local power losses.
Finally, the concept of no-load transmission error has been introduced and it has been
proved to be related to the geometrical features of the teeth.

In the third section, the load distribution problem has been stated analytically and
later developed numerically following the classical thin-slice approach. A new method
for solving the system of equations has been presented based on the restatement of the
equations as a Linear Complementarity Problem where Lemke’s pivoting algorithm [201]
can be used for fast computation. Then, the main compliance terms involved in the
solution of load distribution have been derived and convective effects have been introduced
following Börner’s method [204]. The model has been tested against a finite element
model and results have been discussed showing overall good agreement.





The learning and knowledge that we have,
is, at the most, but little compared with
that of which we are ignorant.

—Plato, 427 BC - 347 BC

4
Prediction of Friction and Power Losses

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Sliding friction coefficient model . . . . . . . . . . . . . . . . . 95

4.2.1 Friction coefficient model for full EHL contacts . . . . . . . . . . 95
4.2.2 Extension to partial EHL regime . . . . . . . . . . . . . . . . . . 102
4.2.3 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.4 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Power loss prediction model . . . . . . . . . . . . . . . . . . . . 111
4.3.1 Teeth contact thermal behaviour . . . . . . . . . . . . . . . . . . 111
4.3.2 Thermally-coupled power loss prediction model . . . . . . . . . . 114
4.3.3 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.4 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 Conclusions of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 122

The following chapter presents the general procedure to predict power losses
in the gear mesh, which is the responsible for the heat flowing towards
the pinion and gear teeth. First, the method to compute mean power loss
from instantaneous values is described. It will be shown that mesh losses
depend to a great extent on the instantaneous friction coefficient. Then, a
comparison of power loss predictions for common sliding friction coefficient
models in literature is presented and the need for a new equation is justified.
A new partial elastohydrodynamic friction coefficient model is developed
in the second section which is validated with experimental measurements
from [212]. It will be shown that accurate predictions can be carried out
for different oils from its base rheological properties without additional
characterization of their traction behaviour in tribometers. Afterwards,
a power loss prediction model is developed and the influence of thermal
coupling is discussed. The predicted power losses are compared to numerical
and experimental results from [29, 61] and conclusions are withdrawn.
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4.1 Introduction

The total heat generated in the gear mesh is the result of the frictional losses along
the contact line, PV ZP . For a single tooth, the mean value of the power loss along
the path of contact is defined by:

P̄V ZP

∣∣∣∣
single

= 1
gα
·
∫ z=b

z=0

∫ x=gα

x=0
PV ZP (x,z)dxdz (4.1)

Where the coordinate system, xyz, is fixed to the base tangent plane as shown in
Figure 3.10 with the x axis in the direction of the line of action and the z axis in
the direction of the tooth face-width.

Considering that the solution of the load distibution problem yields the real length
of the line of action, g′α = ε′α ·pet, and the number of teeth meshing simultaneously, the
calculation of the total heat can be generalized in the following manner1:

P̄V ZP = ε′α · P̄V ZP
∣∣∣∣
single

= 1
pet
·
∫ z=b

z=0

∫ x=E′

x=A′

[
PV ZP,s(x,z) +PV ZP,r(x,z)

]
dxdz (4.2)

Where the paramaters A′ and E′ denote the real start and end of the line of action and
the instantaneous power loss, PV ZP (x,z), is calculated from the sum of sliding and rolling
power loss terms which depend on the kinematic behaviour of the contact point, the local
normal load and the sliding and rolling friction coefficients (see Equation 2.2).

Wimmer [36] showed that most of the friction coefficient models available in literature
produce very different results for the same input conditions which give rise to significant
deviations, as large as 50% to 100% compared to the experimental measurements. Figure
4.1 shows a comparison of the classical models from Table 2.1 against recent thermal EHL
simulations by Ziegltrum et al. [61]. As it can be seen,none of the models follows the finite
element results with local friction coefficient differences up to 30% of the simulated result in
the best case. Moreover,the model by Benedict and Kelley [46] shows a completely different
trend where the sliding friction coefficient at the pitch point tends to infinity, which is
contrary to the expected behaviour as pure rolling occurs at this point. Such differences
are reproduced later in local power losses (see Figure 4.1b) which result in a deviation of
30% in the predicted mean power loss, therefore, affecting temperature distribution.

1 From Equation 4.2 it is possible to reach the so-called power loss function by Ohlendorf [36] which is
the basis of most empirical friction coefficient models. Neglecting the rolling friction term and considering
a constant friction coefficient along the path of contact we have:

P̄V ZP = µ̄ · 1
pet
·
∫ z=b

z=0

∫ x=E′

x=A′

[
W (x,z) ·V s(x,z)

]
dxdz (4.3)

Multiplying and dividing by the input power, PA = Fbt ·Vbt results in:

P̄V ZP = µ̄ ·PA ·HV L (4.4)

HV L = 1
pet

∫ z=b

z=0

∫ x=E′

x=A′

[
W (x,z)
Ftb

· V s(x,z)
Vtb

]
dxdz (4.5)

Where the power loss function, HV L, depends exclusively on the instantaneous kinematic and load
behaviour of the meshing teeth which can be accurately predicted from gear geometry.
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(a) Friction coefficients (b) Power losses

Figure 4.1: Comparison of local friction coefficients and power losses predicted by classical
models and thermal EHL simulations by [61] on gear type Cmod, KS7, Vt = 8.3 m/s and Θo =90◦C

Although, different reasons can explain these deviations, one of the main factors
contributing to such errors is the lubricant behaviour. Most friction coefficient equations
for gears have been developed for specific lubricants and therefore they cannot be extended
to other oils without preliminary characterization of their traction behaviour in FZG tests
or tribometer measurements to adjust initial parameters. In this chapter a new friction
coefficient model based on rheological properties of the lubricant is proposed and the
power loss prediction methodology is updated to account for instantaneous temperature
and pressure variations along the path of contact that affect oil film behaviour.

4.2 Sliding friction coefficient model

Gear teeth are non-conformal surfaces subject to a rolling-sliding behaviour along the
path of contact; pure rolling only occurs in the pitch point. When subject to torque,
teeth deform elastically conforming a small contact region that leads to a high pressure.
Additionally, the relative movement of the deformed surfaces drags the oil into the contact
region forming a thin hydrodynamic oil film. The sudden change of pressure from the
inlet to the outlet of the contact, increases lubricant viscosity and separates surfaces. In
such conditions, the non-Newtonian behaviour of the lubricant is beneficial as it avoids
asperity contacts, thus reducing friction. This regime is known as elastohydrodynamic
lubrication (EHL), which can be separated into full or partial EHL depending on the
degree of asperity interaction (see Figure 2.2). In the following, a model for full EHL
regime will be developed and then it will be extended to account for mixed lubrication.

4.2.1 Friction coefficient model for full EHL contacts

Theoretical background

For smooth surfaces in line contact sliding friction is the result of the shear stress, τ , of
the oil film in the contact region which is subject to high pressure and different rolling
speeds of the mating bodies. Figure 4.2 graphically summarizes this situation.
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To compute the traction force, it is necessary to know the pressure and film thickness
distributions in the contact region which is known as the “EHL problem”. Its mathematical
solution requires solving the Reynold’s hydrodynamic equation, together with the film
thickness, load balance, elastic deformation and energy equations, considering the non-
newtonian behaviour of the lubricant properties which are function of temperature
and pressure. If edge effects are neglected, the resulting film thickness and pressure
distributions are bi-dimensional and friction force can be computed with Equation 4.6.

F = 1
2 ·
∫ +∞

−∞
h(x) · ∂p(x)

∂x
dx+

∫ +∞

−∞
τ(x) ·dx (4.6)

Where the first term is the rolling friction (already presented in Equation 2.7) and the
second term is the sliding friction. The former is only significant with respect to the latter
at the low slide to roll ratios occurring near the pitch point and with high viscosity oils.
Therefore, it is acceptable to neglect its influence on gear contacts in the full EHL regime.

Inlet Hertzian region Outlet
u2

u2

hc h m
in

R c2

t

n
u1

R
c1x=0 x=2bH

pH Film pressure

Hertz pressure

u1

Figure 4.2: Representation of a smooth EHL
line contact

Several methods have been proposed
in the literature review to solve the EHL
problem (see Section 2.1.1), all of which re-
quire high computational effort. In order to
avoid solving the full system of equations, it
is possible to assume that the film pressure
distribution follows the Hertzian solution
for line contacts (see Figure 4.2). In such
case the mean traction,τ̄ , can be computed
from mean values in the contact namely a
constant central film thickness over the flat-
tened region, hc, a mean contact pressure
p̄= π/4 ·pH and a mean film temperature
Θ̄f , all of which have been obtained under
the same Hertzian assumption.

Non-Newtonian rheological model

In general, in a rolling-sliding contact traction coefficient µ= τ̄ /p̄, presents a sigmoidal
shape when plotted against the slide-to-roll ratio SRR (see Figure 4.3). At low values,
the lubricant follows a Newtonian behaviour (τ = η · γ̇) where the slope is defined by the
lubricant viscosity evaluated at the film temperature and pressure. At higher SRR, the
curve deviates from the linear trend and non-Newtonian behaviour prevails. In this region,
contact pressure increase leads to a maximum traction value followed by a decrease at
the highest sliding values. This reduction at high speeds is the result of the temperature
rise at the contact inlet that reduces oil viscosity and results in a thinner film thickness.
Finally, at the highest shear stress, the lubricant can reach a plastic yield limit known
as “limiting shear stress”, τL, which levels out the traction curve.
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Figure 4.3: Characteristic traction curve of
rolling-sliding contacts

Johnson and Tevaarwerk [213] de-
scribed this characteristic behaviour of the
lubricant with a Maxwell-type visco-elastic
model, resulting from the sum of an elastic
term, γ̇e, and a viscous term, γ̇v.

γ̇ = γ̇e+ γ̇v = 1
G
· dτ
dt

+F (τ) (4.7)

Where γ̇ is the shear rate, G is the elastic
shear modulus, dτ/dt refers to the time
derivative of traction and F (τ) is viscous
term which depends on the shear stress
model.

Several equations can be found in literature to model lubricant shear stress and
Table 4.1 gathers some of the most frequent. Their general behaviour is depicted in
Figure 4.4 in non-dimensional terms.

Table 4.1: Common shear stress models in EHL literature

Author Equation

Ree-Eyring [214] τ = τE · sinh−1
(η · γ̇
τE

)
(4.8)

Bair-Winer [215] τ = τL ·
(

1− exp
(−η · γ̇

τL

))
(4.9)

Carreau-Yasuda [216] τ = η · γ̇ ·
(

1 +
(η · γ̇
τ0

)a) (n−1)
a (4.10)

Figure 4.4: Non-dimensional shear stress model
comparison

As it can be seen the Ree-Eyring [214]
and Carreau-Yasuda [216] models result in
a very similar behaviour. Only the limiting
shear stress model by Bair and Winer [215]
captures the levelling of the traction curve
when the plastic yield limit is reached.
Currently, there is a heated debate on the
suitability of each of the models in Table
4.1 to accurately predict non-Newtonian
traction [59, 217, 218], where the main
arguments are that the Carreau model
represents basic rheological behaviour of
the lubricant as measured in laboratory
tests while the Ree-Eyring approach has
been developed from regression analysis of
tribometer measurements.
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In spite of this discussion, in this work the classical Ree-Eyring equation has been
retained as it is the only one with a physical meaning. Thus, Equation 4.7 now reads:

γ̇ = 1
G
· dτ
dt

+ τE
η
· sinh

(
τ

τE

)
(4.11)

With η the low shear rate dynamic viscosity of the lubricant and τ the shear stress. In
this model, the reference stress, τE , is known as the “Eyring stress”, which is the threshold
value above which the fluid starts to behave in a non-linear manner.

In addition, at the high pressures present in gear contacts, the lubricant may reach
the plastic behaviour of Figure 4.4, the so called “limiting shear stress”, τL, which is
proportional to pressure, p, and independent of the shear rate, γ̇. Incorporating this term
in Johnson and Tevaarwerk’s model and solving for shear stress:

τ = min
[
τE · sinh−1

(
η

τE
·
(
γ̇− 1

G
· dτ
dt

))
, τL

]
(4.12)

Assumptions

As mentioned in the introductory paragraphs, the average shear stress, τ̄ , is computed
integrating the local shear stress according to Equation 4.12 over the contact area and then
friction coefficient results from µ= τ̄ /p̄, where p̄ is the mean contact pressure. However,
in this work film pressure is assumed to follow the Hertz solution and the local shear
stress is computed from mean conditions in the contact (Θ̄f and p̄).

Furthermore, according to Equation 4.12 four fluid properties (τE , τL, η, G) are required
to fully define lubricant behaviour in the concentrated contact, all of which depend on
temperature and pressure. Nevertheless, it is possible to reduce the number of parameters
needed to compute traction when subject to the following two assumptions:

� A.1: The elastic term in Equation 4.12 can be neglected in gear transmissions.

� A.2: It is possible to relate τE to τL through a single base oil dependent coefficient.

According to Evans and Johnson [219], the viscoelastic boundary is ruled by the
Deborah number, De = (η ·Ve)/(G · l) where Ve is the entrainment velocity and l the
contact width (l = 2 · bH). Writing dτ/dt = (Ve/l) · dτ/d(x/l) in Equation 4.12 this
non-dimensional number is introduced; if De << 1 elastic effects can be neglected and
therefore, the characterization of the elastic shear modulus is no longer necessary. It can
be proved that this is the case in most gear transmissions and it is especially suited to
automotive and aeronautical applications where lubricant viscosities are low and they
usually operate at high input torques and speeds involving high film temperatures. At
the contact temperature and pressure of these applications the elastic shear modulus
is of the order 109 Pa. Considering that the entraining velocity exceeds 1 m/s and the
contact width is around 10−4 m, the low shear rate dynamic viscosity must exceed 105

Pa·s for the elastic effects to become significant.
In order to validate this assumption, a test matrix covering typical steel gear operating

conditions has been defined in Table 4.2. Approximately 5 · 106 test cases have been
analysed with 6 fully formulated oils from [220]. Only results in the full EHL regime
have been retained for the analysis and non-feasible geometries (e.g. tooth interference)
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have been discarded. In addition, in order to account for the elastic compliance of the
steel flanks the effective elastic shear modulus, Ge, has been computed as defined in [219].
A sample of the results is presented in Figure 4.5 where the variation of the Deborah
number along the standardized line of action is shown. A contour plot has been added to
the latter to stress the influence of the single and double teeth contact regions.

Table 4.2: Test matrix to identify Deborah number range in gear contacts

Parameter Units Value

Gear ratio, u [-] 1, 1.5, 3
Aspect ratio, b/d [-] 0.25, 0.5, 1, 2
Normal modules, mn [mm] 1, 2, 4, 6
Pinion teeth number, z1 [-] 25, 50, 75, 100
Normal pressure angle, αn [◦] 15, 20, 25, 30
Profile shift coefficients, x [-] 0, 0.1, 0.25, 0.5
Tangential speed, Vt [m/s] 5, 10, 25, 50
Surface roughness, Rq [µm] 0.1, 0.2, 0.4, 0.8
Specific line load, Fbt/b [N/mm] 100, 600, 1200, 1800
Contact inlet temperatures, Θin [◦C] 70, 100, 130, 160
Lubricants [220] [-] 1 PAO, 2 mineral and 3 ester-based oils

Figure 4.5: Density plot of Deborah number on
the path of contact for PAO oil in Table 4.2

As it can be noticed in Figure 4.5, the
Deborah number remains below one in
almost every point of the line of action.
In the single tooth contact region, sudden
pressure increase causes an instantaneous
increase in both, viscosity and elastic shear
modulus, which shifts the Deborah number.
However, the order of magnitude of the
ratio η/G is not changed significantly and
values remain below one. Furthermore, for
any given combination of geometry and
operating conditions the lowest values are
found in the double teeth contact region
where most of the power losses occur due
to the high sliding velocities. Therefore,
the use of the viscous term in Equation
4.12 seems to be justified to predict power losses in gears.

A further check of these results in shown in Figure 4.6 where the influence of lubricant
viscosity grade and base oil type on Deborah number is analysed. It is of primary interest
to know the probability of De values falling below unity to justify the assumption. For
that purpose, the Kernel density estimation using automatic bandwidth selection method
according to [221] has been used. The results indicate that oil type affects Deborah
numbers more than viscosity. In Figure 4.6b it is observed that synthetic oils show
greater probability of Deborah numbers falling between 10−4 and 100. The analysis of
the cumulative distribution function shows that poly-α-olefin and ester-based oils have,
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respectively, 85% and 94% of the values below 0.1 and if unity is taken as the upper limit,
both synthetic base-stocks have 99% of the values below. However, in the case of mineral
oils, 86% of the values are below 1.0 and only 56 % is under 0.1. The influence of viscosity
is depicted in Figure 4.6a. In general, higher viscosities seem to result in higher probability
of values falling outside the boundaries and therefore elastic effects are not negligeable.

(a) Influence of viscosity grade (b) Influence of oil type

Figure 4.6: Probability density of Deborah numbers below unity in gear operating conditions

In conclusion, considering the low to mid-range viscosities of automotive and aeronau-
tical transmissions and the type of oil, which is mainly synthetic, these results support
the initial assumption on the elasticity of gear contacts under full EHL condition. In
the following, only viscous behaviour is considered. As far as the assumption on the
reference stress is concerned, it is shown next that it is possible to relate the Eyring
and limiting stresses with a single oil dependent coefficient.

It is known in the field of tribology, that the main drawback when calculating traction
coefficient with the Eyring shear stress model is the fact that the value of the reference
stress, τE , must be regressed from experimental measurements in tribometers, and
consequently, the application of the model without preliminary characterization of the
lubricant’s traction behaviour becomes difficult. On the contrary, the limiting shear
stress can be characterized in laboratory tests using high pressure rheometers. The latter
is known to be linearly dependent on pressure τL = Λ · p, with slope Λ known as the
limiting-stress pressure coefficient [222], which is strongly dependent on the base oil type
and varies slightly with temperature. Therefore, if a simple relation is found between τE
and τL it is possible to use Equation 4.12 as a prediction model for different lubricants.

Several authors [223, 224] report constant ratios between the reference stress and
the limiting shear stress obtained experimentally, while others such as Bair and Winer
[225] conclude analytically that τE ≈ 2 ·Λ/α by relating limiting shear stress and Eyring
stress models (Equations 4.8 and 4.9). Their results agree well with the experimental
values from Johnson and Tevaarwerk [213] and explained the sigmoid shape of the friction
curve by the growth of the plastic region within the contact ruled by the limiting shear
stress. Similarly, Jacod et al. [226] also found an analytical relationship by applying
Eyring and limiting shear stress models to the same traction data such that predicted
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values are equal in a wide range of operating conditions and lubricants. Their results
were validated with a different set of friction coefficient data and both authors lead
to approximately the same solution at the pressure and temperature levels present in
EHD contacts (see Figure 4.7) which suggests that the value of τE can be related to
the piezoviscosity coefficient, α, in such conditions.

Figure 4.7: Eyring stress predictions by references [225] and [226] as a function of film temperature
and pressure: ISO VG 100 mineral oil, Λ=0.047, Re = 10 mm, Ve= 5 m/s and SRR = 0.1

It has been found that this conclusion can also be analytically addressed following
Eyring’s theory of fluid flow [214]. If one recalls the expression by Hirst and Moore
[227], shear rate can be written in the following form:

γ̇ =A ·k ·Θ · exp
(
− E+vp ·p

k ·Θ
)
· sinh

( vτ · τ
2 ·k ·Θ

)
(4.13)

Where A is a constant, k is Boltzmann constant ( 1.38 ·10−23 J/K), E is the thermal
activation energy for flow and vp and vτ are the activation volumes for pressure and shear
respectively, both of which are fluid-dependent. Rearranging terms:

γ̇ =
2·k·Θ
vτ

2
A·vτ · exp

(
E
k·Θ
)
· exp

(vp·p
k·Θ
) · sinh( vτ · τ

2 ·k ·Θ
)

(4.14)

By direct comparison with the viscous term in Equation 4.11,

τE = 2 ·k ·Θ
vτ

(4.15)

η = 2
A ·vτ

· exp
( E

k ·Θ
)
· exp

(vp ·p
k ·Θ

)
(4.16)

The first exponential term in Equation 4.16 is the Andrade equation representing
the temperature dependence of viscosity and the second exponential term is the Barus
equation where the piezoviscosity coefficient is α = vp/(k ·Θ). If the latter is related
to the reference stress in Equation 4.15:

τE = 2 ·vp/vτ
α

(4.17)
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The resulting mathematical expression is surprisingly similar to that of Bair and Winer
[225] where τE ≈ 2 ·Λ/α but in this work it has been obtained from the original Eyring
equation [214]. In both cases, the reference stress is inversely proportional to the pressure-
viscosity coefficient by some constant related to material properties. Direct comparison of
these expressions yields vp/vτ = Λ, where the ratio vp/vτ is usually calculated at high shear
stresses and constant shear rate [59]. In such conditions, τ >> τE , and the expression
sinh( τ ·vτ2·k·Θ) reduces to 1

2 · exp( τ ·vτ2·k·Θ). As a result, Equation 4.13 turns into:

γ̇ = 1
2 ·A ·k ·Θ · exp

(−2 ·E−2 ·vp ·p+vτ · τ
2 ·k ·Θ

)
(4.18)

At a constant shear strain rate and taking logarithms at both sides, the following linear
relationship with pressure is obtained:

τ = 2 · vp
vτ
·p+C (4.19)

It is interesting to note that according to Bair and Winer, the limiting shear stress
Λ takes the values 0.047 and 0.088 fo LVI260 and 5P4E oils respectively [225]; which
means that the the slope of the plot of mean shear stress against pressure following
Equation 4.19 is 0.094 and 0.176 which is in perfect agreement with the values estimated
by Hirst and Moore for several fluids in [227].

Final equation

Assuming that the Couette flow dominates in the contact region the strain rate in Equation
4.12 is equal to the velocity gradient, γ̇ = Vs/(hc ·ΦT ), where Vs is the sliding speed of the
surfaces and hc is the central film thickness between them corrected for thermal effects with
factor ΦT (see Equation 4.51). If τE = 2 ·Λ/α is assumed, fluid friction coefficient results in:

µf = min
[2 ·Λ
α · p̄
· sinh−1

(
η ·α ·Vs

2 ·Λ ·ΦT ·hc

)
, Λ
]

(4.20)

Where viscosity, η, must be evaluated at the mean contact temperature and pressure while
the local piezoviscosity coefficient, α, is calculated at Hertz pressure according to [225].

4.2.2 Extension to partial EHL regime

Theoretical background

Tallian [228] suggested that the degree of asperity interaction is governed by the specific
film thickness ratio λ = hc/σ where hc is the central EHD film thickness and σ is the
composite root mean square roughness of the surfaces. According to Tallian partial EHD
exists when 0.5÷ 1 < λ < 3÷ 4. In this regime, normal and tangential loads applied
to the contacting bodies are shared between the oil film and the surface asperities
according to the following equation:

F = Ff +Fs (4.21)
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Where F is the total load, Ff is the portion of load carried by the elastohydrodynamic
film and Fs is the load carried by surface asperities. If Equation 4.21 is stated in
terms of traction, τ :

τ̄ ·A0 = τs ·As+ τf ·Af (4.22)

τ̄ = τs ·
As
A0

+ τf ·
(
1− As

A0

)
(4.23)

µ̄= 1
p̄
·
[
τs ·

As
A0

+ τf ·
(
1− As

A0

)]
(4.24)

Where µ̄ represents the mean coefficient of friction between the mating surfaces, τs and
τf are the solid and fluid tractions respectively and As/A0 is the ratio of the real contact
area (i.e. the summation of the individual contacting spots of radius ri in Figure 4.8) over
the apparent (i.e. Hertzian) contact area. Thus, the ratio As/A0 is defined in the [0 ,1]
range where 0 represents total separation of the surfaces and 1 is used for full contact.

Figure 4.8: Representation of asperities in contact in mixed lubrication

Rewriting ξ =As/A0 and introducing solid and fluid friction coefficients, µs and µf ,
Equation 4.24 results in the following friction coefficient for partial EHL regimes, which
is the basis for most empirical equations available in gear literature [229].

µ= ξ ·µs+ (1− ξ) ·µf (4.25)

Boundary friction coefficient

Contrary to the fluid friction coefficient, that of boundary friction is often assumed
constant and independent of the operating conditions [62]. This assumption is strongly
supported by several studies: Robbe-Valloire [230] proposed the value 0.08 for a pin-
on-disc type contact, Faraon and Shipper [37] reported values close to 0.13 for starved
line contacts and recently Masjedi and Khonsary [231] have measured asperity friction
coefficients ranging from 0.12 to 0.135 in roller contacts. Although solid friction coefficient
is not very sensitive to sliding speed it is slightly dependent on load, temperature and
surface roughness [231]. These influencing factors have been included in some partial
EHL friction coefficient models for gears [49] but very little variation should be expected
with respect to a constant friction coefficient model as concluded by Diab [50].

All these models represent friction coefficient for boundary lubrication in pure sliding
contacts. However, gears are subject to a rolling-sliding motion and the mixed EHL
sliding friction coefficient model is expected to give zero in the pitch point where pure
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rolling occurs. Therefore, the following fit according to Gelinck [232] is used, where the
boundary lubrication coefficient is modified in the vicinity of zero slip, s :

µs = µs,∞ ·
2
π
·atan

(
π

2 ·
s

seff

)
(4.26)

In this equation µs,∞ represents the boundary friction coefficient under pure sliding (s= 2)
and seff is the transition value from the elastic to plastic behaviour of the boundary layer.
According to Gelinck [232] the latter takes the approximate value of 0.015 while the former
depends on surface structure. In the absence of an initial guess Matsumoto and Morikawa’s
solid friction coefficient values for typical gear flank topographies can be used [229].

Load sharing function

Finally, in order to extend the range of applicability of the fluid friction coefficient model
to the partial EHL regime without increasing computational effort, a simple asperity load
sharing model is proposed. Table 4.3 summarizes some of the most relevant equations
in gear literature. As it can be seen several functions have been proposed with diverse
definitions of the specific film thickness and different domains of application.

Table 4.3: Asperity load sharing functions in gear literature

Doleschel [49] Diab [50] Matsumoto [229]

ξ (1− λ
2 )2 1

4 · (1− erf( λ√
2 )) 1

2 · log10( 1
λ )

λ φT ·hc
Ra1+Ra2

2

φT ·hc√
Rq2

1+Rq2
2

hmin
Rz1+Rz2

D [0 ,2] [0 ,3] [0.01 ,1]

Doleschel [49] considered that asperity interactions begin at specific film thickness
values below 2 and a second-order polynomial function was used to represent the amount
of load carried by asperities. Diab [50] computed the complementary error function
to predict the load share parameter and assumed that partial EHL begins at λ ≈ 3.
In both cases, specific film thickness was computed using the ratio of the central film
thickness (corrected to account for thermal effects) to the combined average or mean
square roughness of the surfaces. However, in a recent work Matsumoto [229] considered
that load share is governed by the ratio of the minimum film thickness to the sum of
the maximum height of asperities which implies that mixed lubrication regime begins
long before expected. These load sharing functions have been tested indirectly in twin
disc machines through the measurement of the mean friction coefficient but none of
them has been compared directly to experimental asperity load sharing results, hence,
the accuracy of each function still remains unknown.

According to the extensive experimental work by Schipper [233] friction in a large
part of the mixed lubrication regime increases linearly with decreasing lnL , where
L = (η ·V r)/(p̄ ·σ). This parameter is similar to the specific film thickness ratio, λ, but
it is specially suited to the analysis of the transition between the full EHL and partial
EHL up to the boundary lubrication regime. Based on this number it is possible to set
a general Stribeck curve such as that presented in Figure 4.9.
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Figure 4.9: Generalized Stribeck curve sample with transitions

It is observed that the onset of partial EHL is close to L = 6 ·10−4 while boundary
lubrication regime starts at L = 6 ·10−6. This values correspond to specific film thickness
ratios of 2.2 and 0.1 respectively which is consistent to recent experimental research
[234]. If the mathematical expressions in Table 4.3 are considered, such behaviour is
only ensured by the complementary error function by Diab [50] but the latter must be
modified to cope with these limits ξ(λ≈ 2) = 0 and ξ(λ= 0) = 1 which results in:

ξ = 1− erf(λ) (4.27)

4.2.3 Experimental validation

The fluid friction coefficient model presented in Equation 4.20 has been compared to the
experimental results from Mann [212]. Three different base oils ISO VG 100 were tested
in a twin-disc machine: i) a naphtenic mineral oil (named N100), ii) a paraffinic mineral
oil (M100) and a poly-α-olefin (PAO100). The selected lubricants are known to have very
different traction behaviour with the highest friction coefficients for the naphtenic base to
the lowest for the poly-α-olefin. None of the selected lubricants included additives and the
discs were smoothly polished up to Ra≈ 0.06µm to avoid asperity interactions so that pure
fluid traction could be tested. Table 4.4 outlines basic rheological parameters where the
limiting-stress pressure coefficients have been obtained from experimental results in [235].

Table 4.4: Selected lubricant properties from [212] and [235]

νk|40 νk|100 ρ|15.6 Λ
10−6[m2

s

]
10−6[m2

s

] [ kg
m3

]
10−2[-]

N100 97.9 8.61 900 5.3
M100 96 10.6 882 4.7
PAO100 94.1 14 840 3.5
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In order to model lubricant’s dynamic viscosity as a function of temperature and
pressure, the so called "modulus equation" is used (see Equation 4.28). The first exponential
term describes the temperature dependence of viscosity following the Vogel, Tammann
and Fulcher equation and the second exponential term is similar to that of the empirical
equation by Paluch [236]. Gold et al. [237] linearised the temperature dependence of
parameters A and B and obtained an equation with seven unknown parameters: a1, a2, b1,
b2, C, D and K which can be obtained numerically from regression of experimental
measurements at high pressures.

η(Θ,p) =K · exp
[

C

D+ Θ

]
· exp

[
p

A+B ·p

]
(4.28)

A(Θ) = a1 +a2 ·Θ (4.29)
B(Θ) = b1 + b2 ·Θ (4.30)

The viscosity-pressure-temperature (VPT) behaviour of the gear oils in Table 4.4 was
fitted from Mann’s high-pressure falling body viscosimeter measurements [212]. Table 4.5
summarizes the regression coefficients along with the coefficient of determination (R2)
which shows good agreement. A comparison of numerical predictions and experimental
measurements is provided in Figure 4.10.

Figure 4.10: Numerical-experimental correlation of the VPT behaviour of M100 oil

The main advantage of the modulus equation over other equations is that the pressure
dependence of the viscosity-pressure coefficient, α, is additionally taken into account. A
simple analogy of Equation 4.28 with the classical Barus equation yields:

α(Θ,p) =
[
A+B ·p

]−1 =
[
a1 +a2 ·Θ + (b1 + b2 ·Θ) ·p

]−1 (4.31)

Table 4.5: Regression coefficients for the selected lubricants

a1 a2 b1 b2 C D K R2

107[Pa] 105[Pa
K
]

10−3[-] 10−5[ 1
K
]

103[K] 102[K] 10−6[Pa·s] [
%
]

N100 -7.23 3.48 5.00 -1.83 0.65 -2.06 161.60 99.67
M100 -2.28 2.26 -68.20 27.68 0.89 -1.82 86.86 88.73
PAO100 -5.73 3.90 -39.50 23.54 1.74 -1.16 12.26 99.59
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Figure 4.11: Eyring stress as a function of
temperature and pressure for M100 oil

If the latter is used to predict the
behaviour of the reference stress, τE , it can
be seen in Figure 4.11 that the numerical
predictions are in good agreement with
the experimentally measured values from
[38] for the M100 oil. These results where
obtained by curve-fitting the classical Ree-
Eyring non-newtonian model to twin disc
traction tests at 8 m/s rolling velocity, 10%
slip, 1 GPa Hertz pressure and different oil
jet temperatures. Specific film thickness
ratio has been included in Figure 4.11 in
order to give insight into the lubrication
regime in the contact. At full EHL, numer-

ical predictions follow the experimental results, but at 110 ◦C λ = 1.4 and therefore
asperity contact may occur giving rise to higher friction coefficients and therefore higher
values of the regressed Eyring shear stress.

Mann [212] carried out several traction tests for the different oils at varying rolling
velocities from 2 m/s to 16 m/s and slip ratios in the range [0 ,0.4] at constant Hertz
pressure of 1 GPa and oil jet temperature of 60◦C. Disc bulk temperatures were measured
at different input speeds and slip ratios which allows predicting film thickness accurately.
Figure 4.12 shows the numerical predictions for the M100 mineral oil case. The model
captures the typical behaviour of the traction tests with a linear region showing Newtonian
behaviour at the lowest slip ratios, followed by a non-linear region with a maximum and
a thermal region at the highest slip ratios where the heat generated within the contact
leads to a reduction of the friction coefficient. As it can be concluded from Figure 4.12 the
proposed model correctly captures the friction behaviour at the highest rolling speeds and
slip ratios with errors below 10%. This effect is important as most of power losses occur
near the tip and root of gears where the slip ratio is highest along the path of contact.

(a) Mineral oil (b) Poly-α-olefin oil

Figure 4.12: Numerical-experimental correlation of traction curves for different oil types



108 4.2. Sliding friction coefficient model

Finally, Figure 4.13a shows the overall performance of the model for each lubricant
type with respect to the empirical models in Table 2.1. The lowest friction coefficients
are predicted for the poly-α-olefin oil and the highest values correspond to the naphtenic
mineral oil which is in agreement with experimental evidence in scientific literature. The
predicted values are within ±5 ·10−3 error which is considerably lower than empirical
models shown in Figures 4.13b to 4.13d.

(a) Proposed model (b) Xu [34]

(c) Benedict and Kelley [46] (d) Schlenk [40]

Figure 4.13: Measured and predicted friction coefficients according to proposed model and
equations from literature in Table 2.1

4.2.4 Discussion of results

The comparison of the analytical and experimental results presented in this section shows
that, in general, accurate predictions of the full EHL friction coefficient can be carried
out for any lubricant from its VPT behaviour; at least for low-to-medium viscosities
(up to ISO VG 220 in this work), where the elastic behaviour of the lubricant can be
neglected. However, it is observed in Figure 4.12b that traction behaviour at low rolling
speeds and slip ratios is deviated from the experimental measurements by up to 25%,
indicating that the elastic term is not negligible. This is due to the low contact inlet
temperatures at these operating conditions. According to Mann [212] the measured disk
bulk temperature for the poly-α-olefin oil is approximately 55 ◦C for these conditions
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which leads to higher viscosities than expected and therefore higher probability of elastic
behaviour. In the case of the mineral oil this temperature is close to 70 ◦C, resulting
in lower viscosity, and therefore the deviations might not be perceptible.

On the other hand, the model has adopted the classical Ree-Eyring approach which
is claimed to underestimate shear thinning phenomena [217]. At high shear rates, shear
thinning in the inlet zone leads to lower film thickness and therefore lower friction
coefficients, which may explain the slight differences between experimental measurements
and numerical predictions. This behaviour is found in mineral oil-polymer blends and
some synthetic oils and therefore, in such situations, film thickness may need to be
corrected [238]. However, in this case, the selected lubricants are simple fluids, not
blended, and shear thinning is not expected. The subject is not clear as the slight
differences may also be attributed to the shear heating effect which has been considered
through parameter ΦT . The latter is an empirical coefficient which has been fitted from
experimental measurements with different oil types, therefore, results are affected by the
regressed coefficients. This behaviour is especially visible at the lowest rolling velocities
where the parameter ΦT is overestimating the inlet shear heating effect as predicted by Hili
et al. [239], which results in lower friction coefficients than those measured experimentally.

One of the main drawbacks of the model is the dependency on the accurate modeling of
the VPT behaviour of the lubricant, especially that of the local piezo-viscosity coefficient,
α, which is the basis of the Eyring stress prediction model. This models can only be
developed from high pressure viscometer measurements and this type of rheometer is
not commercially available; therefore, very few gear lubricants have been characterized
by research centres up to the pressure levels encountered in EHL contacts and lubricant
behaviour still tends to be regressed from tribometer measurements [240]. Therefore,
only temperature dependent piezoviscosity equations can be used, typically computed
from the kinematic viscosity with expressions of the type α = s ·νt which are frequent
in literature [237]. One could, as an approximation, use two-slope viscosity-pressure
models such as that suggested by [34].

Moreover, absolute viscosity requires the description of the lubricant behaviour over
the full pressure range of the application, which may vary from 0.1 to 2 GPa. In has
been described in literature that viscosity shows a “faster-than-exponential” response at
high pressures [241] which may be present at the temperature and pressure levels of gear
contacts. This behaviour explains the inflection of the viscosity curves in Figure 4.10 at
pressures of 230 MPa, 350 MPa and 510 MPa at 25◦C, 40◦C and 60◦C respectively, which
is the responsible for the 88 % coefficient of determination in Table 4.5. If these outliers
are ignored in the regression of the Modulus equation, the coefficient of determination
increases up to 99.26% for the M100 oil. The inflection pressure is explained by the
Free-volume theory [241] and the convenience of using relative models (e.g. Yasutomi)
has been analysed. However, the parameters in these models must be regressed from
viscosity measurements above and below the pressure inflection and in the case of M100
mineral oil there is not enough information available. Nevertheless, it is known that the
inflection pressure increases with increasing temperature and, in the case of the M100 oil,
it is not even observed at the highest temperature. If one considers the contact conditions
in Mann’s twin disc tests, the pressure inflection will probably not be present in the
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analysed test cases and therefore the Modulus equation is sufficiently accurate to describe
the piezo-viscosity behaviour. As far as the napthenic and polyalphaolefin base-stock
behaviour is concerned, the reversal of curvature is not observed in the analysed pressure
and temperature range; which explains the good agreement of the proposed model.

As far as the Eyring stress behaviour is concerned, it has been shown in Figure 4.11
that the predicted trend closely follows the experimental results by Michaelis for the same
oil [38]. However, regressing Eyring stress behaviour from experimental measurements in
tribometers can be imprecise if full EHL conditions are not guaranteed. This is might
the most probable reason behind the discrepancy at the highest temperature (110 ◦C).
The surface roughness in the experiments by Michaelis was Rq = 0.1µm and the specific
film thickness at the contact pressure and temperature results in Λ= 1.4 indicating that
partial EHL regime exists. As a result, friction coefficient value is shifted due to asperity
collisions and the regressed Eyring stress is higher. Figure 4.14 explains this situation.
A small variation of approximately 2.5 ·10−3 can lead to an Eyring stress diminution of
2 MPa which is the approximate difference with the theoretical predictions. Similarly,
thermal effects could also affect the regressed value, but in this case, the reduction of the
film thickness due to this effect has been considered through parameter φT .

Partial EHL

Thermal

2.
5·

10
-3

Figure 4.14: Incluence of Eyring stress on traction coefficient
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4.3 Power loss prediction model

The prediction of power losses with the proposed friction coefficient model requires the
accurate calculation of the thermal state of the gear teeth contact in each point along
the line of action. It can be seen in Equations 4.20 that local fluid friction coefficient
depends on the absolute viscosity, η, and piezo-viscosity coefficient, α, both evaluated
at the mean temperature and pressure of the fluid film within the Hertzian contact
region. Meanwhile, the central film thickness, hc, which is also affecting the asperity
load sharing ratio in Equation 4.27, must be evaluated at the inlet temperature and
ambient pressure, which is dependent on the bulk temperatures of the bodies. Although
the physical relation between both is well established and it is frequently used in the field
of tribology [242] it has not been adopted by the power loss prediction models in gear
literature which still follow the isothermal approach where film thickness and friction
coefficient are both calculated at the bulk temperature [243]. This method is accurate in
rolling contacts but fails when sliding is present as recent thermal EHL simulations have
shown [61]. Therefore it is necessary to fully understand the non-isothermal behaviour
of the contact before power losses can be predicted.

4.3.1 Teeth contact thermal behaviour

Inlet Hertzian region Outlet

t

n

x=0 x=2bH

Oil film temp.

   b,2

   b,1

   in    f
   c,2

   c,1

Contact temp.

Figure 4.15: Representation of a smooth ther-
mal EHL line contact

The temperature at the interface of two
smooth surfaces in direct contact subject
to a relative sliding motion is known as
“conjunction temperature” (contact tem-
perature in the following, Θc). Accord-
ing to Jaeger [244] the maximum contact
temperature is the result of the sum of
the steady-state temperature of the solids
(known as bulk temperature, Θb) and a
transient term known as “flash temperature
rise”, ∆Θfl, which is dependent on the
thermal properties of the mating bodies,
the relative sliding velocity and the heat
flux. The latter depends on local contact
area and power loss through the normal
load, W , friction coefficient µ, and sliding
velocity, V s. Thus, it can be concluded that friction is affected by temperature but
temperature is also affected by friction, which leads to an iterative procedure to solve the
local temperature field. Additionally, in the case of lubricated contacts such as that shown
in Figure 4.15, there is a oil film within the Hertzian region and film temperature, Θf , is
even higher due to the internal heat dissipation, ∆Θv, [64]. Therefore, for any given point
along the LOA, oil film and contact inlet temperatures (i.e. the mean bulk temperature
of the solids) can be related through the summation of individual contributions (see
Equation 4.32). From this relation, it is possible to compute film thickness at the mean
inlet conditions and then calculate traction at the mean Hertzian conditions.

Θf = Θc+ ∆Θv = Θin+ ∆Θfl+ ∆Θv (4.32)
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The instantaneous heat generated in the gear mesh, Q= PV ZP,i, is divided between
pinion and gear and the proportion of the total heat flowing to each of them depends
on the magnitude of thermal resistances (see Figure 4.16). In the field of tribology,
Archard’s “true flash temperature rise” [245] concept is usually applied to calculate
mean contact temperature and then compute traction. Flash temperature rise for each
body is calculated individually and both are coupled by means of the heat partitioning
coefficient, α, according to Jaeger [244]2. However, this method assumes that the contact
is perfect and the temperature of the mating surfaces is the same, which requires bulk
temperatures to be equal. In order to allow for temperature differences between pinion
and gear Olver’s method [246] is applied here which, contrary to that of Archard’s,
assumes that both bodies are subject to the same ambient temperature, (i.e. the oil
sump) and that film temperature is equal for both bodies. These situation is depicted
in the thermal network model of Figure 4.16.

   c,2
O

il 
su

m
p

Pinion

Gear

Oil film Rf,2

Rc,2

Rf,1

Rc,1

   b,2

   b,1

   f

   c,1

   oQ= PVZP,i

Figure 4.16: Thermal network scheme of the EHL line contact

Olver [246] presented the method for two discs in contact, with constant heat flux and
axisymmetric geometry. In this work, the procedure is further developed for the specific
case of meshing gears which are characterized by variable instantaneous heat inputs and
non uniform geometry. If Equation 4.32 is considered from pinion and gear sides, one has:

Θf = Θo+ ∆Θ̄b,1 + ∆Θfl,1 + ∆Θv,1 = Θo+ ∆Θ̄b,2 + ∆Θfl,2 + ∆Θv,2 (4.33)

From Figure 4.16 it is possible to relate individual temperature increases with the
corresponding thermal resistances and heat flux. For the instantaneous film and flash
temperature rise terms, resistances are placed in series. However, the pinion and gear bulk
temperature rise is the result of the summation of individual heat contributions along the
line of action, thus the bulk temperature rise is computed as several resistances placed in
parallel. With these conditions, the local film temperature, Θf,i, is calculated as follows:

Θf,i = 1
n
·
i=n∑
i=1

[Qi ·αi ·Rb,1,i] +Qi ·αi · (Rc,1,i+Rf,1,i) (4.34)

Θf,i = 1
n
·
i=n∑
i=1

[Qi · (1−αi) ·Rb,2,i] +Qi · (1−αi) · (Rc,2,i+Rf,2,i) (4.35)
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Rearranging terms and operating, the local heat partitioning coefficient, αi, reads:

αi = R̄b,2 +Rc,2,i+Rf,i

(R̄b,1 +Rc,1,i) + (R̄b,2 +Rc,2,i) + 2 ·Rf,i
(4.36)

Where the pinion and gear bulk resistance terms, R̄b,1 and R̄b,2, are the mean values of
the thermal resistances along the line of action. On the other hand, the film resistance
term, Rf,i, is the same for pinion and gear if half film thickness is considered for each.
Assuming that the viscous heat dissipation is uniform across the film, the resistance
according to Johnson and Greenwood [247] applies:

Rf,i = hc,i
8 ·ko,i ·Ai

(4.37)

Where Ai is the instantaneous Hertzian contact area, Ai = 2 · bH,i · l, and ko,i is the
thermal conductivity of the oil at the mean film temperature and pressure of the
contact point of interest.

On the other hand, the transient term, Rc,i, depends on the Peclet number, L, which
is a non-dimensional value, L= (u · bH)/(2 ·χi), describing the relative speed at which the
heat source moves along the flank surface thus indicating the heat penetration capacity
into the solid. Rolling speed in gears is usually high and therefore Peclet numbers are
L >> 5. In such case, the local contact thermal resistance is:

Rc,i = 1.064
ki ·Ai

·
(
χi · bH,i
ui

)0.5
(4.38)

With χi and ki the thermal diffusivity and conductivity of the material, bH,i the contact
half width and ui the rolling speed of the pinion or gear surface. Corresponding equations
for medium and low Peclet numbers can be found in [248].

The mean value of the steady-state thermal resistance, R̄b, is the most complex term
of all as it depends on the specific geometry of the gear, its material and the overall
heat transfer coefficient. The full thermal network model developed in Chapter 5 will
allow to determine the value of this term for any given geometry, operating condition
and immersion depth. Nevertheless, it is possible to compute an approximate value from
empirical equations such as that from Terekhov [117] shown in Equation 4.41.

R̄b = B

Vt ·H · b · cpo ·ρo
·Re

Ψ1 ·Pr
Ψ2 ·
(
H

ra

)Ψ3

·
(
V

Vo

)Ψ4

·
(
h

ra

)Ψ5

·
(
h

b

)Ψ6

(4.41)

2 From Equation 4.36 it is possible to reach Jaeger’s expression for the local heat partitioning coefficient,
α, which is common in tribology. Following Archard [245] it is assumed that the mean flash temperature
increase is the same for both bodies, that is, steady-state and film thermal resistances are neglected. In
such conditions, we have:

αi =
Rc,2,i

Rc,1,i+Rc,2,i
(4.39)

Considering high Peclet numbers the contact resistance according to Equation 4.38 applies:

αi =
1.064 ·k−1

i ·A
−1
i ·u

−0.5
2,i ·

√
χ · bH,i

1.064 ·k−1
i ·A

−1
i · (u

−0.5
1,i +u−0.5

2,i ) ·
√
χ · bH,i

=
√
u1,i

√
u1,i+√u2,i

(4.40)

Which depends exclusively on the rolling speeds of the mating surfaces.
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Where Vt is the pitch line velocity, H is the immersion depth, b is the face width, cpo
is the specific heat capacity of the oil, ρo is the density of the oil, Re is the Reynolds
number, Pr is the Prandtl number, ra is the tip radius, V is the immersed volume of the
gear, Vo is the volume of the oil bath and h is the tooth height. Coefficient B depends on
rotating sense and it is equal to 0.301 ·10−4 if the teeth enter the oil bath after the mesh
and 0.25 ·10−4 for the opposite direction. Coefficients Ψ1 to Ψ6 are listed in Table 4.6.

Table 4.6: Coefficients for steady-state thermal resistance according to Terekhov [117]

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

1.15 1.31 -0.2 0.25 2.15 -0.45

Finally, as stated in the introductory paragraph, a mean bulk temperature is required to
compute film thickness. Due to differences in rotational speed, size and immersion depths,
pinion and gear are usually subject to different steady-state temperatures. According
to Stolarsky [249], the mean bulk temperature at the inlet can be calculated from the
bulk temperature of the surfaces weighted by the ratio of local rolling speeds. From
this value, film temperature can be calculated following Equation 4.32. Summarizing,
the final system of equations reads:

Θ̄b,1 = Θo+ R̄b,1 · P̄V ZP (4.42)
Θ̄b,2 = Θo+ R̄b,2 · P̄V ZP (4.43)

Θin,i = 1
2 · (Θ̄b,1 +Θ̄b,2) + 1

2 ·
(ni−1)
(ni+ 1) · (Θ̄b,1− Θ̄b,2) (4.44)

Θf,i = Θin,i+ (Rc,1,i+Rf,i) ·αi ·PV ZP,i (4.45)

Where ni depends on material combination and rolling velocities. For steel gears this
parameter reduces to ni =

√
ui,1/ui,2.

4.3.2 Thermally-coupled power loss prediction model

The friction coefficient model presented in the previous section is included in the power
loss prediction flowchart shown in Figure 4.17. The model accounts for thermal effects
and therefore accurately predicts friction when gears are subject to high speeds or torques
that produce a considerable film temperature increase. The additional steps with respect
to the isothermal approach are highlighted with broken lines

The process starts with the discretization of the base tangent plane and the contact
analysis of the meshing gears (frequently known as LTCA). For each point of the
domain, surface velocities u1 and u2 and its derivatives (sliding, Vs, rolling, Vr, and
entrainment speeds, Ve) are determined from generated geometry and rotational speed.
Then, instantaneous load, W , is calculated with the load distribution model presented in
Chapter 3, which allows computing local maximum and mean contact pressures, pH and p̄
respectively, as well as the half contact widths, bH , following Hertz theory for line contacts.
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Figure 4.17: Thermally-coupled friction coefficient and power loss prediction flow chart

Once kinematic and load parameters are known, bulk temperatures are estimated
with Equations 4.42 and 4.43. The initial guess for the mesh power loss, PV ZP , is
computed following Ohlendorf’s approach [43] already described in Footnote 1 of the
introductory section. Contact inlet temperatures for each position along the line of
action are computed with Equation 4.44 and local film temperatures are assumed equal
to inlet temperatures in the first loop until an estimate of the instantaneous power
loss is obtained after the first iteration.

Then, film thickness is computed at the inlet temperature. Considering that gears
operate in the piezo-viscous elastic regime, an appropriate equation is used to predict
the latter as it directly affects friction coefficient through the fluid portion and the load
sharing function in Equations 4.20 and 4.27 respectively. For this purpose, Hamrock and
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Dowson’s central film thickness [250] for smooth surfaces is computed, which has been
modified to account for surface roughness through parameter γ according to Jonhson et
al. [251]. This parameter reduces fluid pressure proportionally to asperity interaction,
with γ = (1− ξ)−1, where ξ is the load sharing function already defined in Equation 4.27.

hc = 2.69 ·R ·G0.53 ·U0.67 ·Q−0.067 ·
(
1−0.61 · e−0.73·k

)
(4.46)

G= α∗ ·E
γ

(4.47)

U = η0 ·V e ·γ
E ·R

(4.48)

Q= W

E ·R2 (4.49)

According to Hertz theory, E is the reduced modulus of elasticity, R is the effective
radius of curvature in the entraining direction and k =∞ in the case of line contacts.
Attention is to be paid to the value of α∗ which is the reciprocal asymptotic isoviscous
pressure-viscosity coefficient (see Equation 4.50). This parameter is considered an effective
value of α over the pressure range encountered in the contact and it is proved to better
characterize the oil film formation in EHL contacts rather than α [252].

α∗ =
(∫ pH

0

η0
η(p) dp

)−1
(4.50)

At this point, film thickness reduction factor, ΦT , is also determined following Equation
4.51; and finally specific film thickness is computed from Equation 4.52.

ΦT =
1−13.2 · pHEr ·L

0.42

1 + 0.213 · (1 + 2.23 ·SRR0.83) ·L0.64 (4.51)

λ= ΦT ·hc√
Rq2

1 +Rq2
2

(4.52)

Where SRR is the slide-to-roll ratio and L= η0 ·β ·V 2
e /k is the thermal loading param-

eter, with β and k the temperature-viscosity coefficient and fluid thermal conductivity
respectively, both evaluated at the inlet temperature and ambient pressure.

Once the lubrication regime is known, friction coefficient is computed from Equations
4.20, 4.25, 4.26 and 4.27, where lubricant dynamic viscosity, η, is evaluated at the assumed
mean film temperature and mean contact pressure, while the local pressure-viscosity
coefficient, α, is calculated at Hertz pressure. Finally, instantaneous traction coefficient,
µi, together with the sliding speed, Vs,i, and normal load, Wi, is used to predict local
power loss PV ZP,i, and finally film temperature is updated through Equation 4.45.

If the new film temperature is different from that initially estimated, a new temperature
field is established and the procedure is repeated until the difference in estimated and
calculated film temperatures is less than 1◦C. The procedure is repeated for each point
in the line of action until the full path of contact is covered. Finally, instantaneous
power loss values are integrated over the path of contact according to Equation 4.2
to predict the mean power loss, which is used to update the initial bulk temperature.
The thermal network model developed in Chapter 5 will introduce a new step in the
procedure allowing to compute the pinion and gear body thermal resistances for any
given operating conditions, geometry and immersion depth.
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Influence of thermal coupling

As it has been stated in the introductory paragraph, current gear power loss prediction
models usually neglect the influence of film temperature increase and the isothermal
approach is used with friction being evaluated at the bulk temperature of the bodies
[243]. In this section, a thermal coupling method for film thickness and traction has been
presented and a comparison of the isothermal and thermal approaches is carried out next.

The numerical procedure described earlier is compared to the recent results by
Ziegltrum et al. [61] who analysed the influence of the non-Newtonian rheological
behaviour of different oil types in the friction coefficient and the power loss in gears
using finite element-based TEHL simulations. Comparisons are carried out in terms of
local friction coefficients and power losses. A single gear set is considered (see Table
4.7) which is characterized by being a modified version of the standard FZG gear type
C-PT with a tip relief of 35µm. The test conditions comprise a constant torque of
183.4 Nm at load stage 7 (producing a maximum contact pressure of 1400 MPa near the
lowest point of single tooth contact), a pitch line velocity of 8.3 m/s and a constant bulk
temperature of 90 ◦C. Smooth surfaces are considered for the simulation, thus, only fluid
friction coefficient model is compared. Finally, a ISO VG 100 mineral oil is used for this
comparison with very similar properties to that presented in Table 4.4.

Table 4.7: Spur gear geometry used in [61]

Parameter Symbol FZG Cmod

Number of teeth z1,2 [-] 16, 24
Module m [mm] 4.5
Face width b [mm] 14
Pressure angle αn [◦] 20
Profile shift x1,2 [-] 0.182, 0.172
Tip relief Ca1,2 [µm] 35
Loss factor at KS-7 HV L [-] 0.1680
Material [-] 16MnCr5

Figure 4.18: Comparison of computed film
temperatures and numerical simulations from [61]

First, the film temperature evolu-
tion along the line of action is analysed
in Figure 4.18. It is seen that com-
puted temperatures are close to those
predicted numerically with a maximum
error of 6 ◦C in the recess path of con-
tact. The average temperature in the
thermal result is approximately 115 ◦C
which is 25 ◦C higher than the bulk
temperature considered in the isother-
mal approach. These differences are ex-
pected to give rise to substantial devi-
ations in friction coefficient and power
losses.
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Friction and power loss results are presented in Figure 4.19. As it was expected
the isothermal approach clearly deviates from the thermal calculation. If friction is
evaluated at the bulk temperature, higher viscosities result which overestimate friction
coefficient. Furthermore, in this example the isothermal calculation has reached the plastic
yield limit levelling out the traction curve. In the absence of such limiting shear stress
property it is expected that friction coefficients are even higher and power losses as a
consequence. On the other hand, analytically predicted thermal fluid friction coefficients
and power losses are very close to the simulated results. Slight differences are seen in
the vicinity of tip and root, probably due to the effect of the sliding speed which affects
film thickness and traction as a consequence.

(a) Friction coefficients (b) Power losses

Figure 4.19: Influence of thermal coupling in friction coefficient and power losses along the line
of action and comparison with simulation results from [61]

These results can be compared to those computed with classical friction coefficient
models in Figure 4.1. It can be concluded that the proposed approach correctly captures
the thermal behaviour of the contact and its influence of both friction and power losses.

4.3.3 Experimental validation

Two objectives are pursued in the following section: on the one hand, the thermally-
coupled power loss prediction methodology presented in section 4.3.2 is tested for variable
conditions in the contact. On the other hand, the influence of the load sharing function for
partial EHL lubrication modelling is further analysed and conclusions on its accuracy are
withdrawn. For this purpose, the analytical predictions are compared to the experimental
results by Hinterstoißer [29] who analysed the influence of operating conditions, oil type
and flank surface topography on mean friction coefficient of spur and helical gears in mesh.

The gear set under consideration is the FZG gear type Cmod already described in
Table 4.7. Three load stages are applied resulting in pinion torques of 94 Nm (KS 5),
183 Nm (KS 7) and 302 Nm (KS 9), and tangential speed is varied from 0.5 m/s to 20
m/s ensuring boundary to full film lubrication in the contact. Moreover, three constant
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oil sump temperatures are selected, 60 ◦C, 90 ◦C and 120 ◦C, for two different ISO VG
100 oils: a paraffinic mineral oil (MIN100) and a poly-α-olefin oil (PAO100), both with
extreme pressure additives. The rheological parameters of these lubricants are presented
in [61], and they have been regressed from the high-pressure viscosity measurements in
[31] following the Roelands model. However, the limiting-stress pressure coefficients, Λ,
are taken from Table 4.4 as base oils are the same as those presented in Section 4.2.3.
Finally, two different finishing processes are selected to analyse the influence of asperity
interaction: polishing with Ra = 0.2 µm and axial grinding where Ra = 0.4 µm.

Figure 4.20 shows the influence of speed and load on the predicted power losses with
respect to the experimental measurements. Analytical predictions follow the measurements
closely with the highest power losses at the highest load and speed. The overall agreement
is good with average errors below 5% except at the highest tangential speeds where
the maximum error reaches 20% for the poly-α-olefin oil at the lowest load stage. It
is also observed that PAO100 oil shows lower power losses than MIN100 which is in
agreement with scientific literature.

(a) MIN100 (b) PAO100

Figure 4.20: Analytical-experimental correlation of power loss predictions as a function of speed
and torque for mineral and poly-α-olefin oils at constant temperature Θo = 90 ◦C

Oil sump temperature is maintained constant at 90 ◦C in Figure 4.20 which leads
to partial EHL regime over the full tangential velocity range, except at very low speeds
where boundary friction prevails. Even at the lowest load stage and highest speeds,
specific film thickness values are around 1.3 and 1.1 at the pitch point for the poly-α-olefin
and mineral oils respectively; which indicates that asperity contact exists and therefore
boundary friction coefficient is influencing results. In these tests, the values for µs,∞ in
Equation 4.26 have been set to 0.065 for the mineral base and 0.05 for the PAO, which
have been obtained from average friction coefficient values at the lowest speeds (0.5 m/s),
and highest torques (KS9) and oil temperatures (120 ◦C).

In order to analyse the influence of the proposed load sharing function an additional
test is provided. Figure 4.21 shows the influence of oil sump temperature and flank surface
roughness on power losses at constant torque of 183.4 Nm for the mineral oil. Oil sump
temperature increase reduces specific film thickness in the same way as surface roughness.
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At the highest oil sump temperature specific film thickness ranges from 0.05 to 0.3 at the
pitch point thus indicating a strong influence of boundary friction coefficient value over
the full range of tangential speed. On the opposite, at the lowest oil sump temperature λ
rises from 0.2 up to 1.4 showing a minor influence of boundary friction value. A similar
effect is observed when surface roughness is increased. Specific film thickness in polished
surfaces range from 0.15 to 0.85 at 90 ◦C oil temperature while ground surfaces extend
from 0.07 to 0.4. It is observed again that errors arise when specific film thickness is low,
indicating that the asperity load sharing model is valid when λ>0.5 approximately.

(a) Influence of oil temperature at Ra = 0.2 µm (b) Influence of surface roughness at Θo = 90◦C

Figure 4.21: Analytical-experimental correlation of power loss predictions as a function of oil
temperature and surface roughness for mineral oil at constant torque T1 = 183.4 Nm (KS7)

Finally, Figure 4.22 shows the overall performance of the power loss model. It can
be seen that the maximum computed error in the aforementioned conditions is 25%
with only 3% of outliers. Moreover, 68% of these results show errors below 10% with
respect to the experimental measurements, which is definitely lower than the current
models in literature as shown by [36].

Figure 4.22: Overview of predicted power losses and experimental measurements from [29]
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4.3.4 Discussion of results

It is observed in Figure 4.20 that predicted power loss error increases with speed in
both lubricants. Maximum error in PAO100 is 20% at 94.1 Nm and 7% in MIN100 at
183Nm. In both cases, predicted power losses are slightly lower than those measured
experimentally. However, it must be noted that the methodology proposed above neglects
the influence of rolling traction. If the rolling friction force according to [66] is considered,
computed errors drop to less than half of these values.

On the other hand, predicted errors for the test cases in Figure 4.21 are 10% at
worst, which is acceptable considering the simple asperity load sharing function used.
However, it must be noted that the accuracy of the results is strongly dependent on
the boundary friction coefficient value. Contrary to the generalized assumption that the
value of the solid friction coefficient, µs,∞, does not affect friction coefficient [50], it does
have a significant influence in partial EHL friction coefficient models based on the load
sharing approach. The shaded-error bar in Figure 4.23 stresses the influence of varying
±25% the solid friction coefficient, µs,∞. It can be concluded that slight variations of the
boundary friction coefficient result in significant deviations of the predicted power losses;
specially at the highest tangential speeds where results are influenced by the increased
sliding speeds. Recent experimental studies [253, 254] support this affirmation where
boundary friction coefficient is affected by the surface structure, running in, lubricant
additives or surface coatings; but in the absence of especial features, a value of 0.07
is suggested for common axially ground gears.

(a) Power losses (b) Friction coefficients

Figure 4.23: Influence of boundary friction coefficient on predicted average power losses and
friction coefficients for Cmod gears at 183.4 Nm, Θo = 90 ◦C and variable tangential speeds

Finally, as far as the underlying assumptions is concerned (see traction coefficient
computed from mean conditions in the Hertzian region and a simple load sharing function
used to represent partial EHL), it can be concluded that they seem sufficiently accurate
to predict the variation of the friction coefficient with minimum computational effort.The
solution time of a heavily loaded and high speed test case is approximately 10 ms with
the temperature field solved within 5 to 10 iterations for a tolerance of 1◦C in a 64 bit
Intel-Core i5 laptop running at 2.4 GHz. The results are in close agreement with the
experimental measurements for most of the test cases shown in Figure 4.22.
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4.4 Conclusions of Chapter 4

In this chapter, a partial EHL friction coefficient model to predict power losses in cylindrical
gears has been proposed. It has been shown that accurate predictions can be carried
out for any lubricant from its base rheological properties without preliminary traction
measurements to adjust parameters, which is common practice in gear literature [243].

The proposed friction coefficient is based on the Ree-Eyring non-newtonian rheological
model where the reference stress value is predicted from the piezoviscosity coefficient,
α and the limiting shear stress coefficient, Λ. It has been shown that the elastic term
can be neglected for common operating conditions and lubricants and the limiting shear
stress behaviour has been incorporated to avoid exceeding the plastic yield limit of
the lubricant at high contact pressures.

Moreover, the range of applicability of the friction coefficient model has been extended
to cover partial EHL regime using a simple asperity load sharing approach, where the
load sharing function, ξ, is described by the complementary error function of the specific
film thickness. The influence of the boundary friction coefficient value has been discussed
and a reference value of 0.07 has been proposed for ground gears.

Additionally, an iterative thermally-coupled power loss prediction methodology has
been described, which allows the prediction of the film and contact inlet mean temperatures
necessary to compute traction and film thickness respectively. The latter is computed
from Hamrock and Dowson’s equation [250] modified to include the influence of fluid
pressure reduction due to asperity contact [251]. The thermal coupling condition assumes
that pinion and gear share the same film and oil sump temperatures which allows different
bulk temperatures of pinion and gear.

Both, the friction coefficient model and power loss prediction methodology have been
compared to experimental measurements in twin disc machines [212], FZG gear tests
[29] and numerical simulations [61] showing good agreement with different operating
conditions and lubricants; with errors below 25% in almost all the considered test cases
and less than 10% in approximately 70% of the cases.



To fight and conquer in all our battles is not
supreme excellence; supreme excellence consists in
breaking the enemy’s resistance without fighting.

— Sun Tzu’s The Art of War, 5th century BC
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This chapter is focused on objective O.5 in Section 1.3. The computation
of thermal distortion in external cylindrical gears requires predicting their
steady-state temperature field before hand. With this aim, a novel thermal
model is developed in this chapter which simultaneously predicts the
temperature distribution of dip lubricated shaft-gear pairs considering
variable operating conditions. In the first section, basic concepts of the
thermal network concept by Blok [112] are presented, cylindrical gear pair
modelling assumptions are discussed and relevant equations are summarized.
Then, predicted mesh power losses from Chapter 4 are converted to heat
inputs in pinion and gear; additional sources of heat from bearings and
seals are also introduced and heat dissipation mechanisms specific to dip
lubricated gear pairs are described. The system of equations is set in matrix
form and the solution method for steady state and transient problems
is presented next. In order to validate the proposed model, analytical
predictions are compared to experimental measurements in literature, results
are discussed and conclusions are withdrawn at the end of the chapter.
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5.1 Introduction

Different procedures have been suggested in literature for the thermal analysis of gear drives.
Analytical models [63, 96, 255] calculate gear and oil sump steady-state temperatures from
the energy balance between the heat generated in the gearbox (from gear mesh, bearings,
seals, etc.) and the heat dissipated through the casing (by conduction, convection and
radiation). These models represent the global heat flow in the gearbox and they are
used by gear rating standards to guarantee thermal equilibrium [16]. However, they
neglect temperature gradients and therefore fail to predict gear temperature distribution
accurately; which is the basis for thermal distortion modelling in the next chapter.

When gear temperature distribution is required, finite element models have been
extensively used in literature. Patir and Cheng [126], followed by Townsend and Akin [128],
developed a model for jet lubricated gears including oil flow rate-dependent convection
heat transfer coefficients and variable heat fluxes depending on the operating conditions.
This model was later extended to the transient case by El-Bayoumy [127], who represented
mesh friction losses as a moving heat source along the tooth profile. In all three cases,
it was concluded that appreciable temperature gradients exist in the gear body and
the teeth face-width direction depending on the cooling rate, geometry and operating
conditions. These findings were later confirmed by Long et al. [131] who performed a
sensitivity analysis and highlighted the influence of tooth face width on temperature
variations. The most recent thermal finite element studies dig into some of the aspects
of the previous models while maintaining the basic assumptions. Wang et al. [256]
have recently studied the influence of oil jet convection heat transfer applying CFD
calculations; Li et al. [133] has included dynamic effects in the heat flux while Fernandes
et al. [167] studied the influence of the gear material on the temperature distribution.
Almost all finite element models up to date are restricted to jet lubrication systems and
very few studies consider dip lubricated conditions [99, 257] due to the complex oil flow
patterns. Although the method has proved to be effective in the accurate prediction of the
temperature distribution in gears, the large size of the models leads to time-consuming
calculations and the influence of transient temperatures on convection heat transfer
coefficients, fluid properties and power losses is neglected.

To compute overall temperature distribution of the gearbox considering previously
described issues, the thermal network method [112] is an efficient compromise between
accuracy and computational time. Each node of the network represents an isothermal
element (i.e. bearings, gears, oil sump, etc.) and the elements are connected by one-
dimensional thermal resistances accounting for conduction, free/forced convection and
radiation heat transfer. This type of lumped parameter models have been successfully
applied to very different mechanical parts and scales, from EHL contact modelling [258]
to bearing or sealing temperature distribution [259, 260] where the accuracy of the results
is related to the degree of detail of each component’s volume discretization. Manin [137],
Changenet [125] and more recently Geiger [120], applied this procedure to predict dip-
lubricated gearbox temperatures including thermal gradients between components and heat
fluxes coming from bearings, seals and oil churning. However, in these models the degree of
discretization of each gear does not allow to assess the radial and longitudinal temperature
distributions with sufficient accuracy. Although temperature differences between pinion
and gear can be computed, thermal gradients inside each of them are still neglected [125].
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To solve this problem, the thermal network model presented in this chapter is
further developed with respect to previous works [120, 125, 137]. Pinion and gear
volume discretization is extended to account for radial and axial temperature gradients
while maintaining a reduced number of nodes with respect to finite element models.
Furthermore, the influence of immersion depth, temperature-dependent convection heat
transfer coefficients and heat inputs from the gear mesh, bearings and spin power loss
sources are considered too.

5.2 Description of the thermal network model

The proposed model is based on the differential control volume concept used to derive
the general form of the heat diffusion equation [261]. In the case of spur and helical
gear pairs, their geometry can be discretized as a series of cylindrical control volumes of
isotropic material, with the same thermal properties in the three directions. Applying
the conservation of energy to a single differential control volume (depicted in Figure 5.1),
the following three dimensional heat conduction equation can be obtained:

1
r
· ∂
∂r

(
r · ∂Θ
∂r

)
+ 1
r2 ·

∂2Θ
∂φ2 + ∂2Θ

∂z2 + q̇

k
= 1
χ
· ∂Θ
∂t

(5.1)

where k and χ are the thermal conductivity and diffusivity of the material respectively.

Figure 5.1: Cylindrical control volume and corresponding thermal resistance simplification

The solution to Equation 5.1 for a single cylindrical volume can be computed
analytically for common boundary conditions [262], however, gears often include several
cylindrical interconnected regions with different diameters (shaft, hub, web, etc.) which
are subject to variable heat inputs and convection heat transfer coefficients. In such
cases, numerical solutions with different meshes are required (e.g. [136, 167]) but in this
work, the thermal network concept by Blok [112] is used instead.

Equation 5.1 is further simplified neglecting circumferential heat flow because it
is assumed that the gear rotation period is much shorter than the time necessary for
any circumferential temperature change [137]. Furthermore, considering that thermally-
induced geometry distortions should be computed in the steady-state regime, a two-
dimensional heat diffusion equation is obtained, where the terms on the left hand side
correspond to radial and longitudinal heat conduction respectively:
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· ∂
∂r

(
r · ∂Θ
∂r
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+ ∂2Θ
∂z2 =− q̇

k
(5.2)
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If there is no internal heat generation, q̇, it is possible to compute the temperature at
the boundary surfaces of the control volume (surfaces 1 to 6 in Figure 5.1) considering
one dimensional radial and longitudinal heat conduction separately. In such case,
Equation 5.2 leads to:

∂

∂r

(
r · ∂Θ
∂r

)
= 0→Θ(r) =A · ln(r) +B (5.3)

∂2Θ
∂z2 = 0→Θ(z) = C ·z+D (5.4)

where the coefficients A, B, C and D can be calculated from the temperatures of the
outer surfaces of the control volume in Figure 5.1; that is, surfaces 2 and 4 for radial
conduction and surfaces 5 and 6 for longitudinal heat diffusion. Finally, the heat flux
between surfaces is computed from Fourier’s law considering the temperature gradient
between surfaces in both directions (∆Θr and ∆Θz).

Qr =
[
−k · dΘ(r)

dr

]
·Sr = 2 ·π ·k ·∆z

ln(ro/ri)
·∆Θr (5.5)

Qz =
[
−k · dΘ(z)

dz

]
·Sz = π ·k · (r2

o− r2
i )

∆z ·∆Θl (5.6)

with Sr and Sz the cross sectional area for heat conduction in each direction.
The radial and longitudinal heat flows, Qr and Qz respectively, from Equations 5.5

and 5.6 can be generalized as Q=G ·∆Θ where G is the thermal conductance between
nodes, which depends exclusively on the size of the control volume (inner radius, ri, outer
radius, ro, and length, ∆z) and its thermal conductivity, k. The conductive thermal
resistance, R, being the inverse of the conductance, G, we have:

Rr = ln(ro/ri)
2 ·π ·k ·∆z (5.7)

Rz = ∆z
π ·k · (r2

o− r2
i )

(5.8)

Therefore, it is possible to model the gear-shaft system as a series of small inter-
connected regions where the thermal resistances are ruled by the dimensions in each
direction. A sample resistance simplification of the control volume concept is shown
in Figure 5.1 where the central node represents the mass of the region and the outer
nodes act as connectors with adjacent volumes.

5.2.1 Thermal network definition

The thermal network model developed in this chapter is based on the “thin-slice” approach
used in the computation of load distribution in Chapter 3. If the circumferential
temperature gradients are neglected as described previously, the resulting temperature
distribution is bi-dimensional following the radial and longitudinal directions. Thus,
gears can be sliced in the face-width direction; and similarly to the gear body and
teeth stiffness modelling in Figure 3.16, it is possible to develop the corresponding
thermal resistance representation.
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Gear-shaft assembly modelling

On the one hand, gear body and shafts are discretized axially and radially as shown
in Figure 5.2. Each annular cell within the solid is composed of a single mass node
(black dots) and four surface nodes (white dots), two in the radial direction and two
in the longitudinal one. Thermal resistances of conduction, convection and radiation
are used to connect surface nodes in the gear-shaft assembly to the surrounding fluids.
For clarity, surface nodes have been suppressed in the main view but a sample of their
connections is shown in detail E. Similarly, heat transfer resistances with the surrounding
fluids are only depicted on the left hand side of the figure but the same heat transfer
relations apply on the right side.
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Convection resistance
Radiation resistance
Heat input

Mass node
Surface node (connector)

Reference temperature

Housing

Oil sump

Air

Room

QVL,1

QVD,1
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Air
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Legend

Figure 5.2: Thermal network of the shaft-gear assembly

On the other hand, housing, oil sump and air inside the gearbox, are all represented
through individual mass nodes connected to the gear-shaft system by means of convection
resistances as shown in Figure 5.2. Oil sump and housing nodes account for the oil
and housing volumes respectively and similarly, the influence of the air inside the
housing is accounted for by subtracting the oil and gear pair volumes to the total
casing’s internal volume.

Mass nodes in the annular regions of the gear-shaft assembly are located in the centre
of the cell at the mean radius, r̄, and represent the total mass of a single isothermal
cylindrical volume with heat capacity m · cp. The total mass, m, of any annular cell
belonging to the shaft or the gear is calculated with Equation 5.9.

m= ρ ·V = ρ ·
[
π · (r2

o− r2
i ) ·∆z

]
(5.9)

where ρ is the density of the material, ro and ri are the outer and inner radius respectively
and ∆z is the width of the individual volume. In the case of helical gears, the width
of the volumes inside the teeth and body is ∆z′ = ∆z/cos(βb) as nodes are located in
the direction of the helix in the base tangent plane.
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These nodes are connected to surface nodes located in the boundaries of the cell by
means of radial and longitudinal thermal resistances derived from Equations 5.7 and
5.8. Adjacent cells share some of these surface nodes and therefore the equivalent radial
or longitudinal resistance between consecutive mass nodes is the sum of the resistances
in series as shown by Equations 5.10 and 5.11.

R′r =
n∑
j=1

Rr,j =
n∑
j=1

ln(ro,j/ri,j)
2 ·π ·kj ·∆zj

(5.10)

R′z =
n∑
j=1

Rz,j =
n∑
j=1

∆zj
π ·kj · (r2

o,j− r2
i,j)

(5.11)

Furthermore, surface nodes are also used to connect the gear to the surrounding parts
or fluids by means of conduction, convection or radiation resistances. In this sense, when
two solids are connected to each other, such as the gear-shaft assembly, the temperature at
the interface is known to drop as a result of the fitting imperfections caused by geometrical
errors (e.g. cilindricity, flatness, etc.). Such imperfections cause the total contact surface
to be reduced while a fluid (oil or air) fills the gaps. To model this temperature drop
Changenet [263] proposed the use of contact resistances whose values are calculated as:

Rp = C

S
·
(
k1 +k2

2 ·k1 ·k2

)
(5.12)

where k1,2 is the thermal conductivity of the materials, S is the apparent contact area
and C is a constant value depending on the contact pressure and surface roughness.
In this model, the gear-shaft assembly shown in detail E in Figure 5.2 is assumed to
be press-fitted and therefore contact resistance is neglected. However, for the contact
resistance between the housing (cast iron) and the foundation (steel) in Figure 5.3, a
mean value of 4.5 · 10−3 m is adopted according to [263].

In order to compute the most accurate temperature distribution within the gears,
shafts are also included in the model; as heat inputs from nearby bearings or seals may
alter the resulting temperature distribution. However, only the portion inside the gearbox
is sufficiently discretized while the influence of the outer portion of the shaft and couplings
in contact with room air is simplified by defining an equivalent shaft with effective cylinder
diameter, d′, of length l′, according to Equations 5.13 and 5.14 from ISO 14179 standard
[15]. Such equivalent cylinders are used to compute convection and radiation heat transfer
with ambient air and their effective heat capacity represents the influence of the outer
portion in transient calculations. Similarly to the rest of the shaft, these nodes are also
connected to the thermal network by means of longitudinal resistances.

d′ = 1
l′
·
n∑
j=1

dj · lj (5.13)

l′ =
n∑
j=1

lj (5.14)

with dj and lj the diameter and length of the n different cylindrical sections that comprise
the shaft and/or the couplings located outside the gearbox.
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Gear pair and housing modelling

The thermal network model shown in Figure 5.2 can be readily solved if appropriate
boundary conditions are set and the solution yields the radial and longitudinal temperature
distribution of a single gear. However, it is possible to solve pinion and gear thermal state
at the same time by connecting both networks in the gear mesh as shown in Figure 5.3.
For this purpose a special form of thermal resistance is required, known as constriction
resistance, which is explained later in this section.
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Top cover
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Figure 5.3: Thermal network of the gear pair and housing

Moreover, external casing exchanges heat by natural convection and radiation with
room air but also by forced convection with oil and air inside the gearbox. If a single
mass node is used to represent the housing, as in Figure 5.2, its temperature will be
fundamentally ruled by that of the room and the foundation which are considered
constant in this work. As a consequence, oil sump and air temperature will be influenced
by the latter. To improve accuracy without increasing the number of nodes in excess,
external housing can be subdivided in different regions depending on the dominant
internal heat dissipation mechanism.

Although the oil flow pattern inside the gearbox is very complex, two distinct regions
are considered when the gears are at rest: the part fully submerged in the oil bath and
the one in contact with interior air (see Figure 5.3). At the same time, each of these
regions comprises horizontal and vertical plates, therefore, four volumes are defined: i)
the flat horizontal plate submerged in the oil bath, ii) the immersed vertical part of
the casing, iii) the rest of the vertical part in contact with the interior air and iv) the
horizontal top cover plate. Each of them is described with a mass node representing its
heat capacity as shown in Figure 5.3 and all of them are connected to the ambient by
means of natural convection and radiation resistances. A further description of the heat
transfer mechanisms related to the housing is provided later in this section.

By following this procedure, which is characterized by using a coarse discretization
for the housing and the internal fluids and a finer one for the gear pair, global and local
temperature distributions can be predicted without dramatically increasing computational
effort as shown by Manin [137]. With approximately 200 mass nodes per gear-shaft
assembly, it is possible to obtain a sufficiently accurate description of the temperature
distribution which is far less than the mesh size required by finite element models.
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Gear teeth modelling

It has been shown in previous sections that the gear-shaft assembly can be modelled as a
series of interconnected annular volumes. However, gear teeth cannot be considered a
full annulus where the heat flow expands uniformly in the radial direction as gear teeth
and spaces coexist in the same annular region. In addition, gear teeth are subject to
non-axisymmetrical conditions due to differences in the heat flux on each flank (heat input
from the gear mesh on one side and convection heat transfer by centrifugal fling-off on
the other) and therefore circumferential heat flux can no-longer be neglected. Although
several of the previous works [125, 137, 264, 265] do assume that gear teeth can be treated
as an annular region, in this work a different approach is proposed.

Considering that in most gear applications the size of the teeth is small with respect to
the gear body (usually d/h> 10), temperature gradients inside the tooth are minimal and a
single bulk temperature can be assumed instead. In other words, gear teeth are represented
with a single mass node located in the pitch diameter and in the centre of the tooth (see
detail M in Figure 5.3). Its mass represents the total mass of the teeth and it is connected
to the gear body and the tooth tip by means of planar-wall conduction resistances with
value R= L/(k ·A) where L correspond to the tooth addendum or dedendum height, k
is the thermal conductivity and A = z · sc · l is the average surface for conduction heat
transfer in the tooth height direction; which is now proportional to the number of teeth
and the individual cross section (≈ sc · l). In the same way, mass node representing gear
teeth is connected to the left and right flanks by means of the same type of thermal
resistances but this time, the length in the lateral direction is half the chordal tooth
thickness and the average available cross section for heat transfer is A= z1,2 ·A1,2 where
pinion and gear flank surface is computed following Geiger’s approximate equations [120]:

A1 = π ·dw,1 · l · εα
cos(βb)

·
[

sin(αwt) + π · cos(αwt)
z1

· (εa− εf )
]

(5.15)

A2 = π ·dw,2 · l · εα[
1 + 0.11 · (u−1)2] · cos(βb)

·
[

sin(αwt) + π · cos(αwt)
z2

· (εf − εa)
]

(5.16)

with dw1,2 and αwt being the working pitch diameters and pressure angle respectively, εα
the transverse contact ratio (with ε1 and ε2 the corresponding ratios for approach and recess
paths of contact), βb the base helix angle, l the tooth slice thickness and u the gear ratio.

Pinion and gear are meshed independently following the procedure described at the
beginning of this section, but instead of solving each one separately, they are connected
at the gear mesh by means of a special form of contact resistances commonly referred to
as “constriction resistances” [266]; which have already been presented in Equation 4.38.
As explained earlier in Chapter 4, the existence of a constriction of the heat flux in the
Hertzian contact area due to its small size makes the contact temperature to be higher
than that of the immediate flank subsurface and due to the differences in rolling speed
of the surfaces, a variable heat flux towards the pinion and the gear is produced [244]
(see Equation 4.40). Furthermore, the mean film temperature, which is common for
both gears and allows traction coefficient to be evaluated independently of film thickness,
is even higher due to the existence of an additional resistance produced by the latter
(see Equation 4.37). In order to account for both effects, average thermal resistances
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of constriction are computed, which automatically rule the heat partition between the
bodies depending on the number of teeth and the rolling speed. Thus, the mesh node in
detail M in Figure 5.3 is connected to the pinion and gear flanks by means of average
contact and film thermal resistances placed in series following Equation 5.17:

R̄′s,i = 1
zi
· R̄s,i = 1

zi
· [R̄c,i+ R̄f,i] = 1

zi ·gα
·
∫ gα

0

1
A
·
[1.064

k
·
(
χ · bH
ui

)0.5
+ hc

8 ·ko

]
dx (5.17)

where gα is the length of the path of contact, k and χ are the thermal conductivity
and diffusivity of the gear material respectively, ko is the thermal conductivity of the
lubricant, bH is the instantaneous contact half width, A= 2 · bH · l is the Hertzian contact
area and hc is the central film thickness. It can be easily noticed that the differences
in the average constriction resistance values on the side of the pinion and that of the
gear are ruled by the rolling speed term, ui, and the number of teeth, zi, because the
rest of the parameters are common to both gears along the path of contact. Moreover,
at very high loads, the influence of the film resistance is negligible as the film thickness
is approaching zero and therefore contact resistance term prevails.

Figure 5.4: Constriction resistance behaviour
along the path of contact in FZG type C gears

Figure 5.4 depicts the behaviour of the
instantaneous constriction resistances on
FZG type C gear pair which result from
the sum of the contact and film terms
as presented in Equations 4.37 and 4.38.
As expected, maximum values are located
towards the start and end of the active
profile where the ratio of the rolling speed
to the contact half width is largest. On the
contrary, when unit load increases in the
single tooth contact region, the contact
area increases as well and reduces the
resistance in both gears which take the
same value in the pitch point where rolling
velocities are equal. Furthermore, it is
observed that due to the geometry of gear type C with almost balanced specific sliding,
the average thermal resistances are very similar; thus, the average heat flux towards
each body will be approximately equal and only the difference in the number of teeth
between pinion and gear will ensure that the former receives a larger amount of heat per
revolution than the latter (see zi in denominator of Equation 5.17). The influence of
thermal resistance on heat partition will be further discussed in section 5.3.1.

Similarly to the rest of the gear body, gear teeth are also connected to the oil sump
node by means of convection resistances accounting for centrifugal fling-off on the flanks
and forced convection on the tooth tip and front/rear faces. Furthermore, in long face
width gears, longitudinal gradients exist because the ends of the teeth are subject to
enhanced convection heat transfer due to additional contact with the oil sump. Therefore,
tooth face width is sliced in the longitudinal direction in the same way as the gear
body. The thermal connection between each of the slices of the reference tooth and the
corresponding ones in the gear body, ensures the continuity of the heat flux from the
gear mesh towards the gear body and shaft and viceversa.
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5.3 Heat transfer in meshing gear pairs

Up to this point thermal network nodal discretization has been described and the different
types of heat conduction resistances have been outlined. In order to solve for the
temperature distribution, heat inputs and heat dissipation mechanisms must also be
identified. In this work, common dip-lubricated gear pairs are considered which are
usually supported by rolling element bearings and hermetically sealed by lip type sealings
preventing oil leaks from the housing. Therefore, the main heat sources are those
relative to the power loss contributions of these machine elements, together with the
mesh heating itself, and the relevant heat dissipation mechanisms are related to the
oil/air mixture flows inside the gearbox.

5.3.1 Heat sources

Following the classification in section 2.1.1 of the literature review, two sources of heat are
considered in the proposed model: i) load dependent power losses from the gear mesh and
rolling element bearings and ii) spin losses coming from lip sealings, oil churning and air
windage. Gear mesh, bearing and lip sealing power losses are introduced in specific surface
nodes in the thermal network model as shown in Figures 5.2 and 5.3; while, churning and
windage losses are directly input to the mass nodes representing oil sump and interior air
volumes. The calculation method, order of magnitude and heat application procedure of
gear related power losses is discussed in the following paragraphs, while those affecting
lip sealing and bearings have been gathered in Appendix A.

Spin power losses

Tables 2.3 and 2.4 in the literature review have already presented some of the available
models for the prediction of no-load losses in gears. In this work, churning losses are
computed following the empirical model by Changenet [73] while windage is predicted
using Diab’s model [81].

a) Oil churning: Changenet’s model for the prediction of oil churning losses has
been extensively tested on different gear geometries, lubricants and operating conditions.
Furthermore, the original model [73] has been successively improved to account for the
influence of enclosures [267], oil aeration [268] or flow regimes [77]. According to the
latter, churning power losses are computed as:

PV Z0,C = 1
2 ·ρo ·ω

3 · r3 ·Sm ·Cm (5.18)

where ρo is the oil density, ω is the rotating speed, r is the pitch radius, Sm is the
submerged area of the gear and Cm is the dimensionless drag torque.
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The immersed surface of the gear, Sm, is the sum of the lateral surfaces of the disc
and that of teeth and can be approximated following [77]:

Sm = r2 · [2 ·θ− sin(2 ·θ)] +d · b ·θ+ 2 ·z ·h · b ·θ
π · cos(αn) · cos(β) (5.19)

with d the pitch diameter, b the face width, z the number of teeth, h the tooth height and
αn and β are the normal pressure angle and helix angle respectively. Finally, variable
θ is half the chord angle defined by the stationary oil level on a partially submerged
gear, which can be computed from the ratio of the immersion depth, H, to the pitch
radius, r, following cos(θ) = 1−H/r.

The dimensionless churning torque, Cm is defined using the theorem of Vaschy-
Buckingham of dimensional analysis where the coefficients of each dimensionless group
are adjusted based on experimental evidence. To separate the different flow regimes
two parameters are used in this work:

γ = ω2 · (r · b ·mn)1/3 (5.20)

Rec = ω · r · b
νk

(5.21)

Parameter γ represents the influence of the projection of lubricant by centrifugal
acceleration while parameter Rec is known as the critical Reynolds number which separates
low and high speed fluid behaviour. The combination of these parameters yields the
following four flow regimes which also depend on the Froude number, Fr = ω2 · r/g,
with g the acceleration of gravity.

� For Rec < 4000:
γ < 750 m/s2→ Cm = 1.366 ·

(
H

d

)0.45
·
(
Vo
d3

)0.1
·
(
b

r

)0.21
·Fr−0.6 ·Rec

−0.21 (5.22)

γ > 1250 m/s2→ Cm = 20.797 ·
(
H

d

)0.1
·
(
Vo
d3

)−0.35
·
(
b

d

)0.85
·Fr−0.88 ·Rec−0.21 (5.23)

� For Rec > 4000:
γ < 750 m/s2→ Cm = 0.239 ·

(
H

d

)0.45
·
(
Vo
d3

)0.1
·
(
b

r

)0.21
·Fr−0.6 (5.24)

γ > 1250 m/s2→ Cm = 3.644 ·
(
H

d

)0.1
·
(
Vo
d3

)−0.35
·
(
b

d

)0.85
·Fr−0.88 (5.25)

where all variables have already been defined except Vo which is the oil volume inside
the casing. In both regimes, linear interpolation between the different equations is used
for the transition zone 750 < γ < 1250.

These equations predict churning power losses for a single gear and therefore in case
of gear pairs, the individual contributions of pinion and wheel must be added. Moreover,
if pinion rotates in counter-clockwise direction (towards the gear), a swelling effect occurs
resulting in an additional power loss which can be computed following reference [73].
Finally, the total power loss of pinion and gear rotating in the oil sump is input to the
mass node representing the oil sump as shown in Figures 5.2 and 5.3.
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Figure 5.5a depicts the general behaviour of the churning power loss for variable speeds
and oil temperatures. Note that at rotational speeds between 2000 and 3000 rpm a drop
in the predicted power loss occurs due to the change in the flow regime. For low speeds
the influence of the viscous forces prevails but at the highest speeds centrifugal effects
dominate which is a familiar behaviour in fluid dynamics [269]. Besides at high speeds,
the critical Reynolds number term disappears from the previous equations indicating that
the influence of the lubricant viscosity is negligible. As a result, the predicted power
loss at different temperatures is the same. What’s more, if pinion and gear churning
power losses are compared, it is observed that size plays a significant role with higher
power losses for the largest wheel, which is the explained by Equation 5.18 where the
influence of the pitch radius is cubed.

b) Windage: Diab [81] developed two different approaches for the computation of
windage power losses. On the one hand, an analytical model based on fluid flow analysis
of the gear sides and teeth was proposed and, on the other, an empirical model based on
dimensional analysis was developed, similarly to churning power loss model by Changenet
[73]. In this work, the second approach is used where power loss is computed as:

PV Z0,W = 1
2 ·ρa ·ω

3 · r5 ·Ct (5.26)

with ρa the density of air, ω the rotational speed, r the pitch radius and Ct the
dimensionless windage drag coefficient which is expressed in terms of the several groups
of parameters following the Vaschy-Buckingham theorem in dimensional analysis. Diab
[81] defined the churning torque as:

Ct = 60 ·Re−0.25 ·
(
b

r

)0.8
·z−0.4 ·

[(
h1
r

)0.56
+
(
h2
r

)0.56]
(5.27)

where z is the number of teeth, b is the tooth face width and Re= ω ·r2/νk is the Reynolds
number with νk the viscosity of air. Parameter h1,2 depends on the presence of deflectors
or flanges on the sides of the gear; and if these are is neglected, similarly to churning
losses, h1,2 = 0.51/0.56 · r which yields a unit value for the last term inside the brackets.
For further information on this term the reader is referred to [81].

Although the analytical method develop by Diab gives a deeper insight into the
influence of gear geometry and flow behaviour, Equation 5.27 is sufficient to predict
power losses. Similarly to churning losses, the individual contributions of pinion and
gear are added and the total power loss is input to the mass node representing the air
volume inside the gearbox (see Figures 5.2 and 5.3).

Predicted trend with rotating speed has been depicted in Figure 5.5b. Compared to
churning losses, the influence of gear size is highlighted as power losses are proportional
to the fifth power of the pitch radius in Equation 5.26; as a consequence, large gears
are expected to result in high power losses. Moreover, Equation 5.27 shows that gear
geometry does play a significant role through the number of teeth and tooth face width
and very recent experimental research [270] confirms results provided by this model.
Finally, it is observed that air temperature’s effect is small as its influence is delimited
to the Reynolds number where the kinematic viscosity is altered.
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(a) Oil churning (b) Windage

Figure 5.5: Heat generated by FZG Type C-PT pinion and gear due to oil churning and windage

Load-dependent power losses

It has already been shown in Figure 2.1 that load-dependent losses are the dominant
terms at low to medium tangential speeds and no-load losses start to dominate at the
highest speeds. However, spin power loss terms have been proved to be largely dependent
on size and therefore, bearing and gear mesh load dependent losses are still important
terms in small and middle size gears.

A gear mesh power loss model has already been introduced in Chapter 4 and the
influence of speed, torque and temperature have also been discussed in Section 4.3.3 (see
Figures 4.20 and 4.21 summarizing their effects). Contrary to other heat sources such as
those from bearings or sealings where heat is introduced in surface nodes located just
below them, in the case of the mesh power losses the proposed thermal network model
allows introducing longitudinal heat distributions resulting from non-uniform bearing
patterns (i.e. face crowning, misalignments, etc.). For this purpose, computed three
dimensional power loss, PV ZP (x,z), following Equation 2.1 is averaged along the contact
path for each axial position, z, yielding the longitudinal mesh heat flux, QV ZP (z).

QV ZP (z) = 1
pet
·
∫ gα

0
PV ZP (x,z) dx ∀z; z ∈ [0, b]. (5.28)

Figure 5.6 shows examples of longitudinal heat fluxes computed following Equation 5.28
for face crowned and misaligned FZG type C-PT gears. As expected, uneven load
distributions produce normal load increase affecting sliding friction force and local power
losses. For longitudinally crowned gears, highest loads are located in the middle of the
face width and in the case of misaligned ones, unit load increase is displaced towards
the tooth end. If attention is paid to the 3D power loss distribution details in these
figures it is observed that largest values are located in the tooth tip and root where
highest sliding occurs. This indicates that local temperature increases are expected
in these regions, however, due to the characteristics of the proposed thermal lumped
parameter model, such local effects are not visible and a single average bulk temperature
is computed instead for each gear slice.
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(a) Lontudinal crowning (b) Misalignment

Figure 5.6: Influence of non-uniform load distribution on longitudinal mesh frictional heat

Heat flux computed this way is introduced in the mesh nodes located in different axial
positions along the tooth face width. Figure 5.7 depicts the longitudinal discretization of
pinion and gear teeth along with the mesh heat input procedure. The average value of
the heat flux for each individual slice is computed and introduced in the corresponding
mesh node. The latter is connected to surface nodes of pinion and gear teeth by means
of constriction resistances computed following Equation 5.17 which automatically rule
heat partition towards the pinion and gear (see Figure 5.6 for distribution). Finally,
gear teeth are connected to the oil sump mass node, or that of interior air, by means
of convection resistances which depend on the relative immersion depth as explained
later in Section 5.3.2. As a consequence, pinion and gear steady-state teeth temperature
distributions will depend on the relation between heat input pattern, teeth geometry and
the amount of heat transferred to the oil sump by convection.
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Figure 5.7: Longitudinal discretization of gear teeth for variable axial heat input modelling
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Heat partitioning

It has already been shown that due to the variation of the rolling speed of the mating
flanks along the line of action, there is a difference in the heat flux entering pinion and
gear and local heat partition coefficient, αy has been proved to be dependent on the
relation of transient and steady-state thermal resistances in Equation 4.36. As shown by
Jaeger [244], the main influencing factor is the specific sliding along the tooth profile and
therefore, tooth geometry plays an important role. For instance, in the case of FZG gear
type C in Figure 5.6 approximately 49% percent of the heat flows towards the pinion while
51% goes to the gear because profile shift coefficients have been selected in such a way
that specific sliding is balanced. However, if FZG gear type A used for scuffing tests [23]
is used instead, almost 64% of the heat flows towards the pinion and 36% goes to the gear.

Figure 5.8 shows an example of the variation of local heat partitioning coefficient along
the line of action and its effect on local and average heat flux. As expected, the largest
instantaneous values are located in the tooth tip and root where highest sliding occurs.

(a) Heat partition coefficient (b) Heat flux partition

Figure 5.8: Heat partitioning coefficient effect in FZG type C gear pair heat flux

If Jaeger’s approach [244] is compared to that of Olver [246] which is used in this
thesis, very little variation is observed for the considered case. Contrary to Jaeger’s
heat partitioning coefficient which exclusively depends on tooth geometry, Olver’s also
depends on operating conditions; through the steady-state and film resistance terms in
Equation 4.36. From the observation of the latter, it can be easily deduced that the film
resistance term does not affect heat partitioning when the ratio of the film thickness to
the Hertzian contact area is negligible, that is, when high loads are applied. Therefore,
in such conditions, both models give the same results if steady-state resistances are not
considered. In any case it has been observed that Olver’s method affects heat partitioning
coefficient less than 10% for a variety of conditions with respect to Jaeger’s approach.

Furthermore, it is also interesting to remark that the difference between the average
heat flowing towards pinion and gear in Figure 5.8b is small and therefore no apparent
gear ratio effect is considered. It is known that due to the difference in rotational speeds,
pinion receives more heat per rotation of the gear and therefore constriction resistances
must someway include the influence of the number of teeth to account for this effect
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because a single tooth has been used to represent the thermal behaviour of all teeth.
Therefore, average thermal resistance in Equation 5.17 has been modified dividing by the
number of teeth, which is equivalent to considering z resistances connected in parallel.

Finally, in order to consider the heat partitioning effect in the rest of the power loss
sources, a constant coefficient is used following recommendations from in Table 5.1.

Table 5.1: Heat partition coefficients in thermal network model

Source Mesh Air Oil Shaft Housing

Lip sealings, PV D 0 0 0.5 0.4 0.1
Bearings, PV L 0 0 0.5 0.25 0.25
Gears, PV ZP 1 0 0 0 0
Windage, PV Z0,W 0 1 0 0 0
Churning, PV Z0,C 0 0 1 0 0

This way, heat applied to any of the nodes in Figures 5.2 and 5.3, represented
by variables QV ZP, V L, V D, ... are computed as the product of the constant coefficient
presented in Table 5.1 and the corresponding power loss source. In the case of the gear
mesh, windage and oil churning, all heat is directly applied to the corresponding node.
On the contrary, in the case of bearings and lip sealings, heat is distributed among the
surrounding elements, namely: shaft, oil sump and housing.

5.3.2 Heat dissipation in dip-lubricated gears

Heat transfer in common dip-lubricated gearboxes can be classified in two different
mechanisms. Assuming that no external air fan or internal cooling circuit exists, we have:
i) composite radiation and natural convection of the gearbox with room air and ii) forced
convection with the oil sump and interior air. The former depends on the geometry and
size of the casing, its temperature distribution and the properties of air in the surrounding
environment. Meanwhile, the latter is far more complex as it heavily depends on the
internal fluid behaviour, the immersion depth, the temperature of oil and air, the rotating
speed, etc. Recent SPH and CFD simulations and high speed experimental recordings
from Hartoni [271] and Liu [71] have shown that the velocity profile of the fluids and oil
fraction in air correlate to churning losses and similarly, one would expect to affect forced
convection heat transfer as well. As a consequence, a simplified approach is required
to deal with the latter in the proposed thermal network model.

Figure 5.9 depicts the overall fluid flows inside the gearbox reproduced from the
numerical/experimental findings in [71, 271] and affecting internal forced convection.
Natural convection heat transfer outside the gearbox is also shown for completeness.

On the one hand, it is remarked that the heat transfer with the oil sump and the
oil-air mixture inside the gearbox is primarily ruled by the relative immersion depth.
Oil level determines the amount of lateral surface of the gear and shafts that exchanges
heat by forced convection. Two characteristic regions are observed in each gear-shaft
assembly: i) a region rotating in the oil sump which is continuously in contact with the
lubricant and ii) a non-immersed surface in contact with interior air. Furthermore, the
so-called “interior air” is a mixture of splashed oil and air and therefore the mixture
properties are dependent on the fraction of oil in air.
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Figure 5.9: Oil and air flow patterns around dip lubricated gear pair and housing

If, on the contrary, attention is paid to the housing, oil level determines three different
regions: i) a fully immersed domain where the velocity of the fluid is related to the
tangential speed of the meshing gears, ii) a volume of oil/air mixture outside the sump
partially in contact with the housing and iii) a stream of oil flowing down the walls of the
casing under the action of gravity due to lubricant being thrown off the gears. Each of these
regions of the gears, shafts and housing has a different convection resistance but all of them
can be computed from Equation 5.29 where A is the heat exchange surface, k is the thermal
conductivity of the fluid, L is the characteristic dimension and Nu is the Nusselt number.

Rh = (A ·h)−1 = L · (A ·k ·Nu)−1 (5.29)

On the other hand, the outer surfaces of the gearbox exchange heat with the room
by natural convection and radiation. If the casing is considered a set of several vertical
and horizontal plates as in Figure 5.3, natural convection coefficients, h, can be easily
correlated to empirical equations in scientific literature [272] and radiation heat transfer
can be simplified following the Stefan-Boltzmann law [261]. Therefore, both mechanisms
can be combined in a single thermal resistance by considering them as resistances in
parallel (see Figures 5.2 and 5.3).

Forced convection with oil/air mixture

Following the graphical description of internal fluid flows in Figure 5.9, it is expected
that the separation between regions in contact with oil and those in contact with air
to be diffuse; as it is defined by a dynamic oil level that depends on a number of
factors such as oil splashing, volumetric expansion at increasing lubricant temperature,
oil aeration, etc. Therefore, for the sake of simplicity, both regions are assumed to be
separated by the stationary oil level which defines a gear height in contact with oil,
H, and the corresponding height in contact with air, E, such that ra = E+H, with
ra the tip radius of the gear (see Figure 5.9).

Volumes in contact with the lubricant in Figure 5.2 are connected to the mass node
representing the oil sump by forced convection thermal resistances, and those in contact
with air are connected to the air node in the same way. Equation 5.29 being identical for
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both, and the characteristic dimensions and affected areas very similar for regions nearby,
the main difference in the amount of heat evacuated from these surfaces is imposed by
the Nusselt number, Nu, representing fluid behaviour, through the Reynolds, Re, and
Prandtl, Pr, numbers in Equations 5.33 to 5.46.

Re = U ·L
νk

(5.30)

Pr = cp ·η
k

(5.31)

where νk, cp, η and k are the kinematic viscosity, specific heat, absolute viscosity and
thermal conductivity of the fluid (oil or air) respectively; all of which are evaluated
at the mean boundary layer temperature, Θ̄f = 0.5 · (Θs + Θo), which depends on the
surface and oil temperatures. The velocity term, U , represents the relative velocity of
the fluid and it is the product of the rotational speed and the mean radius in case of
cylindrical/annular regions. For other regions, such as the bottom plate of the housing,
the reference velocity must be defined.

Figure 5.10: Oil-air mixture properties as a
function of the fraction of oil in air

Furthermore, if an oil-air mixture is
considered outside the sump, the thermo-
physical properties must include the effect
of oil volume fraction in air. To solve
this issue, the mixing approach for steam-
water systems presented by Idsinga [273]
is used, assuming that the oil-air mixture
is a homogeneous two-phase fluid inside
the gearbox. On the one hand, absolute
viscosity, thermal conductivity and density
can be directly calculated with Equation
5.32, where ζ is the property to be eval-
uated, and ξ is the oil-air ratio. On the
other hand, heat capacity and kinematic
viscosity are affected by the specific volume.
The latter being very different in magnitude for oil and air, any small change in oil fraction
in air will completely alter the thermophysical behaviour of the mixture. Figure 5.10
depicts this situation where it is observed that a change as small as 1% in volume fraction
completely modifies kinematic viscosity and specific heat of the mixture.

ζ ′ = ζa + ξ · (ζo− ζa) (5.32)

a) Forced convection in the gear-shaft assembly: Forced convection heat transfer
in the gear-shaft assembly depends on the affected area, the characteristic length and
the Nusselt number in each of the considered regions. In cylindrical/annular surfaces in
contact with oil or air, the area to be used in Equation 5.29 is the total area and the
characteristic length is the mean diameter. However, in the gear tooth region (depicted
in detail in Figure 5.3), the lateral and tooth tip convection heat transfer surface is
the sum of the corresponding areas of all teeth and the characteristic lengths are the
transverse tooth thickness and the tooth height respectively.
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Finally, the Nusselt number, Nu, for each region in Figure 5.2 and 5.3 is determined
by considering an equivalent geometry as follows:

� Cylindrical surfaces of the shaft and gear hub exchange heat by tangential flow,
thus, both can be considered equivalent to shafts rotating in a fluid.

� Lateral surfaces of the gear and tooth ends exchange heat with the oil/air by
circumferential flow and therefore they are equivalent to a disc rotating in a fluid.

� Tooth tip and bottom exchange heat with the oil/air by parallel flow and they can
be modelled as a fluid flow over an horizontal flat plate.

� Flanks exchange heat by pressure and suction when they enter the oil sump and
therefore, they can be assimilated to a perpendicular flow on a vertical flat plate.

Table 5.2 summarizes the forced convection correlations to be applied on each region
based on equivalent geometries and flow regime. For intermediate values of the Reynolds
number, Re, linear interpolation of the equations is used.

Table 5.2: Forced convection heat transfer correlations for rotating gears and shafts

Region Description Ref. Convection correlation

Cylindrical surfaces [274] 103 < Re< 105→Nu = 0.133 ·Re2/3 ·Pr1/3 (5.33)

Lateral surfaces [275]
Re< 2.5 ·105→Nu = 0.4 ·Re1/2 ·Pr1/3 (5.34)
Re> 3.2 ·105→Nu = 0.238 ·Re4/5 ·Pr3/5 (5.35)

Tooth tip and ends [120]
Re< 5 ·105→Nu = 0.664 ·Re1/2 ·Pr1/3 (5.36)
Re> 5 ·105→Nu = 0.037 · (Re4/5−23100) ·Pr1/3 (5.37)

Left/right flanks [276]
1 ·104 < Re< 5 ·104→Nul = 0.592 ·Re1/2 ·Pr1/3 (5.38)
7 ·103 < Re< 8 ·104→Nur = 0.17 ·Re2/3 ·Pr1/3 (5.39)

Moreover, as described in the literature review in Section 2.1.2, one of the most
important heat transfer mechanisms in meshing gears is that produced by centrifugal
fling off when teeth exit the oil sump. This phenomena is not shown in Table 5.2 as the
calculation does not yield a Nusselt number but the corresponding thermal resistance
between each flank and the oil sump. Following Changenet [263] the equivalent fling-off
resistance including the influence of all teeth is:

Rf = 2 ·π
b ·z ·h ·C ·

√
ko ·ρo · cp,o ·ω ·θ

(5.40)

C = 0.257 + 0.885[
1 + exp

(
ψ−0.776

0.109

) ]0.119 (5.41)

ψ =
(
r ·χ ·θ2

νk ·h

)1/4
(5.42)
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where all parameters have been already introduced except angle θ which is the available
angle for the projection of oil outside the sump. This angle increases with decreasing oil
level and therefore, convection resistance due to normal flow in Table 5.2 is proportionally
reduced. Both mechanisms interact on gear teeth as thermal resistances in parallel.

b) Forced convection in the housing: Internal surfaces of the housing, such as the
bottom plate, the vertical sides or the top cover, exchange heat by forced convection with
interior oil and air due to the rotation of the gears. Similarly to the gear-shaft assembly,
the affected area in each of the convection resistances in Figure 5.3 is the surface directly
in contact with the fluid, this way, the bottom plate and the lower parts of the side
plates are connected to the oil sump node, while the portion of the casing outside the
sump is connected to the air node. Housing geometry being simplified as an assembly
of horizontal and vertical flat plates, the affected area to be used in Equation 5.29 is
easy to calculate as it only depends on the length, width and height of the plates in
Figure 5.9. Meanwhile, the characteristic length, L, and mean velocity of the fluid, U ,
are not easy to define as they depend on the flow pattern inside the casing which has
been proved to be complex [271]. Therefore, the following criteria is established based
on the simplified fluid behaviour depicted in Figure 5.9.

Table 5.3: Characteristic lengths and mean fluid velocities in housing plates

Part L U

Horizontal top cover lG Vt
Horizontal bottom plate lG Vt
Vertical immersed side wall hW −E Vt
Vertical non-immersed side wall hG−hW +E Vm
Vertical immersed front/rear plates lG Vt
Vertical non-immersed front/rear plates lG Vm

Parameters lG, hG, hW and E in Table 5.3 are reference dimensions in Figure 5.9,
Vt is the tangential velocity at the pitch radius and Vm is the average velocity of the fluid
relative to the walls. Note that the side-walls and front/rear plates of the casing outside
the sump in Figure 5.9, are subject to an oil stream flowing down the walls due to the
latter being thrown off the gears by centrifugal effects, thus, the average stream velocity
depends on the action of gravity and the height relative to the oil sump. According to
Changenet [263] the mean velocity of the fluid in this plates, Vm, can be calculated as:

Vm = 1
h
·
∫ h

0
V (y) dy = 1

h
·
∫ h

0
g ·
√

2 ·y
g

dy =
√

8 ·g ·h
9 ≈ 2.95 ·

√
hG−hW +E (5.43)

which depends on the casing height and the oil level relative to the shaft position.
Finally, the Nusselt number in all internal surfaces is defined following correlations 5.45

and 5.46 as fluid is assumed to flow parallel to each of the plates, without any distinction
between vertical and horizontal ones. Only average velocity differences must be considered
on the Reynolds number following recommendations from Table 5.3.
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Natural convection with room

Outer surfaces of the housing exchange heat with the surrounding environment by natural
convection, therefore, casing plates are also connected to the room node by means of
thermal resistances accounting for this effect (see Figure 5.3). Equation 5.29 is also
applied here, where the heat transfer area is the total area of the vertical or horizontal
plates, and the characteristic dimension is the height or length of the plates respectively.
Nusselt number correlations for the different regions are presented in Table 5.4 and it is
observed that, contrary to forced convection in the internal surfaces, fluid behaviour is
no longer ruled by the Reynolds number but that of Rayleigh, Ra, following:

Ra = g ·β ·L3 ·∆Θ
ν2
k

·Pr (5.44)

where all parameters are known except β which is the fluid volume expansion coefficient.

Table 5.4: Forced and natural convection heat transfer correlations for housing plates

Region Description Ref. Convection correlation

Inner surfaces [120]
Re< 5 ·105→Nu = 0.664 ·Re1/2 ·Pr1/3 (5.45)
Re> 5 ·105→Nu = 0.037 · (Re4/5−23100) ·Pr1/3 (5.46)

Horizontal plates [261]
104 < Ra< 107→Nu = 0.54 ·Ra1/4 (5.47)
107 < Ra< 1011→Nu = 0.15 ·Ra1/3 (5.48)

Vertical plates [272]

Ra< 109→Nu = 0.68 + 0.67 ·Ra1/4

[1 + (0.492/Pr)9/16
]4/9 (5.49)

Ra> 109→Nu =
[

0.825 + 0.387 ·Ra1/6

[1 + (0.492/Pr)9/16
]8/27

]2

(5.50)

Radiation with ambient

Finally, natural convection resistance with room is usually followed by a radiation term
in parallel (see Figures 5.2 and 5.3) which is determined from the Stefan-Boltzmann
law [261]. According to the latter, the heat transfer from any surface at temperature Θi,
to a much larger environment at constant temperature Θj , is given by:

Qi,j = σ · εi ·Ai · (Θ4
i −Θ4

j )→Qi,j =
[
σ · εi ·Ai · (Θ2

i + Θ2
j ) · (Θi+ Θj)

]
·∆Θ (5.51)

with σ = 5.67 ·10−8 W/m2·K4 the Stefan-Boltzmann constant, εi the surface emissivity
and Ai the available heat exchange surface. From the term in brackets on the right hand
side of Equation 5.51, the thermal resistance for radiation is obtained:

Rrd = 1
σ · ε ·A · (Θ2

i + Θ2
j ) · (Θi+ Θj)

(5.52)

where the surface emissivity depends on topography, coatings and degree of oxidation. In
the absence of reference values, tabulated approximations for gearboxes can found in [16].

At this point it is also remembered that, similarly to housing radiation with ambient,
composite forced convection and radiation effect also influences the external equivalent
shaft-coupling described in the first section of this chapter in Equations 5.13 and 5.14.



144 5.4. Governing equations and solution method

5.4 Governing equations and solution method

The thermal network model has already proved to be accurate in thermal analysis of
complex gear systems [125] with several gear pairs, bearings, etc. However, in all previous
works, gears are usually represented by a single bulk temperature and very few works
discuss the existence of radial and longitudinal thermal gradients [137]. The thermal
network model developed herein accounts for such temperature distribution in the gear
body but may be inaccurate in the gear teeth region were thermal gradients have been
neglected and a single mass node has been used to represent the thermal state of all teeth.

The convenience of this assumption must be analysed before computing temperature
distribution such that the degree of discretization can be set before hand. For this purpose
the Biot number, Bi, behaviour is investigated; which is a dimensionless parameter giving
a measure of the temperature drop inside the solids [261]. The latter is defined as the
ratio of the internal resistance of the solid to heat conduction to the external resistance to
heat convection (see Equation 5.53). Therefore, the assumption that small temperature
gradients exist within the gear tooth will be valid when the amount of heat evacuated
through the external surfaces is larger than the heat conducted inside the solid, in other
words, when the Biot number is smaller than one.

Bi = Rcond.
Rconv.

= h ·L
k

(5.53)

with h the overall heat convection coefficient, k the thermal conductivity and L the
characteristic length which is defined here as the ratio of the total volume to the
external surface area, L = V/A.

Figure 5.11: Biot number as a function of speed,
tooth module and face width

Figure 5.11 shows the influence of ro-
tation speed and tooth size on the Biot
number. The amount of heat evacuated
through the external surface (i.e. overall
convection coefficient h in Equation 5.53)
increases with speed and therefore the
Biot number increases as well. Meanwhile,
tooth size affects characteristic lengths. It
is observed that this parameter remains
below one in all cases, but it also remarked
that the proposed assumption is specially
adequate for small module gear teeth as
the Biot number remains close to 0.1 which
is the accepted critical value in scientific
literature [261]. Moreover, face width also
affects this parameter thus indicating that
the number of slices in the face width direction must be defined with care. In this work,
axial discretization criteria is set to one slice per millimetre face width, while radial
discretization can vary depending on relative immersion depth and gear size. With this
mesh, the approximate number of control volumes per gear-shaft assembly is 200 which
gives a total amount of less than 500 mass nodes for the complete gearbox.
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5.4.1 Solution method

The solution of the thermal lumped parameter model is given by the system of equations
assembled in matrix form in Equation 5.54 in which [C], is the thermal capacity matrix,
[K] is the conductivity matrix (where Ki,j =R−1

i,j ), Q is the heat input vector, Θ, is the
temperature vector, t denotes time and the superimposed dot indicates time differentiation.

[C(Θ, t)] · Θ̇+ [K(Θ, t)] ·Θ = Q(t) (5.54)

Therefore, the initial value problem for Equation 5.54 consists of finding Θ = f(t), the
temperature vector at any instant t < tend and subject to the initial condition Θ(0) = Θ0
with Θ0 the vector of imposed initial temperatures.

If Equation 5.54 is developed and restated numerically for each node we have:

mi · cpi ·
dΘi

dt +
n∑
j=1
j 6=i

Θi−Θj

RT (i, j) =Qi (5.55)

where mi is the mass of the considered node, cpi is the heat capacity, dΘi/dt is the
time derivative of temperature, Θi,j is the temperature of two connected nodes i and
j from n total number of nodes, RT (i, j) is the equivalent thermal resistance between
both and Qi is the heat input on node i.

Parameter Ci =mi · cpi is the heat capacity of mass nodes, that is the amount of heat
required by the latter to increase its temperature one degree. Thus, the term Ci ·dΘi/dt
on the left of Equation 5.55 is the thermal inertia and represents the time required by
each control volume to reach a steady-state thermal condition. As a consequence, mass
nodes only affect the transient calculation and steady-state condition can be computed
by neglecting the term on the left. Both conditions further are described below.

Steady-state calculation

On the one hand, steady-state regime can be computed from Equation 5.55 neglecting
thermal inertia or by simply applying the conservation of energy to each control volume.

Qi =
n∑
j=1
j 6=i

Θi−Θj

RT (i, j) = Θi ·
n∑
j=1
j 6=i

1
RT (i, j) −

n∑
j=1
j 6=i

Θj

RT (i, j) (5.56)

Following Changenet [263] this equation can be rewritten in the following form:

Qi =
n∑
j=1

KT (i, j) ·Θj (5.57)

if i 6= j −→ KT (i, j) =− 1
RT (i, j) (5.58)

if i= j −→ KT (i, i) =
n∑
k=1
k 6=i

1
RT (i,k) (5.59)

which leads to a matrix expression of the type Q = [K] ·Θ shown in Equation 5.60 that
can be readily solved by direct numerical procedures such as LU decomposition [277].
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Note that the principal diagonal terms in Equation 5.60, represent the sum of
all resistances connected to the considered node while the non-diagonal terms are
coupling terms between different nodes, which is very similar to the compliance matrix
representation in Equation 3.94. Logically, if two nodes are not interconnected the
conductance between them is zero. Besides, the heat input vector considers all power
loss sources, PV,i, explained in Section 5.3.1 and multiplied by the heat partitioning
coefficients, αi from Table 5.1, such that Qi = αi ·PV,i. In the rest of the nodes the
total amount of applied heat is zero.


Q1
Q2
...
Qn

=


∑n
i 6=1

1
RT (1,i) − 1

RT (1,2) ... − 1
RT (1,n)

− 1
RT (1,2)

∑n
i 6=2

1
RT (2,i) ... − 1

RT (2,n)
... ... ... ...

− 1
RT (1,n) − 1

RT (2,n) ... ∑n
i 6=n

1
RT (n,i)

 ·


Θ1
Θ2
...
Θn

 (5.60)

Transient calculation

On the other hand, transient regime is computed from Equation 5.55 after restatement
following Equations 5.57 to 5.59 which yields the discrete solution:

mi · cpi ·
dΘi

dt +
n∑
j=1

KT (i, j) ·Θj =Qi (5.61)

Similarly, if the latter is restated in matrix form we have:

dΘ
dt =

[ 1
C

]
·
(
Q− [KT] ·Θ

)
(5.62)

Note that Equation 5.62 represents a set of non-linear ordinary differential equations
(ODE), because conductances, [KT], and heat inputs, Q, are dependent on instantaneous
temperatures, Θ. To solve this ODE system Picard’s iteration algorithm [278] is used
which has been found suitable to deal with the non-linearities arising from fluid properties,
convection coefficients and radiation.

Boundary conditions

To solve the system of equations, two types of boundary conditions can be set: fixed
temperatures and fixed heat fluxes. Room and gearbox foundation temperatures in
Figures 5.2 and 5.3 are assumed constant and equal to 20◦C and 40◦C respectively.
Although it is possible to analyse the influence of foundation resistance by considering
it as a rectangular fin as shown in [264] very little variation is expected in internal heat
distribution and therefore, it is simplified by considering it as a constant temperature
which is justified by its large external surface area exchanging heat with room air. As
far as constant heat inputs is concerned, no fixed heat flux is imposed at all, as all
power loss sources are non-linear and depend on oil and air temperatures. Finally, for
transient calculations, it is assumed that all initial temperatures are equal to room
temperature which is taken as 20◦C in this work.
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5.4.2 Thermo-mechanical coupling

It has been shown earlier in this chapter that heat sources and convection heat transfer
coefficients are non linear as they depend on oil and air temperatures. Furthermore,
fluid heat capacities are also affected by density change and if gear material property
variations are considered as well, the system of equations is fully non-linear thus requiring
iterative procedures to solve it. However, if only steel gears are considered, thermophysical
property variations can be neglected as maximum bulk temperatures are below tempering
temperatures in almost all cases. As a consequence, conduction resistances and heat
capacities in steel nodes are linear terms as they only depend on geometry, while those
related to fluid nodes are non-linear. Figure 5.12 shows the computation flowchart for
steady-state and transient regimes considering both terms.

START
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Update fluid properties
and heat capacities

Material, oil and 
air properties Compute convection and 
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Figure 5.12: Thermo-mechanical temperature distribution prediction flowchart
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At the beginning, gear geometry is discretized and geometrical parameters of each
control volume are input to the algorithm, such that conduction resistances and heat
capacities (linear terms) are calculated first. Then, initial temperatures are set and
non-linear terms are estimated. Oil viscosity is updated following the Vogel, Tammann
and Fulcher model which has already been presented in the first term of Equation 4.28,
while other parameters such as density, thermal conductivity or heat capacity can be
computed for a number of fluids following reference [279]. Similarly dry air property
variations with temperature are gathered in [280] and if an oil air-mixture is considered
instead, Equation 5.32 is to be used. Next, convection heat transfer resistances are
computed from the Nusselt number, which depends on the boundary layer temperature
and, similarly, radiation resistances are calculated from the temperature of the housing
and that of room. On the other hand, heat sources are calculated from operating
conditions and fluid temperatures following models presented in Section 5.3.1 while
gear mesh power loss is specifically computed from the model developed in Chapter 4.
Finally, steady-state or transient solutions are calculated with Equations 5.57 or 5.61
respectively and the process is repeated until steady-state convergence is achieved or
maximum computing time is reached in transient cases.

Interpretation of results

Temperature distributions from the solution of Equation 5.54 applied to the thermal
network model developed in this chapter, are mainly located in the longitudinal plane of
each gear, which is defined by the reference tooth symmetry axis. Therefore, final thermal
state can be shown as a series of contour plots where Θi = f(xi,0,zi). An example of the
result for the reference gear pair FZG type C-PT is shown in Figure 5.13.

Figure 5.13: Computed two-dimensional steady-state temperature distribution of FZG type
C-PT gear pair at Vt= 8.3 m/s, T1=239 Nm and relative immersion depth H/D = 0.112
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As expected, overall pinion temperature is larger than that of the gear; with maximum
values located in the pitch cylinders and near the front bearings in both cases. In the
standard FZG test rig, these bearings are roller type, reference NJ406, which have been
proved to give large power losses with respect to the deep-groove ball bearings reference
6306 located in the back (see Figure A.1). Rotational speed of pinion shaft being higher
than that of the gear, resulting power losses are significantly larger in the former and,
as a consequence, temperature in the shaft portion just below the inner ring of such
bearings is increased. Contrarily, it is interesting to remark that minimum temperatures
are located in the rear end of each shaft which is the region close to the equivalent external
coupling in Figure 5.2. Convection heat transfer in this region is increased due to the
presence of the latter and temperature is lower as a consequence.

Furthermore, in the standard FZG test rig, bearings are located close to the gear ends
and therefore heat generated by bearings and sealings is conducted towards the pinion
and gear. Similarly, enhanced heat dissipation on the rear shaft ends affects to both gears
as well, and as a consequence of these effects, overall temperature profile of pinion and
gear is altered. This behaviour is observed in Figure 5.14 where the isotherms are slightly
distorted towards the lower ends of the gears close to bearing supports.

(a) Pinion (b) Gear

Figure 5.14: Detail of predicted pinion and gear steady-state temperature distributions in the
longitudinal plane at Vt= 8.3 m/s, T1=239 Nm and relative immersion depth H/D = 0.112

If attention is paid to bulk temperatures in Figure 5.14, it is clearly visible that
pinion temperature increase is higher than that of the gear by approximately 15◦C for
the considered operating conditions. Moreover, temperature is proportional to radial and
axial position and follows an approximately polynomial trend in both directions, with
the maximum value located in the pitch cylinder and the minimum value in the shaft.
Besides, it is also concluded from this figure that the tooth tip of both gears has a lower
temperature than the pitch cylinder due to the increased convection heat transfer in this
region. These trends are consistent with FEM results by Patir and Cheng [126].

Such temperature distributions are of interest for thermal distortion modelling in the
next chapter and therefore, attention is paid to them by defining two reference positions
in Figure 5.14, one for each direction, with names r0 and z0 respectively. The former
is tangent to the working pitch cylinder while the latter is defined by the orthogonal
plane in the middle of the face width.
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Temperature distributions for both directions are shown in Figure 5.15, where pinion
and gear temperatures are gathered in the same diagrams to reveal the shape and amount
of thermal gradients. On the one hand, it is observed in Figure 5.15a that there is a clear
temperature difference between pinion and gear produced by the low immersion depth,
which is H/D = 0.112 in this case. Such oil sump level applied to the FZG type C-PT
gear pair, only lubricates the gear while pinion is not in contact with oil any more. As a
consequence, pinion heat dissipation is poor and temperature is higher than its mating
gear. Besides, both wheels have a radial thermal gradient of approximately 3◦C in the
pinion and 4◦C in the gear, following a polynomial trend as previously described.

Moreover, it has been found that in most cases, radial temperature distribution can
be modelled by a power law function of order n, which takes the values 1.47 and 1.37 for
the pinion and gear respectively in Figure 5.15a. This trend is repeated in almost all
combinations of speed and torque and in some cases, specially when oil level is high, the
order of the power law function can even be below unity. Furthermore, radial temperature
differences of large gears have also been analysed and it has been found that temperature
gradient between teeth and shaft can reach 20◦C to 25◦C while large gear ratios lead
to temperature differences between pinion and gear of as much as 30◦C.

(a) Radial temperature distribution in z0 (b) Axial temperature distribution in r0

Figure 5.15: Radial and axial temperature distributions in the reference sections of FZG type
C-PT at Vt= 8.3 m/s, T1=239 Nm and relative immersion depth H/D = 0.112

On the other hand, longitudinal temperature distribution usually follows a parabolic
trend [126], provided that load distribution is uniform (i.e. without mesh misalignment).
In dip lubricated systems, convection heat transfer coefficients and submerged surface
areas of both gear ends are equal, which leads to a symmetric longitudinal temperature
profile. However, in the current case shown in Figure 5.15b, nearby bearings and sealings
slightly distort such temperature distribution leading to a non-symmetric temperature
profile. The size of the pinion being reduced with respect to the gear, the degree of
distortion of the axial temperature distribution due to nearby bearings and sealings is
larger in the pinion than in the gear. For the narrow FZG type C-PT gears shown in
Figure 5.15b, the temperature of the ends is approximately 0.05 ◦C less than the centre
of the gear which is negligible. However, additional test cases have been analysed and,
similarly to Long et al. [131], it has been found that longitudinal thermal gradient largely
depends on the face width as heat tends to concentrate in the middle of the flank.
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Figure 5.16: Computed transient temperatures
of FZG type C-PT gear pair, oil sump and interior
air at Vt= 8.3 m/s, T1=239 Nm and H/D= 0.112

Finally, if pinion and gear thermal be-
haviour are compared to that of surround-
ing oil and air, it is observed in Figure 5.16
that bulk temperature of gears is clearly
higher than the temperature of oil and air
by approximately 20◦C to 40◦C which is
consistent with scientific literature [281].
Moreover, heat capacity of air being much
lower than that of oil, the former needs
more time to stabilize. Gears and oil, have
almost reached their steady-state condition
after one hour but air still requires more
time (see Figure 5.16). After two hours,
close to the steady state condition, fluid
temperatures are very similar while pinion
and gear are still clearly different.

5.5 Experimental validation

Thermal network model results in this chapter have been compared to the experimental
temperature measurements by Otto [28] who analysed the influence of speed, torque and
relative immersion depth on pinion and gear bulk temperatures. Reference gear FZG type
C-PT was used by Otto which is the original, non-modifed counterpart of gear type Cmod
already used in the previous and following chapters and described in Table 4.7. The gear
oil used in his experiments is the FVA3-A oil [282] whose properties are very similar to
the mineral oil M100 in Table 4.4. Although extreme pressure additives (6.5% Anglamol
99 from Lubrizol) have been incorporated to prevent scuffing damage at the highest
temperatures, the pressure-temperature-viscosity behaviour can be assumed equal [31]
and therefore, sliding friction coefficient model presented in Chapter 4 is still applicable.

Although the full experimental work by Otto [28] also analyses additional parameters
such as the influence of rotating direction, gear type and lubrication system, only variables
shown in Table 5.5 are considered in the following numerical-experimental comparisons.

Table 5.5: Test conditions in Otto’s experiments [28]

Parameter Symbol Value

Relative immersion H/D [%] 50, 29.8, 23, 16.3, 11.2, 7
Torque T [Nm] 94, 239, 372
Tangential speed Vt [m/s] 8.3, 20
Oil temperature Θo [◦C] 90±3

Oil temperature is kept constant at 90 ±3◦C and several immersion depths are selected,
measured relative to the gear. Furthermore, low and high tangential speed conditions are
analysed, which correspond to 2170 rpm and 5220 rpm rotational speed at the pinion
shafts. Similarly, three torque levels are applied: KS-5, KS-8 and KS-10 stages; producing
0.92 GPa, 1.47 GPa and 1.83 GPa maximum contact pressure respectively.
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Gear geometry is detailed in reference [28] but the thermal network model also requires
housing and shaft dimensions as well as oil/air volumes. Unless otherwise stated, housing
geometry refers to the standard FZG test rig and therefore, main dimensions can be found
in scientific literature [30, 271]. Oil/air volume necessary to compute heat capacities
are computed from dimensions in Figure 5.9 with:

Vo = bG · lG · (hW −E) (5.63)
Va = VTot−Vo = (bG · lG ·hG)−Vo (5.64)

where the static oil level relative to shaft centreline, E, depends on relative immersion
depth, H/D, following E =D · (1/2−H/D) with D the tip diameter of the gear.

First, predicted power losses are compared to experimentally measured values in
Figure 5.17. It is observed that the model captures the influence of load and speed on
power losses with higher losses at the highest input powers. Meanwhile, immersion depth
indirectly affects the latter by means of the bulk temperature.

(a) Low speed: Vt = 8.3 m/s (b) High speed: Vt = 20 m/s

Figure 5.17: Predicted and measured power loss comparison for different operating conditions
in Otto’s experiments [28]

At the lowest tangential speed, predicted power loss is close to the measured values
with 4% average error and a maximum of 25% at load stage KS-5 and 23% immersion
depth. These values are in agreement with the proposed power loss model in Chapter 4.
However, at high speeds, deviations are increased with an average error of 13% and a
maximum error of 40% at stage KS-10 and 11.2% immersion depth. Besides, it is observed
that in both speed levels, experimentally measured power losses decrease with immersion
depth; which is contrary to the expected behaviour as immersion depth only affects to
spin power losses and mesh frictional losses are only influenced by torque, speed and bulk
temperature. If the latter increases with decreasing oil level, it is expected that friction
coefficient increases as well giving rise to higher losses. Meanwhile, predicted power losses
are almost constant with immersion depth thus indicating that average friction coefficient
is not affected by the corresponding temperature increase and therefore, its value along
the line of action is in the partial EHL regime and close to the boundary friction value.
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Temperature predictions and experimental measurements for the conditions in Table 5.5
are gathered in Figure 5.18. Low speed results are shown in the first row (subfigures a
and b) and those related to high speed in the second (subfigures c and d) with pinion
temperatures on the left and those of the gear on the right. In all cases, experimentally
measured bulk temperatures are referred to the centre of the tooth, aligned with the tooth
symmetry axis and located 6 mm below the tooth tip [28], while numerical predictions
are obtained at the pitch diameter as shown in Figure 5.3.

(a) Pinion at low speed: Vt = 8.3 m/s (b) Gear at low speed: Vt = 8.3 m/s

(c) Pinion at high speed: Vt = 20 m/s (d) Gear at high speed: Vt = 20 m/s

Figure 5.18: Comparison of temperature measurements from [28] and thermal network predictions
for variable speeds, torques and immersion depths on FZG type C-PT gear pair

In general, temperature increases with decreasing oil level, with the highest bulk
temperatures at the highest speeds and torque levels. Immersion depth affects temperature
increase because the available submerged surface area for forced convection heat transfer
is reduced; while torque and speed influence temperature increase by means of the mesh
power loss which depends both parameters as shown in Equation 2.2. Furthermore, pinion
temperature is always higher than that of the gear which is the expected behaviour, as
described previously in this chapter. In general terms, the predicted numerical trend
is correct with immersion depth and input power, with a maximum error of 25◦C in
the gear at low speed, highest torque and lowest oil level.
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Moreover, there is a significant deviation in the pinion thermal behaviour at high
speed and high torque, as experimental values deviate from previous trends at high
immersion depth. In this sense, it is interesting to remark that the difference between
pinion and gear temperatures at the highest immersion depth (H/D = 0.5) is minimal
as heat is continuously dissipated by the oil sump, and therefore both values are almost
equal. This behaviour has also been confirmed with a different data set by Geiger [120]
in the same gear type and test rig; therefore such temperature increase of the pinion
in Figure 5.18c is not easily explained. In any case, temperature differences between
pinion and gear start to be noticeable from 32 mm oil level onward in all cases; which
corresponds to approximately 23% relative immersion depth.

5.5.1 Discussion of results

Figure 5.19: Overview of predicted and mea-
sured bulk temperatures of pinion and gear

Comparison of numerical results and ex-
perimental measurements in Figure 5.18
has shown that the model captures the
overall thermal behaviour with operating
conditions. Figure 5.19 shows an general
view of the correlation between numerically
predicted bulk temperatures of pinion and
gear and experimental measurements. A
maximum deviation of 15% has been found
which is equivalent to 25◦C located at
the lowest immersion depth in the gear.
Meanwhile, 70% of the predicted values
have errors below 5◦C, which is satisfactory.
Experimental uncertainty has not been
provided by Otto [28] and therefore, it is
not possible to asses the accuracy of the
proposed model with confidence.

It has been shown in Figure 5.17 that experimental power loss measurements decrease
with oil level, but this behaviour is not consistent with scientific literature as friction
coefficient has been proved to increase due to lubricant starvation in the contact [37].
Figure 5.20 compares analytically predicted power losses, specific film thickness and
average friction coefficient with experimental measurements at constant torque and both
tangential velocities. In both cases, specific film thickness values indicate that gear mesh
operates in the partial EHL regime with average friction coefficients increasing with
the reduction of oil level. At low speed the overall agreement is excellent but at high
speed condition significant deviations arise. Experimentally measured values decrease
with the immersion depth indicating that friction coefficient is considerably reduced with
temperature because speed and torque remain constant. This effect may be due to the
influence of lubricant additives but such a decrease is improbable and the effect may
rather be attributed to experimental uncertainty. FZG power loss measurement procedure
requires subtracting experimentally measured spin losses and numerically predicted bearing
losses under load to the total power loss [41] and therefore, mesh frictional losses may be
distorted by errors in the predicted bearing behaviour in the high speed condition.
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Figure 5.20: Power losses as a function of oil level and operating speed at constant torque

On the other hand, it has also been shown that at the high speed high torque condition,
pinion temperature is unusually high and the initial value deviates from the experimental
trend even if the oil level is maximum (see Figure 5.18c). Close analysis of experimental
results of pinion types A and C in Otto’s experiments [28] has revealed that the former
has a lower temperature than the latter at the highest immersion depth which is also
difficult to explain as the heat partitioning coefficient of gear type A is considerably higher
than that of gear type C (previously explained in section 5.3.1). If the number of teeth,
module and face width of both gear sets is the same, and so are the operating conditions,
temperature of gear type C at H/D = 0.5 should be lower than that of gear type A.

If these outliers are not considered, deviations in the rest of the cases may be due
to differences in heat transfer conditions. The composite effect of several variables may
explain such discrepancies. For instance, literature review has shown that the definition of
local forced convection coefficients in dip lubricated systems is difficult [100] and constant
average values are used instead for each of the different sections of the gear (e.g. flanks, tip,
shaft). Moreover, it is well known that the empirical equations used in the determination
of the average Nusselt numbers in Tables 5.2 and 5.4 have errors of ±15% [261] and,
as a consequence, the amount of dissipated heat is also affected. It has been observed
that introducing these effects on the model modify bulk temperatures by 2◦C to 5◦C
over the whole range of immersion depths and conditions.

Similarly, the dynamic oil level produced by oil sump volume expansion, aeration
and lubricant splashing can affect heat transfer coefficients and temperature distribution
as a consequence. LePrince [283] already showed that temperature increase of the
lubricant rises up to 15% the relative immersion depth which affects churning power
losses and, in the same way, it may affect convection heat transfer. Figure 5.21 depicts
the influence of a such a dynamic oil level on bulk temperatures where it is observed
that increasing or decreasing the oil level by this amount clearly changes numerically
predicted values approaching measurements. It is interesting to remark that this variation
of immersion depth affects pinion temperatures more than those of the gear due to its
smaller size. Moreover, if lubricant level is minimum and neither lubricates pinion nor
gear, temperatures reach almost the same value in both gears which is very similar to the
condition where immersion depth is maximum and both gears are well lubricated.
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(a) Pinion (b) Gear

Figure 5.21: Influence of dynamic oil level on tooth temperatures

If oil sump level is assumed to vary with dynamic conditions, it is possible to assume
as well that interior air is affected by dispersed oil droplets. A 1% oil volume fraction has
been considered in the oil-air mixture inside the casing, whose thermophysical properties
have been modelled following Equation 5.32. In all cases, the temperature increase at low
immersion depths is considerably reduced due to the increase of the Reynold’s number
through the reduced kinematic viscosity. Nusselt numbers increase with the latter and
so does the total amount of heat dissipated by forced convection; as a consequence,
temperatures are reduced in all cases. Therefore, oil-air mixture helps reduce increased
temperatures similarly to jet lubrication conditions [126].

Finally, the influence of boundary conditions has also been analysed. In this thesis,
room and foundation temperatures have been assumed constant and equal to 20◦C and
40◦C respectively. The former has been varied ±5◦C and the latter has been increased
up to 60◦C. Although gearbox plate temperatures have been modified by approximately
5◦C in the worst case, gear pair temperature distribution has been affected little by a
maximum of 0.3◦C, because the oil sump temperature is set constant and equal to 90◦C
in Otto’s experiments [28] and therefore the latter has a greater influence on pinion and
gear bulk temperatures than the temperature outside the casing. Meanwhile the variation
of the lubricant temperature by ±3◦C does affect pinion and gear bulk temperatures
in approximately the same amount. In this sense, it is interesting to see that if the oil
temperature is not imposed, pinion and gear reach 112◦C and 96◦C respectively in the
low speed condition at E = 46mm and 236 Nm torque shown in Figure 5.15; which is
clearly reduced with respect to the constant oil sump temperature case of Figure 5.21.

5.6 Conclusions of Chapter 5

In this chapter a novel thermal model of the gear pair has been developed based on
the thermal network concept by Blok [112]. Compared to similar models in scientific
literature (e.g. [125]) the model proposed herein accounts for radial and longitudinal
temperature distributions of both, pinion and gear, which are necessary to compute
gear teeth thermal distortion in the next chapter.
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In the first section, theoretical background has been presented and thermal lumped
parameter simplification of the general three dimensional heat conduction equation has
been obtained. Radial and axial thermal resistances for conduction within cylindrical
volumes have been calculated and the gear-shaft system has been discretized following
the “thin-slice” approach, where each slice is thermally coupled to adjacent ones similarly
to the load distribution model in Chapter 3. Furthermore, individual nodes have been
incorporated to model the oil sump, interior air and housing and a single tooth has
been used to represent the thermal-state of all teeth.

In the next section, heat sources in gearboxes have been identified and spin and load
power loss terms have been analysed individually. It has been shown that the former
starts to dominate at high tangential velocities while the latter is significant over the full
range of rotating speeds. Moreover, the influence of heat partitioning on gear mesh has
been analysed and mesh frictional heat input on the thermal network has been described.
For other heat sources a constant coefficient has been adopted. Then, heat transfer
mechanisms by convection have been introduced and corresponding thermal resistances
have been determined. It has been shown that forced convection heat transfer inside the
gearbox depends on the complex oil flows of the sump and a simplified approach to deal
with it has been proposed. Natural and forced convection correlations for each region of
the thermal network have been gathered and radiation resistances have been defined.

The solution method has been presented next. Steady-state and transient calculations
have been described, boundary conditions have been set and a thermo-mechanical
calculation flowchart has been defined to deal with the non-linearities of heat sources and
convection heat transfer resistances. It has been shown that resulting radial temperature
distribution of pinion and gear can be modelled by a power law function while longitudinal
temperature distribution is of parabolic shape in dip lubricated systems, provided that
load distribution is uniform and no additional heat source is nearby. These results are
consistent with evidences from scientific literature [126] and they can be used to model
thermally-induced gear geometry distortion in the next chapter.

Finally, numerical results have been compared to experimental values from [28] for
dip lubricated gear pairs with variable rotating speeds, torques and immersion depths.
Although numerical trends are similar to experimental results, deviations arise in some
conditions which seem to be ruled by forced convection heat transfer conditions resulting
from the complex oil flow patterns inside the gearbox.





Mistakes are, after all, the foundations of truth, and
if a man does not know what a thing is, it is at least
an increase in knowledge if he knows what it is not.

— Carl Jung, 1875 - 1961
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This chapter describes the prediction of gear teeth thermally-induced
geometry distortion and the effects of deviations on mechanical behaviour.
First, analytical modelling of gear teeth thermal deformation is presented.
The influence of basic gear geometry parameters, temperature increase and
thermal gradient are analysed and resulting geometry distortion is classified
in terms of pitch, profile and lead deviations following current practice in
ISO 1328-1 [284] gear standard. Then, the impact of thermally-induced
deviations on mesh behaviour is studied; the influence of composite pinion
and gear distortions on backlash and no-load transmission error is computed
and uneven load distribution and relative stress behaviour are analysed. In
the next section, the thermo-mechanical behaviour of an helical gear test
case is fully described, teeth modifications to enhance contact performance
are proposed and results are compared with the initial geometry. Finally,
design guidelines to deal with thermal effects are summarized at the end of
the chapter and conclusions are withdrawn.
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6.1 Introduction

It has been shown in Chapter 5 that the overall gear pair temperature is far from being
constant. Gear geometry, operating conditions and immersion depth affect radial and
longitudinal temperature distribution and therefore, thermally-induced uneven dilatation
exists. Furthermore, pinion and gear are usually subject to different temperatures if gear
ratio is other than unity; as a consequence, the degree of expansion is also different. In
such conditions, theoretically perfect mesh of pinion and gear is distorted and, similarly
to manufacturing errors, contact behaviour under load is expected to be altered.

6.2 Thermally-induced geometry distortion

From Equations 3.4 and 3.5 it is possible to proof that the involute property is lost when
thermal gradients exist. We designate by R(ξy) the parametric representation of the
distorted involute flank which is the result of the sum of the original involute, r(ξy), and
the local thermal deformation, u(ξy). Neglecting the influence of thermal stresses we have:

|R(ξy)|= |r(ξy)|+ |u(ξy)| (6.1)
|u(ξy)|= αL ·∆Θ(ry) · |r(ξy)| (6.2)

Where the radial temperature distribution can also be represented parametrically as a
function of the roll angle because ry = f(ξy) and therefore ∆Θ(ry) = ∆Θ(ξy). If the
distorted geometry R(ξy) is still involute after thermal deformation, there must be a
constant base radius, Rb, that complies with Equation 3.5 in the following way:

R(ξy) = |R(ξy)| ·
{

sin[ξy−arctan(ξy)]
cos[ξy−arctan(ξy)]

}
(6.3)

|R(ξy)|= |r(ξy)| ·
[
1 +αL ·∆Θ(ξy)

]
= rb ·

√
1 + ξ2

y ·
[
1 +αL ·∆Θ(ξy)

]
=Rb ·

√
1 + ξ2

y (6.4)

From Equation 6.4 one yields Rb = rb ·
[
1 +αL ·∆Θ(ξy)

]
which leads to the conclusion

that, unless temperature increase is constant, there is not a single solution for the base
circle radius and therefore flank geometry is no longer involute.

The effects of thermally-induced geometry distortion have been depicted in Figure
6.1, where a perfect involute including profile modifications is subject to an overall
temperature increase that affects the designed profile. From this figure, and further
analysis of Equations 6.3 and 6.4, several conclusions can be inferred. On the one hand,
it is seen that for the case of small teeth where the roll angle difference between the
start and end of the active profile is small, temperature gradients can be neglected and
therefore, it can be assumed that temperature increase is constant which leads to a
new involute with slightly larger base circle diameter. As a consequence, base pitch
is increased and pressure angle is reduced giving rise to a new involute with different
properties if compared to that originally designed. Moreover, if pinion and gear have
different temperatures (e.g. in case of gear ratio other than unity), a pitch mismatch
will result and therefore mechanical performance will be affected. In case of modified
profiles designed to enhance contact behaviour under load, (see detail in Figure 6.1),
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Figure 6.1: Schematic representation of thermally-induced involute geometry distortion

temperature increase will distort the latter as the modified geometry with allowance
ε(ξy) at the desired design roll angle, ξy, is moved to a new position, ξ′y, with a different
allowance, ε(ξ′y). As a consequence, load distribution and transmission error behaviour
will no longer be the one predicted in the design stage at the operating load.

On the other hand, if tooth depth is bigger and temperature differences are no more
negligible, additional form deviations overlap to the change of pressure angle and pitch,
thus altering predicted mechanical response significantly. Furthermore, in large face
width gears, longitudinal temperature differences will produce variable degrees of thermal
distortion along the tooth trace and therefore, local profile slope and form deviations
arise in the active flank. In the case of helical gears, helix angle errors will produce
a contact line mismatch that will tend to increase loads towards one of the face ends,
thus increasing the probability of gear failure.

All these phenomena interact in pinion and gear and the composite effect is currently
far from predictable [8]. Individually, geometry is affected by two factors: i) radial
thermal deformations distorting the transverse profile and ii) helix angle mismatch
due to axial expansion. Both terms are studied separately in the following sections
and analytical methods are proposed to compute thermal deformations from a given
temperature distribution. Finally, mesh behaviour under combined thermo-mechanical
loads will be studied with the aid of the load distribution model developed in Chapter 3.

6.2.1 Profile distortion

Thermal expansion of a thin gear slice subject to a radial temperature distribution
is assumed to be approximately equal to that of a hollow disc where the radial and
circumferential stresses and relative displacements are ruled exclusively by the radial
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position. According to Hetnarsky and Slami [165], for plane stress conditions we have:

u(ry) = (1 +ν) · αL
ry
·
∫ ra

rsh

[
∆Θ(ry) · ry

]
dr +C1 · ry + C2

ry
(6.5)

σrr(ry) =−E ·αL
r2
y

∫ ra

rsh

[
∆Θ(ry) · ry

]
dr + E ·C1

1−ν −
E ·C2

(1 +ν) · r2
y

(6.6)

σφφ(ry) = E ·αL
r2
y

·
∫ ra

rsh

[
∆Θ(ry) · ry

]
dr−E ·αL ·∆Θ(ry) + E ·C1

1−ν + E ·C2
(1 +ν) · r2

y

(6.7)

Where E, αL and ν are material’s elasticity modulus, thermal expansion coefficient and
Poisson’s ratio respectively, ∆Θ(ry) = Θ(ry)−Θ0 is the temperature increase at the
radial distance ry; and C1, C2 are constants dependent on boundary conditions. For
free thermal expansion of a hollow disc with inner radius equal to the shaft radius, rsh,
and outer radius equal to tooth tip radius, ra, both constants are determined applying
the boundary conditions σrr(ry = rsh) = 0 and σrr(ry = ra) = 0.

Since the temperature distribution must be integrated to obtain local thermal defor-
mations, u(ry), a power law temperature variation between the shaft (subscript “sh”)
and the tooth tip (subscript “a”) is assumed following:

Θ(ry) = (Θa−Θsh) ·
(
ry− rsh
ra− rsh

)n
+ Θsh (6.8)

The radial temperature distribution of each gear slice resulting from the thermal
model is regressed under the form of Equation 6.8 and in such conditions, the integral,
Θ(ry)∗, in Equations 6.5 to 6.7 can be solved analytically leading to:

Θ(ry)∗ = Θa

(ra− rsh)n ·
[(ry− rsh)(n+1) · (n · ry + ry + rsh)

(n+ 1) · (n+ 2)

]
− Θ0

2 ·
(
r2
y− r2

sh

)
(6.9)

This solution is applicable to any power law radial temperature distribution and
contrarily to the mechanical model presented in Chapter 3 no longitudinal coupling is
considered, that is, the influence of thermal stresses in the axial direction is neglected.

Applying the boundary conditions for free thermal expansion, constants C1 and C2
can be solved; which can be used together with Equations 6.5 and 6.9 to compute the
radial displacement, u(ry), of any point in the flank. Thus, we have:

C1 = (1−ν) ·αL
r2
a− r2

sh

·Θ(ry)∗ (6.10)

C2 = (1 +ν) ·αL · r2
sh

r2
a− r2

sh

·Θ(ry)∗ (6.11)

Although the method has been developed for hollow discs, it can be easily extended
to solid ones by setting rsh = 0 and considering that at the centre of the solid disc
displacements are zero and radial and circumferential stresses have the same value.
Moreover, an additional interesting solution is derived from previous Equations that allows
analysing the influence of thermal stresses on the induced geometry distortion. By setting
σrr = σφφ = 0 over the whole range of radial positions, ry, constants C1 and C2 resolve into:

C1 = (1−ν) ·αL
2 ·∆Θ(ry) (6.12)

C2 = (1 +ν) ·αL
2 ·

[
r2
y ·∆Θ(ry)−2 ·Θ(ry)∗

]
(6.13)
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Substituting the latter in Equation 6.5, the displacement of any point in the flank without
considering thermal stresses is obtained:

u(ry) = αL ·∆Θ(ry) · ry (6.14)

Which leads to the classical solution for constant temperature increase u(ry) = αL ·∆Θ ·ry.
Finally, the general parametrical representation of a spur gear involute profile with com-

posite design modifications and thermally-distorted geometry, R(ξy), is computed from:

R(ξy) =
[
rb ·
√

1 + ξ2
y +u(ξy)

]
·
{

sin[ξy−arctan(ξy)]
cos[ξy−arctan(ξy)]

}
− n̂(ξy) · δ(ξy) (6.15)

To calculate thermally-induced profile errors with respect to the theoretical involute,
normal deviations, ε′(ξy), are computed similarly to intended modifications following:

R(ξy) = r(ξy)− n̂(ξy) · ε′(ξy) (6.16)

Furthermore, at a sufficiently large distance away from the base circle and assuming that
local thermal deformation in steel gears is small, this equation approximates to:

ε′(ξy)≈ δ(ξy) +u(ξy) · sin[(arctan(ξy)] = δ(ξy) +u(ξy) · sin(αyt) (6.17)

Which is used as thermally-induced separation in Equation 3.86 to solve load distribution
and transmission error under thermo-mechanical loads.

Figure 6.2 shows a sample of the degree of distortion of FZG Type Cmod pinion and
gear from Table 4.7 subject to different temperatures.

(a) Pinion (b) Gear

Figure 6.2: Thermally-induced flank distortion at constant temperature in FZG type Cmod gears

Both wheels have been designed with DIN 3967-cd25 tolerance field [156] which
results in a mean manufacturing allowance of 42 µm. The initial separation at ambient
temperature is the sum of the latter and the linear tip relief, however, as temperature
is increased, thermal deviations reduce the available backlash and approximate to the
theoretical profile. If sufficient allowance is not provided both gears will exceed the
position of the theoretical involute at high temperatures and gears may jam.
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Moreover, it is observed in Figure 6.2 that the initial vertical line representing the
involute profile is bent progressively indicating that pressure angle deviations arise with
temperature change. If the amount of slope deviation is different in pinion and gear,
contact conditions may differ from those calculated at the design stage.

The accuracy of the disc approximation applied to gear geometries has been validated
with the aid of finite element simulations where a radial temperature distribution following
Equation 6.8 has been applied to different spur gear geometries, gradient types and
temperature levels. Results show that sufficient accuracy is obtained with maximum errors
of 5% between analytical predictions and numerical results at the highest temperatures
and steepest gradients. These differences are mainly located towards the root of the
tooth because thermal stress concentrations arise in this region. The procedure and
results are summarized in Appendix B.

In order to understand the effect of each variable on the total amount of profile
deviation, a parameter analysis has been carried out and results are shown in Figure 6.3.

(a) Temperature difference (b) Gradient type (c) Thermal stresses (d) Gear material

Figure 6.3: Influence of parameters on FZG type Cmod gear thermally-induced flank distortion

First, the temperature difference between teeth and shaft is studied for the case of the
maximum teeth temperature of Θb = 160 ◦C. Thermal model simulations from Chapter 5
have shown that the temperature distribution between both is approximately parabolic
with a maximum temperature difference of 20◦C to 30 ◦C depending on the gear geometry,
rotational speed and oil level. It is seen in Figure 6.3a that such a temperature profile,
can result in a reduction of up to 5 µm per 30◦C difference with respect to the constant
temperature case. The effect of the gradient type in Figure 6.3b is similar. Analysed
temperature distributions usually follow a parabolic trend (n=2) and the difference
with respect to the constant temperature case (n=0) is approximately 5 µm with the
linear profile following closely. Furthermore, under such temperature distribution the
effect of thermal stresses is called into question and results for the latter are depicted
in Figure 6.3c. It is seen that a difference of up to 7 µm exists if thermal stresses are
neglected at the maximum bulk temperature of Θb = 160 ◦C and temperature difference
of 30 ◦C with the shaft.However, for common operating temperature distributions in
steel gears, the influence of the thermal gradient is not very relevant and it may be
neglected. This assumption will lead to considerable simplifications in the prediction
of tooth modifications to compensate for thermal distortions.
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Finally, material properties are studied in Figure 6.3d. As expected, metallic gears with
large linear expansion coefficient, αL, such as bronze, experience the largest deformations
but for common steel gears the differences are within the ± 3 µm tolerance. In this sense,
even larger distortions should be expected in polymer gears, not only due to the increased
thermal expansion coefficient but also for the low thermal conductivity that tends to
localize the highest temperatures in the tooth region giving rise to significant gradients
and producing higher distortion levels. In this work, only steel gears are analysed.

In the following sections, geometry distortion is broken down in individual terms as
suggested by ISO 1328-1 standard [284] where pitch deviations, fpt, coexist with profile
and lead errors, named Fα and Fβ respectively; which are produced by the superposition
of slope deviations, fH , and form alterations, ff .

Pitch deviations

As it can be seen in Figure 6.4, thermal distortion produces a diameter expansion and as
a consequence, tooth-to-tooth arc distance is increased for a given angular pitch, τ .

Figure 6.4: Thermally-induced pitch and pressure angle deviations

The difference between the design pitch in the transverse plane, pyt, and the real
one, p′yt in the vicinity of the reference diameter is referred to as single pitch deviation,
fpt, by ISO 1328-1 standard [284]. Thus, it is calculated as:

fpt = p′yt−pyt = τ · (r′y− ry) = 2 ·π
z
·u(ry) (6.18)

Pitch errors are known to affect mesh behaviour [25] and maximum manufacturing
deviations are limited by ISO 1328-1 standard [284] as a function of reference diameter,
module and accuracy grade. Figure 6.5 depicts the influence of temperature on this
parameter for different modules and number of teeth relative to the limitations of the
standard. The maximum allowable deviation corresponds to the largest module or
number of teeth while the minimum values are those of the smallest. In both cases,
radial temperature gradients are parabolic with values increasing proportionally to bulk
temperature up to a maximum difference of 30 ◦C with the shaft.

It is observed that at common operating bulk temperatures (usually above 80 ◦C),
pitch distortion exceeds ISO 1328-1 standard limitations for the reference accuracy grade
of 5. Moreover, depending on the module, pitch deviation doubles and even triples
design limitations. This is explained by the size of the reference diameter which is ruled
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(a) Influence of module (b) Influence of the number of teeth

Figure 6.5: Influence of temperature, normal module and number of teeth on pitch deviations

by the module at a fixed number of teeth, that is, fixed angular pitch. Big diameters
distort more and therefore, they easily exceed the maximum allowed value. On the
contrary, for a given module, the increase in the number of teeth in Figure 6.5b does
not affect as much because angular pitch decreases and diameter increases, both in the
same proportion, and therefore they cancel each other. Furthermore, it is remarked
that the slope of the curves is almost linear which is explained by temperature gradient
between teeth and shaft which is rather small.

At this point, it is to be noted that ISO 1328-1 standard limitations are not designed
for uniform pitch deviations resulting from temperature increase, but for variable pitch
errors in the circumferential direction which arise as the result of the manufacturing
process inaccuracies. Therefore, ISO 1328-1 standard allowances should be reinterpreted
for thermally-induced deviations and they should rather be applied to relative pitch errors
resulting from temperature differences between pinion and gear. According to Figure 6.5,
the latter might be in the order of 5 µ for a maximum temperature gradient of 30 ◦C and the
largest module. If this value is compared to the maximum allowance it is still acceptable.

Figure 6.6: Influence of temperature and accu-
racy grade on relative pitch deviations

Finally, it is interesting to compare
the influence of gear teeth accuracy grade
with the pitch deviations relative to the
ISO 1328-1 recommendations. Figure 6.6
summarizes the latter and it shows that
gears manufactured with high accuracy
are more sensitive to temperature increase
as they can exceed design limits at low
temperatures. At this high quality lev-
els thermally-induced geometry distortions
should be evaluated together with manu-
facturing errors as total pitch deviations
resulting from the addition of both effects
can lead to uneven load distribution and
malfunctioning of the gear mesh.
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Total profile deviations

According to ISO 1328-1 standard [284], total profile deviation in the transverse plane is
the perpendicular distance between to design traces enclosing the real profile over the
evaluation length; which is equal to 92% of the total active length measured from the
end of the active profile (characteristic point E). Total deviation, Fα is the result of the
superposition of two different errors: i) profile slope deviations, fHα, and ii) profile form
errors, ffα. In the case of thermally-induced geometry distortions, the former is the
consequence of the overall diameter growth due to temperature increase (see Figure 6.4)
and the latter is the result of thermal gradients altering the involute profile locally.

Figure 6.7 depicts the influence of basic design parameters on thermally-induced total
deviation. In all cases, gear teeth bulk temperature and thermal gradients inside the
gear body are increased progressively with maximum teeth temperatures of 200 ◦C and
thermal gradients up to 30 ◦C between teeth and shaft with a parabolic trend. The length
of the active profile for the evaluation of total errors is computed considering that the
gear is mated with a rack as suggested by ISO 1328-1 standard [284] and the position
and slope of the mean profile trace is found by the least squares method.

(a) Number of teeth (b) Module

(c) Pressure angle (d) Profile shift

Figure 6.7: Total profile deviations as a function of initial design parameters
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Under the aforementioned thermal conditions, temperature rise produces a significant
increase of the total deviation which exceeds ISO 1328-1 design limitations at medium
temperatures (approximately 80 ◦C) similarly to pitch deviations. In all cases an almost
linear trend with temperature rise is maintained similarly to pitch deviations.

The influence of normal module and pressure angle stands out over the rest, as they
produce a larger variation of total deviation with temperature rise, both approaching 20
µm to 30 µm at common operating temperatures. On the one hand, higher normal module
indicates larger diameters, hence, higher distortions, but also increased profile evaluation
lengths; as a consequence, total profile deviation between the start and end of the active
profile is bigger. On the other hand, pressure angle decrease produces an increase in total
profile deviation for a fixed module and number of teeth. This is explained by the relation
between the base circle diameter increase and profile inclination, which are interrelated
by ∆db ≈ −∆αy · db · tan(αn) [159]. From this equation, it is deduced that base circle
diameter expansion leads to a different inclination error depending on the design pressure
angle, which is reflected in the total profile deviation in Figure 6.7c.

In the analysed variable range, total profile deviation, Fα, is affected mostly by
profile slope deviations, fHα. The latter is calculated as the perpendicular distance
between two design traces that intersect the mean profile trace of the distorted flank.
It happens that, in all analysed test cases, the perpendicular distances yielding the
total profile error and the slope deviation is almost identical. It has been found that,
approximately 99.5 % of the distortion is due to the change in profile slope. Only in the
case of very large modules (mn >> 4.5 mm) and/or abrupt thermal gradients (n >>2)
profile form errors, ffα, might become significant.

Profile slope errors are explained by the increase in base circle diameter (see Figure 6.6)
which necessarily decreases pressure angle, to cope with the equation db =mn ·z · cos(αn)
at a fixed module and number of teeth. This conclusion has also been addressed by several
authors [24, 26, 159], and more recently, Kashyap [140] has measured experimentally the
influence of temperature on plastic gear profile slope deviations confirming this trend.
Therefore, in order to avoid pressure angle mismatch between pinion and gear subject
to different temperatures, profile slope modifications should be applied to correct the
expected uneven load distribution and transmission error patterns.

Finally it is interesting to remark in Figures 6.2 and 6.3 that single pitch error and
total profile deviation can be interrelated provided that form errors are neglected. In
such conditions, profile diagram plotted against the roll angle is a linear curve and pitch
errors calculated in the reference diameter can be translated into profile slope errors and
vice-versa. This relation allows to predict pinion and gear individual modifications to
enhance contact behaviour under thermo-mechanical loads (equations in section 6.5).

6.2.2 Helix distortion

Thermal expansion is three-dimensional and therefore it is not limited to the radial
direction in the transverse plane as assumed in section 6.2.1; it also affects the longitudinal
direction and, as a consequence, helix angle is distorted in helical gears. Moreover, due to
the temperature concentration in the centre of the face width, dilatation is not uniform
along the tooth trace which gives rise to pitch cylinder barrelling [18].
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Figure 6.8 depicts this situation in the base tangent plane. As observed, total
helix distortion, Fβ, is the result of the superposition of the helix angle error and
tooth barrelling which is equivalent to the helix slope deviation and form error in
terms of ISO 1328-1 standard [284]. Depending on the composite effect of temperature
distribution, helix angle and face width, total deviation could be significant with respect
to manufacturing limitations.

N-1 N+1N

b

b
scy

scy

Figure 6.8: Thermally-induced helix slope and form deviations in the base tangent plane

In the proposed model, total longitudinal expansion, ∆b, and corresponding helix
slope distortion, ∆x, is computed neglecting the influence of axial thermal stresses. In
other words, thermal expansion of each slice, u(ry,zy), is strictly radial and it depends
only on the temperature distribution in the transverse plane located at axial position zy.
The influence of local helix deviation, ∆x(zy), resulting from longitudinal expansion is
overlapped to the radial distortion term in the base tangent plane following:

∆ε(ry,zy) = ε′(ry,zy)− ε(ry,zy) = [u(ry,zy) · sin(αyt)±∆x(zy)] · cos(βb) (6.19)

Where u(ry,zy) is the local radial expansion calculated following Equation 6.5 with the
temperature distribution at axial position zy and ∆x(zy) is computed from:

tan(β′b) = ∆x
∆b = b · tan(βb)

b+ ∆b
(6.20)

Rearranging terms and neglecting the influence of thermal stresses, we have:

∆x= b ·∆b · tan(βb)
b+ ∆b = b ·αL ·∆Θb · tan(βb)

1 +αL ·∆Θb
(6.21)

The amount αL ·∆Θb is negligible in steel gears and therefore local helix slope deviation is:

∆x(zy)≈ zy ·αL ·∆Θb · tan(βb) (6.22)

Where the bulk temperature of the teeth is the mean value over the face width.

Total helix deviations

Figure 6.9 summarizes the behaviour of helical gears subject to a temperature increase.
Similarly to profile distortion simulations temperature differences between teeth and
shaft follow a parabolic trend with progressively increasing values up to a maximum
difference of 30 ◦C.
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(a) Influence of helix angle (b) Influence of face width

Figure 6.9: Influence of temperature, helix angle and face width on total helix deviations

Additionally, in order to analyse the effect of temperature concentration in the
centre of the face width a longitudinal parabolic temperature gradient is simulated,
with a maximum difference of 20 ◦C between the tooth centre and the face ends for
a reference face width of 100 mm.

Two parameters are studied in Figure 6.9, the influence of face width and that of
helix angle. In general, it is observed that the amount of total deviation exceeds ISO
1328-1 standard limitations; moreover, the values double and nearly triple those of total
profile deviations, Fα, indicating that thermally induced helix slope errors can be harmful.
Helix angle and face width increase have both the same proportional effect on total helix
deviations, which is explained by Equation 6.22 indicating that most of the total helix
distortion is due to slope deviation, fHβ. This is additionally supported by results at
helix angle β = 0◦ where the slightly increasing values are due to form deviations resulting
from longitudinal temperature gradient. If the same amount of form error is overlapped
in the rest of the cases it is concluded that total deviations are mainly due to slope errors.

On the other hand, the steep slope of the curves points out that temperature differences
between pinion and gear will lead to a significant helix mismatch and therefore specific load
will be increased towards one of the face ends. For instance, it is seen in Figure 6.9b that
in case of a medium helix angle (β = 15◦) but sufficiently large face width, a temperature
difference between pinion and gear of 20◦C leads to an helix mismatch of 10 µm which is
enough to produce a noticeable increase in tooth root stress and accelerate breakage.

As described earlier, form deviations are not the main cause of thermal distortion, but
its values are higher than the corresponding ones in the profile direction where it was shown
to be negligible; thus, their effect is further studied. Thermal model simulations show that
if mesh is aligned, temperature distribution in the longitudinal direction is symmetric,
that is, front and back ends are subject to the same temperature and maximum value
is located in the middle of the face width (if no axial oil pumping action is considered).
Temperature profile is approximately parabolic and therefore a parabolic crowning would
result from the uneven expansion in the base tangent plane. Figure 6.10 depicts the
cumulative distortion of the design helix subject to a slope deviation and form deviation.
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Figure 6.10: Definition of helix form deviation according to ISO 1328-1

According to ISO 1328-1 standard [284] the evaluation range in the longitudinal
direction is equal to the length of tooth trace shortened by 5% of the face width at each
end, and the mean helix is found by the least squares method. Under this conditions
form deviation is defined as the distance between two duplicates of the mean helix
which are tangent to the distorted profile on each side (see parameter ffβ in Figure
6.10). If the variation of this parameter is analysed as a function of temperature, helix
angle and face width, it is observed that values are in the order of a few microns for
common operating temperatures and they do not exceed manufacturing limitations,
even at the highest temperatures.

(a) Influence of helix angle (b) Influence of face width

Figure 6.11: Influence of temperature, helix angle and face width on helix form deviations

Moreover, from the observation of Figure 6.9 it is concluded that the amount of
form deviation, ffβ, is directly related to the maximum temperature difference along
the tooth trace and it does not depend on the size of the face width, which is consistent
with results in Figure 6.11b. However, face width does affect the curvature radius of
the thermally induced longitudinal crowning and therefore contact conditions under
load are expected to be modified.
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If thermally induced crowning is modelled as a parabolic curve ∆ε(zy) =A ·z2
y +B ·zy+

C resulting from the parabolic temperature distribution, local curvature is calculated as:

k(zy) = f ′′(zy)(
1 + [f ′(zy)]2

) 3
2

= 2 ·A(
1 + [2 ·A ·zy +B]2

) 3
2

(6.23)

Moving the system of coordinates to the point of maximum distortion in the middle of the
face width, we have A= 4 · [umax · sin(αyn)] · b−2, B = 0 and C = 0. Therefore, curvature
radius, R = 1/k, at the centre of the face width (zy = 0) and in the base tangent plane is:

R(zy = 0) = 1
2 ·A = b2

8 ·umax · sin(αyn) = b2

8 · ry ·αL ·∆Θβ,max · sin(αyn) (6.24)

Where ry is the radial distance, b is the face width, αyn is the local normal pressure
angle, αL is the thermal expansion coefficient and ∆Θβ,max is the maximum temperature
difference along the face width relative to tooth ends. For any other axial position,
inverse of Equation 6.23 applies.

Tooth trace crowning is usually beneficial as it tends to minimize the effects of mesh
misalignments by concentrating load towards the centre of the face width. However,
gear mesh between a crowned pinion and wheel with two principal curvatures in the
profile and longitudinal directions is no longer a line contact and therefore, Hertz’s
contact stress equations in Section 3.3.3 should be modified to account for elliptical
bearing patterns. An increase in contact pressure is expected if crowned geometry is
considered but if one analyses the order of magnitude of thermally-induced barrelling,
it is not expected to produce significant alterations of the initial contact stress. On
the contrary, the amount of helix slope deviations is far from negligible and it can
be detrimental, thus lead modifications should be applied in pinion and gear to avoid
undesired load concentrations at tooth edges.

6.3 Thermal effects on mesh behaviour

As it has been described previously thermal distortion produces a diameter growth
and therefore basic mesh parameters are affected along with the profile and helix
geometries themselves. Among others, the position of the start/end of the active
profile is shifted, separating distance, normal backlash and root clearance are reduced
and composite parameters such as reduced curvature radius are altered. Therefore,
in order to better understand mesh behaviour under the effect of thermally-induced
distortions, the parameter analysis in the following section will be separated in no-
load terms and load-related variables.

For this purpose FZG type C-PT gear pair will be used. The modified version has
already been presented in Table 4.7, but no relief will be applied in this section unless
otherwise stated. The geometry is characterized by being a reduction spur gear pair with
narrow face width, therefore, longitudinal gradients can be neglected and only radial
temperature distribution is considered. Three torque levels according to ISO 14635 [285]
are selected: i) low (KS-5= 94.1 Nm), ii) medium (KS-7= 183.4 Nm) and ii) high (KS-9=
302 Nm). Overall temperature levels and gradients are set according to the thermal
simulation results which have been experimentally measured by [28]. Finally, initial gear
geometry and temperature will be slightly varied to show the effect of specific distributions
on mesh behaviour (e.g. large face width with longitudinal gradient).
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6.3.1 No-load transmission error and backlash

Figure 6.12 shows the effect of diameter growth on clearance decrease. A radial expansion
of the pinion is translated into a normal backlash decrease which affects gear positioning
during rotation. This way, no-load transmission error behaviour and that of backlash
are closely related, and therefore, the latter should be analysed first.

Figure 6.12: Thermally-induced clearance decrease

Moreover, if thermally-induced normal backlash decrease exceeds initially manufac-
tured clearance as computed by Equation 3.17, mesh jamming will occur. To avoid this
situation, the latter must be greater than the former in all the potential meshing points
in the base tangent plane. This condition can be stated as follows:

|ε1 + ε2|> |∆ε1 + ∆ε2|−∆εH = ∆jbn (6.25)

Where the initial clearances in the normal direction, ε1,2, of pinion and gear are the
sum of manufacturing allowances, κ1,2, and design modifications, δ1,2 (as shown in
Figure 3.9), thermally-induced deflections, ∆ε1,2, are calculated following Equation 6.19
and the term ∆εH accounts for the backlash increasing effect of housing expansion
which can be computed from:

∆εH = uH · sin(αwt) · cos(βb) (6.26)

Therefore, for each point, Py(ry,zy), in the meshing plane the following condition must
be satisfied to avoid gear jamming.

1
cos(βb)

· [ε1 + ε2]︸ ︷︷ ︸
Initial

allowance

> [u1 · sin(αyt,1) +u2 · sin(αyt,2)]︸ ︷︷ ︸
Radial dilatation

± [∆x,1−∆x,2]︸ ︷︷ ︸
Axial growth

−uH · sin(αwt)︸ ︷︷ ︸
Housing

expansion

(6.27)

Where u1,2 represent the radial expansion of each gear slice calculated with Equation
6.5, ∆x1,2, reflects the influence of the overall longitudinal dilatation computed following
Equation 6.22 and uH = aw ·αH ·∆ΘH is the centre distance thermal growth due to the
temperature increase of the housing. Note that the left hand side of Equation 6.27 is
similar to the no-load transmission error as defined in Section 3.2.2. Therefore, NLTE
can also be used to detect gear jamming by identifying the conditions that produce
NLTE=0 in any point of the line of action. Both parameters, backlash and NLTE
will be analysed in the following sections.
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Backlash behaviour

Figure 6.13 shows the influence of temperature increase, gradients and tolerance field on
backlash behaviour in the working pitch circle and relative to the initial manufacturing
allowance. The influence on the reduction of backlash of elastic deformations, individual
geometry deviations or centre distance tolerances is not considered and only the effect
of temperature increase is depicted. In case of standard manufacturing allowances for
mechanical applications (see tolerance field for DIN3967-cd25 [156]) it is observed that
tooth bulk temperature increase affects backlash reduction strongly, at an approximate
rate of 25% reduction per 50◦C increase.

(a) Influence of gradients (b) Influence of the tolerance field

Figure 6.13: Influence of temperature and manufacturing allowances on mesh jamming probability

Temperature differences between pinion and gear shift the initial curve slightly,
approximately 5% per 15◦C difference, while gradients with the housing affect more
severely, 25% per 50◦C. Therefore, for standard tolerances, if the composite effect of
pinion, gear and housing is considered, it is unlikely that mesh jamming will occur, even at
the highest temperatures. However, for tight allowances (see Figure 6.13b) the probability
of mesh jamming is increased exponentially. According to Niemann [33] tolerance field
f25 is suited to machine tool applications and ab25 to turbo gears. The former might
collapse with small temperature variations as the slope of the curve is very steep, while
the latter is designed to avoid such situations because it only reaches half the initial
allowance at the maximum bulk temperature. If the effect of housing and temperature
differences between pinion and gear are considered as in Figure 6.13a mesh jamming
probability is delayed. Furthermore, the additional influence of load tends to increase
backlash, therefore, the same result would be expected and mesh jamming probability
would be reduced. As a consequence, one would expect jamming to occur under conditions
of tight backlash, small elastic deflections and high temperatures so that the influence
of thermal distortion prevails over mechanical loads.

In general, it is concluded that applications where high positioning and temperature
requirements exist, might suffer from mesh jamming, and therefore special attention needs
to be paid. Moreover, it is also observed that if pinion, gear and housing temperatures
can be predicted with accuracy, initial design backlash can be reduced considerably, which
favours the reduction of the overall transmission error between pinion and gear.
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No-load transmission error

As it has been described previously, temperature increase produces a backlash decrease and
this has a definite impact on transmission error mean level. Moreover, thermally-induced
geometry errors predicted in section 6.2.1 are also observable through this parameter.
Figure 6.14, shows the relation between temperature increase, gradients and relative
profile errors on no-load transmission error of FZG type C-PT gear pair.

(a) No-load transmission error along LOA (b) Normal deviations along LOA

Figure 6.14: Influence of bulk temperature increase and gradients on no-load transmission error
and normal deviations along the line of action

For equal pinion and gear temperatures in Figure 6.14a the mean level of transmission
error is shifted by an amount equal to the backlash decrease, ∆jbn = ∆ε1 + ∆ε2, as
calculated by the right hand side of Equation 6.27 in the working pitch circle. However,
when temperature gradients exist between pinion and gear, the amount is reduced slightly
and profile deviations start to be noticeable showing a change in pressure angle with an
approximate step of 5 µm from double to single teeth contact regions. This is due to
the profile slope difference resulting from uneven thermal expansion which is explained
by Figure 6.14b. When bulk temperatures of pinion and gear are constant, total profile
deviations are strictly due to a change in pressure angle which is translated into a linear
curve when plotted against the roll angle. At the same temperature, the slope of the
curve is equal for pinion and gear and therefore they compensate each other resulting in a
constant transmission error in Figure 6.14a. On the contrary, when a temperature gradient
exists between both, a relative slope deviation arises which gives rise to a non-uniform
transmission error along the line of action. Similarly, any kind of thermal gradient within
the gear body will reduce the total thermal deformation as well and the total shift in
transmission error mean level will be reduced as a consequence. The described behaviour
will be overlapped on the loaded transmission error diagram as shown in the next section.

This relation between temperature, profile slope, backlash and NLTE can be demon-
strated analytically. For constant temperature increase we have:

∆ε(ξy)≈ u(ξy) · sin(αyt) = [rb ·
√

1 + ξ2
y ·∆Θb ·αL] · sin[arctan(ξy)] (6.28)
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Applying inverse trigonometric relations: sin[arctan(ξy)] = ξy · (1 + ξ2
y)−1/2. Therefore,

Equation 6.28 can be rewritten as:

∆ε(ξy)≈∆Θb ·αL · rb · ξy = αL ·∆Θb ·ρy = αL ·∆Θb ·TnPy (6.29)

Equation 6.29 shows the described linear behaviour with the roll angle and computing
backlash decrease along the line of action for equal pinion and gear temperatures we have:

∆jbn = ∆ε1 + ∆ε2 = αL ·∆Θb ·T1Py +αL ·∆Θb · [T1T2−T1Py] = αL ·∆Θb ·T1T2 (6.30)

Which is constant for a given gear pair with the same material and equal temperatures,
thus proving that under these conditions NLTE diagram is only shifted with respect to
the initial behaviour. If housing expansion as computed by Equation 6.26 is considered
together with this relation the amount of total backlash change is reduced maintaining
the constant trend along the line of action.

Premature contact

The change of profile and helix slopes, together with the increase of tip diameter and
pitch, also affects the position of characteristic points along the line of action (points A
to E) and similarly to load-induced contact path increase, the real start/end of the active
profile may also be shifted. These parameters are also geometry-dependent in the same
way as NLTE behaviour, and therefore, they are analysed in this section.

The real length of the path of contact is ruled by tooth stiffness and separating
distance (see section 3.2.2) and thermally-induced geometry distortions are expected to
affect the latter. Therefore, the influence of temperature increase on premature contact
should be studied. Figure 6.15a shows the overall behaviour of separating distance. Bulk
temperatures are constant and there is no difference between pinion and gear; this way,
thermal deformations are maximum and premature contact effects are more visible. To
simplify the analysis, all thermal expansion effects have been modelled as if gears where
generated with an increased module similarly to Kashyap [140].

(a) Non-dimensional separating distance (b) Relative separation

Figure 6.15: Influence of temperature on separating distance
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It is observed in Figure 6.15a that approach and recess separating distances are almost
unaffected by temperature increase, hence, no significant alteration of premature contact
is expected. If the separation behaviour with respect to ambient temperature is analysed
in Figure 6.15b a 2% to 4% increase is observed in recess and approach paths of contact
respectively. Besides, it is to be noted that the effect of temperature at very small
distances(xy/pbt = 0.1) is more pronounced in approach than in recess. This is explained
by the pitch error induced by temperature increase which is reflected in the new module.
When approach separating distance is calculated, the gear is assumed held stationary and
the pinion virtually rotates until contact occurs. Thus, when thermally-induced pitch
growth exists, the pinion needs further rotation to reach contact thus increasing separating
distance in the line of action. In the recess calculation, the inverse situation exists, pinion
is assumed stationary and gear rotates. The radius of the latter being bigger than that of
the former the rotation needed to overcome pitch growth is reduced. As a consequence,
separating distance in approach is more sensitive to temperature than in recess. In any
case, the order of magnitude of the thermally-induced separation is very small compared
to the initial geometry and premature contact phenomena is not expected to be altered
significantly. This situation will be validated in load distribution diagrams in section 6.3.2.

6.3.2 Thermo-mechanical behaviour

The composite effect of thermally induced geometry deviations and load is studied next.
As it has been described earlier, temperature increase mainly affects profile and helix
angles giving rise to a slope mismatch when pinion and gear are subject to different
temperatures. Therefore, FZG type C-PT spur gears are only affected by pressure
angle deviations and the influence of the latter on load distribution, transmission error
and stress behaviour is analysed in this section. The analytical results shown in the
following have been validated with a finite element model and both have been recently
published in two conference papers [286, 287].

Load distribution

Figure 6.16 shows the influence of bulk temperature and gradients between pinion and
gear on the load distribution diagram. As expected, constant and equal temperature
for both gears give rise to the same pressure angle error and compensate each other
producing the same diagram. However, when thermal gradients exist between pinion and
gear the amount of deviation is different and uneven load distribution arises. For the
considered gear pair, unit load is reduced approximately 10 N/mm per 15 ◦C temperature
difference in Figure 6.16b. As no thermal gradient exists between tooth tip and shaft,
only profile slope error arises and therefore the lines in the double teeth contact region
are perfectly parallel. In any case, it has been shown that common operating temperature
distributions have small gradients, hence, form deviations are negligible.

Moreover, small differences in premature contact are observed in Figure 6.16a.
Increasing temperatures produce larger pitches as shown in the previous section; but they
also increase deviations along the profile, with maximum values found at the tip. As
a consequence, teeth come into contact before expected. It will be shown later in this
chapter that both effects, pitch errors and profile slope deviations are related.
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(a) Constant temperature (b) Temperature gradients

Figure 6.16: Influence of bulk temperature and gradients on load distribution at constant torque

Figure 6.17 shows the influence of temperature on the relative increase of the contact
length with respect to the influence of load. It can be concluded that the thermal
effect implies approximately 2 % increase for the maximum bulk temperature while the
lowest torque level (KS-5) implies 8 %increase. Note that the order of magnitude of
this effect is very close to that of the no-load separating distance (see Figure 6.15b)
indicating that both are inter-related.

Figure 6.17: Influence of temperature and load on relative contact length increase

In order to analyse the influence of thermally-induced barrelling, the narrow face
width of FZG type C-PT gear pair is modified to introduce longitudinal gradients. Face
width is doubled and temperature difference between tooth ends and centre is 10◦C for
pinion and gear which are subject to constant bulk temperatures of 60 ◦C and 90 ◦C
respectively. The effects of this temperature field on 3D load distribution are depicted in
Figure 6.18a. As expected, it is observed that the barrelling effect tends to concentrate
load in the middle of the face width. If longitudinal temperature gradients are small,
thermally-induced crowning is not significant and can even be beneficial to compensate
mesh misalignment. However, in case of large longitudinal thermal gradients contact
stresses may be affected by excessive crowning and accelerate tooth failure.
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(a) Unit load distribution in 3D (b) Average transverse load distribution

Figure 6.18: Influence of longitudinal thermal gradient on load distribution at constant torque

If the average unit loads along the line of action are analysed in Figure 6.18b, it is
observed that the difference in normal load between the initial and distorted diagrams is
approximately 20 µm which is the corresponding value for a 30 ◦C temperature difference
between pinion and gear as shown previously. However, apparently, the effect of thermal
distortion is more visible in Figure 6.18b than in the preceding Figure 6.16b. This
is explained by the increased face width which leads to a reduction of the maximum
unit load to half the original value in Figure 6.16a while the difference between initial
and distorted profiles in the double teeth contact region remains equal; as a result, the
visual effect is enhanced. This leads to the conclusion that when elastic and thermal
deformations coexist the influence of thermal distortion is dominant at low loads while
the elastic deflections prevail at high torques. The relation between both deformations
defines the shape of the load distribution diagram.

Furthermore, the temperature distribution described in Figure 6.18 leads to an
approximate crowning of 1.5 µm for the pinion and 2.2 µm for the gear which is not
significant if considered individually but leads to a composite crowning of 3.7 µm altering
load distribution diagram. These values are somewhat higher than the form deviations
predicted at β = 0 in Figure 6.11. This is due to the fact that bulk temperatures in the
current case are assumed constant for each thin slice and therefore radial expansion is not
affected by thermal stresses, thus, producing maximum deformations. On the contrary,
thermal distortion simulations in Figure 6.11 are dependent on radial gradients that
lead to thermal stresses limiting the amount of deformation. This behaviour is further
described by Figure 6.19 where both situations are compared in the longitudinal and
transverse planes. If gradients in the profile direction are neglected, thermal crowning
effect dominates longitudinal load distribution increasing unit load by 22% at the tooth
centre while decreasing it approximately 50% at tooth ends. This behaviour is overlapped
to profile distortions in the transverse load distribution shown in Figure 6.19b leading
to a considerable change of the load share in the double teeth contact region of the
recess path of contact. However, if profile and longitudinal thermal gradients coexist,
deformations are reduced and unit load in the centre increases only 8% with respect to the
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initial state. The composite effect of profile and longitudinal gradients in the transverse
direction reduces non-uniformities. Thus, the accurate prediction of three-dimensional
load distribution requires including this effect on computed deviations.

(a) Longitudinal load distribution (b) Transverse load distribution

Figure 6.19: Influence of composite longitudinal and radial thermal gradients on load distribution

In general, it is concluded that unit load along the face width of spur gears is ruled
by the thermally-induced barrelling effect resulting from thermal gradients and load
share in the transverse direction is affected by profile slope mismatch due to temperature
differences between pinion and gear. Furthermore, in helical gears, the helix slope
deviation is overlapped and load distribution can be affected even more. This situation
will be analysed in the test case in section 6.4.

Transmission error

It has been shown previously that NLTE is mainly influenced by backlash decrease, there-
fore, behaviour under load will be affected accordingly and previously described uneven
load distribution features will be reflected in the TE diagram as shown in Figure 6.20.

(a) Constant temperature (b) Temperature gradients

Figure 6.20: Influence of bulk temperature increase and gradients on TE at constant torque
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In this case, pinion and gear temperatures are assumed constant, thus no form error
effect is perceived and slope deviations prevail. It is observed in sub-figure 6.20a that TE
mean level is reduced proportionally to temperature increase and the amount is exactly
equal to the reduction of backlash calculated by Equation 6.27 and depicted in Figure 6.14a.
No temperature difference exists between pinion and gear, therefore, pressure angle errors
are equal and they compensate each other. However, when temperature differences between
pinion and gear arise (see Figure 6.20b) it is observed that curves are bent slightly due to
the relative profile slope deviation. This behaviour has also been described in Section 6.3.1.

Figure 6.20b also indicates that temperature differences produce uneven expansions and
the change in mean level of transmission error is reduced relative to the equal temperature
case. The amount of reduction is 3 µm to 4 µm for the considered gear geometry. Moreover,
peak to peak transmission error also seems to be affected by such temperature differences
by approximately 1µm per 15 ◦C difference. In order to further analyse both parameters
the composite behaviour of temperature and load is compared in Figure 6.21.

(a) Mean level of transmission error (b) Peak to peak transmission error

Figure 6.21: Influence of temperature and load on mean level and peak to peak TE

As expected, the mean level is increased proportionally to temperature increase and
the existence of temperature differences reduces the total amount of backlash change. If
the influence of load is compared to that of temperature it is observed that the latter
has a bigger impact on the mean level. Contrarily, the influence of load on peak to peak
transmission error is prevailing. An approximate torque increase of 100 Nm (from KS-5
to KS-7) increases peak to peak value 8 µm while a 100 ◦C overall temperature increase
affects less than 0.5µm. Temperature gradients increase such difference with approximately
1.5µm for 30◦C temperature difference between pinion and gear at the lowest torque.
This amount is decreased to approximately half its value at the highest torque stage
indicating that the effects of thermal distortion are more visible at the lowest torques,
when thermally-induced deformations are bigger in magnitude than elastic deflections.

Finally, if the influence of longitudinal gradients is analysed in Figure 6.22 it is
observed that the mean level decreases about 3 µm relative to the profile distortion
case due to the effect of thermally-induced crowning, while peak to peak value remains
almost constant. If radial gradients are considered as well, the total amount of form
deviation is expected to be reduced due to the effect of thermal stresses and therefore
the change in transmission error will not be as significant.
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Figure 6.22: Influence of longitudinal temperature gradient on TE at constant torque

Bending and contact stresses

The variation of unit load along the line of action due to temperature differences affects
bending and contact stresses and therefore these parameters must be analysed as well
as they can lead to a premature failure of the gear pair.

Equations 3.119 and 3.120 have shown that the stress field depends on unit load and
geometry. In the case of bending stresses root fillet geometry is not altered significantly
relative to ambient temperature and therefore root fillet maximum stress is only influenced
by changes in unit load. However, in the case of contact stress, and specially when
longitudinal temperature gradients exist, composite radius of curvature varies with
temperature difference and therefore tooth contact is no longer a line contact but an
elliptical one. Thermally-induced crowning not only concentrates load in the middle
of the face width but it also changes contact pressure through geometry distortion.
Therefore, thermal effects affect bending and contact stresses differently. Figure 6.23
shows the impact of thermally-induced uneven load distribution on the stress field. The
influence of temperature differences is depicted only, as equal temperature increase
does not affect unit load.

It has been shown that thermally-induced profile slope deviation mismatch increases
unit load in the double teeth contact region in recess path of contact. Therefore, bending
stress in this region is more affected than in the approach path of contact due to the
existence of larger distances from the tip to the critical section. The relative bending
stress increase with respect to the equal temperature case is 20 MPa in the recess path of
contact and the reduction in the approach region is 10 MPa for the lowest load (KS-5).
In case of the highest load stage (KS-9), the same stress differences are computed as
the amount of thermal deformation is equal for the same temperature distribution. On
the other hand, contact stresses in Figure 6.23b are mainly affected by changes in unit
load; the influence of composite radius of curvature variation being negligible as very
small differences are observed. The contact stress difference in the double teeth contact
regions in the approach and recess paths of contact is approximately 75 MPa which
represents 8% of the maximum contact pressure.
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(a) Maximum root stress (b) Contact stress

Figure 6.23: Influence of temperature difference on stresses at constant torque

Both diagrams in Figure 6.23, show maximum values of bending and contact stresses
unaffected as unit load in the single tooth contact region remains constant for the
considered load stage. However, when the influence of longitudinal thermal gradients is
considered in large face width gears, unit loads are no more constant and maximum contact
and bending stress values are altered. Figure 6.24 depicts this situation for the gear slice in
the middle of the face width which is subject to the greatest load. Maximum bending and
contact stress values are increased 15 % and 25% respectively for the case of longitudinal
gradients only. For the same increase in unit load the bigger increase of contact stresses
is explained by the application of the elliptical Hertzian stress formulation according to
Appendix C. Longitudinal curvature radius as calculated by Equation 6.23 is considered
and leads to an additional increase of 10% with respect to bending stresses. However, if
the effect of radial temperature distribution is taken into account in combination with
longitudinal gradients, thermal deformations are reduced and maximum stresses values
too, which is observed in the dashed lines in Figure 6.24b.

(a) Maximum root stress (b) Contact stress

Figure 6.24: Influence of longitudinal thermal gradients on stress distribution at constant torque
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6.4 Case study

In this section a test case is defined to analyse the full thermo-mechanical behaviour
of a electric vehicle transmission with helical gear stages. The reference geometry is
selected from [265] as it is considered a representative gearbox complying with the
future trends in the field [5].

Current EV gearboxes are characterized by having a single reduction ratio with two
or three helical gear stages, nominal power is approximately 50 kW and maximum motor
speeds are in the order of 14.000 rpm [4]. However, future trends point towards higher
traction motor speeds while maintaining gearbox design [2] and the selected gearbox is one
of such examples. It is part of a EV transmission prototype designed to run at a maximum
motor output speed of 45.000 rpm [265] with two possible architectures characterized by
having two and three gear stages respectively and reduction ratios from 32 to 34. Thus,
considering the low number of stages, the transmission ratio of each pair is high.

Table 6.1 summarizes the main geometrical characteristics of the selected helical
gear pair. The latter corresponds to the output shaft in the two-stage architecture with
approximate centre distance of 150 mm. The reduction ratio is 5.7, with transverse
contact ratio εα = 1.399 and overlap ratio, εβ = 1.125 [265]. Profile shift coefficients have
been assumed to balance specific sliding as no information is available on this parameter.
Moreover, pinion and gear are tip relieved and the length of the linear modification
corresponds to 15% of the active length of the profile. The amount of modification has
been selected so as to ensure smooth meshing at the reference test condition.

Table 6.1: EV helical gear stage sample from reference [265] for thermal distortion case study

Parameter Symbol Value

Number of teeth z1,2 [-] 14, 80
Normal module mn [mm] 3
Pressure angle αn [◦] 20
Helix angle β [◦] 20
Face width b1,2 [mm] 36, 31
Shaft diameter dsh,1,2 [mm] 25, 38
Profile shift coefficient* x1,2 [-] 0.427, -0.444
Linear tip relief* Ca/LCa [µm/mm] 10/1.95
Quality acc. ISO 1328 Q [-] 7
Reference tool acc. ISO 53** [-] C (1.25/1.0/0.25)
Tolerance field acc. DIN 3967*** Es [µm] d26 (-44, -94), (-80, -160)
Material and treatment [-] 16MnCr5 (case-hardened)
Surface roughness Ra [µm] 0.6 (ground)

* Values estimated from additional data in [265]
** Assumption of the author
*** Niemann’s recommendation for automotive applications [33]

Both gears are supported by single row tapered roller bearings on each end and the
whole system is dip lubricated. According to reference [265] the immersion depth is
defined relative to the gear in the high-speed stage and it is set to a value of 25% of
its radius. This value corresponds to approximately 65 mm below the shaft centreline,
indicating that the pinion in Table 6.1 is not immersed in oil and the relative immersion
depth in the gear is approximately 50 %.
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Finally, the gear unit is subject to the 90 km/h road condition as defined in [265].
Motor speed for the latter is 28.000 rpm at nominal power of 50 kW. This conditions are
translated into approximately 5000 rpm input speed and 100 Nm torque in the pinion
of the considered gear stage in Table 6.1. The gearbox is lubricated with a common
automotive gearbox lubricant ISO VG 46 with a maximum allowed temperature of 100◦C
with continuous cooling. For further details on any other characteristic of the selected
test case the reader is referred to reference [265].

6.4.1 Results

If one takes into account gear geometry and operating conditions it is observed that
the composite effect can be detrimental from the thermal point of view. Pinion is not
immersed in the oil bath and high gear ratios and input speeds result in a large number
of tooth engagements per second giving rise to a large amount of heat being generated,
thus temperature differences arise and may affect mesh behaviour.

Figure 6.25 shows the resulting temperature distribution for the helical gear pair
in Table 6.1 subject to 5000 rpm input speed and 100 Nm input torque. Steady-state
temperatures have been calculated with the thermal model in Chapter 5 with power
losses predicted following the methodology in Chapter 4. Viscosity-pressure-temperature
behaviour of the lubricant is modelled following ISO VG 46 automatic transmission fluid
parameters from [237] which has similar properties to the that used in reference [265].

(a) Pinion (b) Gear

Figure 6.25: Temperature distribution of pinion and gear in case study

Steady state temperature in the pinion is 30◦C higher in average than that of the gear
because rotational speed is almost six times higher in the former, while the heat exchange
surface is significantly reduced. Therefore, temperature differences arise as expected and
relative profile and helix slope distortions exist as well. Moreover, the size of the pinion
being much smaller than that of the gear, the overall temperature of the former is almost
with rather small radial gradients. However, due to the high rotational speed heat is
concentrated in the middle of the face width and therefore longitudinal gradients exist.
Maximum temperature difference along the tooth trace is 3◦C in the pinion and 1.5◦C
in the gear, thus, a very small thermally-induced crowning may appear in combination
with helix and profile slope deviations. Meanwhile, due to the bigger size of the gear,
a 6◦C radial gradient exists between the shaft and the tooth tip.
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From predicted steady-state temperature distribution, thermally-induced normal
deviation of each individual thin slice is calculated following Equation 6.19 and the latter
has been used to solve the thermo-mechanical load distribution problem according to
the model presented in Chapter 3. Figure 6.26 summarizes both results.

(a) Thermally-induced normal deviations (b) Load distribution

Figure 6.26: Helical gear thermally-induced deviations and corresponding behaviour under load

On the one hand, the inclined surfaces in Figure 6.26a indicate that profile and helix
slope deviations are the main cause of thermal distortion in the test case. The grey
surface in the middle shows the position of the theoretical involute flank and the relative
normal distances between the distorted pinion and gear flanks are shown as iso-curves.
The values of the iso-curves decrease with the length of roll and face width, thus pointing
out that contact will occur first in the recess path of contact and towards the front tooth
end, where the sum of normal deviations is minimum. Moreover, this curves also show
a slight crowning which may tend to balance uneven load distribution.

On the other hand, the influence of these deviations on load distribution is reproduced
in Figure 6.26b where distorted load distribution is compared to the initial diagram.
The overall behaviour of load distribution is consistent with deviations in Figure 6.26a.
Maximum unit load increase is located towards one of the ends in the recess path of
contact while it is decreased on the opposite corner of the diagram. This effect will have
a definite impact on root bending stress distribution as the maximum load increase is
located towards the tip region where the bending lever arm is increased. Moreover, a small
crowning effect is also observable in the start of the active profile and if attention is paid
to the latter, it is noticed that the diagram is slightly displaced towards the left because
normal deviations are maximum in this region and therefore an additional rotation is
required to start contact, in other words, premature contact is delayed. All these effects are
interrelated and they can be explained by the thermally-distorted surfaces in Figure 6.26a.

Bending stress behaviour is analysed next. Non-uniformities in load distribution are
reflected back in stress behaviour with the additional influence of the relative position
of the load with respect to the critical section. The composite effect of both parameters
is depicted in Figure 6.27 for pinion and gear. In both cases distorted stress diagram
exceeds initially calculated values. The projected curves in planes XZ and YZ in Figures
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6.27a and 6.27c are planar cuts in the position of maximum stress showing a considerable
increase of the latter with respect to the same position in the initial diagram, yielding
a 46% increase for the pinion and 22% for the gear. Furthermore, Figures 6.27b and
6.27d indicate that the position of maximum stress is moved towards one of the ends
because load is increased on one edge and reduced on the opposite. Such an increase in
root bending stress should be considered for fatigue life calculations because in this type
of applications high speeds in pinion further accelerates tooth breakage.

(a) Root stress distribution in pinion
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(b) Relative stress increase in pinion

(c) Root stress distribution in gear
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(d) Relative stress increase in gear

Figure 6.27: Thermally-induced root stress distribution and relative increase in pinion and gear

As far as contact stress behaviour is referred, it is observed in Figure 6.28 that contact
pressure increases proportionally to load distribution and the effect of thermally-induced
crowning is very small, even negligible. This is explained by the small longitudinal
thermal gradients arising in the thermal simulation (see Figure 6.25) plus the effect of
the radial gradients that limit the amount of thermal distortion and reduce thermally-
induced crowning. On the one hand, pinion is affected by a 3◦C maximum longitudinal
temperature difference but the size of the pinion is small and therefore the amount of
barrelling is also reduced. On the other hand, the gear is bigger but it is subject to
a 1.5◦C gradient in the face width direction which is rather small and also limits the
amount of barrelling. As a consequence, composite effect of thermally-induced crowning
is not noticeable (see Figure 6.26a).
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(a) Thermally-induced contact stress distribution
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(b) Relative contact stress increase

Figure 6.28: Thermally-induced contact stress distribution and relative increase

Besides, it is also observed in Figure 6.28b that the location of the maximum contact
stress is shifted towards the tooth end in the recess path of contact, due to the uneven
load distribution produced by temperature differences between pinion and gear. The
maximum contact stress increase is 54% relative to the initial solution but it must be
noted that such an increase is due to the existence of a tip relief causing contact pressures
to increase suddenly. The influence of linear tip relief on contact pressure is revealed
by the curved parallel lines in Figure 6.28b. Apart from the effect of the modification,
maximum contact stress increase is approximately 40% and it is located at the end of
the contact path where unit loads are increased (see Figure 6.26b). In the mid-region,
the change in contact stress is ± 10% on average.

6.4.2 Compensation of thermal distortion

In order to avoid stress increasing effects of thermal distortion it is possible to compensate
the geometry at ambient temperature by applying tooth modifications in the design
stage. For this purpose, operating temperature distribution for a given torque, speed
and oil level, must be predicted using the thermal model developed in Chapter 5 and
induced deformations are computed from Equations 6.5, 6.19 and 6.22. Then, normal
deviation diagrams such as the one presented in Figure 6.26a can be used to determine
the type and amount of modification.

For the test case under study, two types of modifications should be applied as
concluded from the observation of Figure 6.26a: i) profile slope correction and ii) helix
slope modification. The specific amount for the former is computed calculating the average
normal distance along the helix direction between the initial profile and the distorted
one at the tip. Similarly, the amount of helix modification is computed calculating the
mean distance between the initial and distorted profiles at the tooth end. The average
values for profile slope modifications are 17µm and 14 µm for pinion and gear respectively;
while helix slope modifications are 15 µm and 9µm. It is interesting to remark that due
to the composite influence of radial and longitudinal temperature gradients the amount
of crowning is very low, approximately 0.2µm in the pinion and 0.4µm in the gear, thus,
no modification is applied to compensate the small barrelling effect.
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Figure 6.29 summarizes the effects of tooth corrections on transverse and longitudinal
load distribution. Three different axial positions have been depicted in Figure 6.29a: the
transverse section in the middle of the face width and both tooth ends. Unit load in the
face ends is balanced when modifications are applied, however, it is observed that it is
slightly reduced with respect to the initial geometry while it is increased in the middle
of the face width. This effect is the result of the thermally induced crowning not being
corrected which concentrates load in the centre of the face width and relieves both ends,
thus resulting beneficial. The same conclusion can be addressed if attention is paid to
the longitudinal load distribution in Figure 6.29b. Thermally distorted geometry leads
to non-uniform distributions by reducing unit load in one of the ends due to helix slope
errors. If no barrelling effect existed, load decreased on End II would increase that of
End I, however, thermally-induced crowning tends to balance this behaviour. Moreover,
after applying slope modifications, the remaining thermally-induced barrelling effect still
concentrates load in the centre relieving the ends. The amount of crowning being very
small longitudinal load distribution is not severely affected.

(a) Transverse load distribution (b) Longitudinal load distribution

Figure 6.29: Compensated load distribution relative to initially designed and thermally distorted

On the other hand, transmission error comparison for the initial, distorted and
compensated geometries is shown in Figure 6.30. The mean level of TE is clearly reduced in
Figure 6.30a due to the reduction of backlash which is the expected behaviour. Meanwhile,
transmission error in compensated geometry is close to the initially designed one and the
only difference between both is the thermally-induced crowning effect which has not been
corrected. The differences between the three curves can be better analysed if the backlash
reduction term is removed from the diagram (see Figure 6.30b). The difference in mean
level and peak to peak value between the initial curve and the distorted one is due to the
effect of uneven load distribution. Peak to peak TE has increased approximately 0.2 µm
and the overall shape of the curve has changed significantly due to the effect of relative
profile slope deviation, which produces a increasing slope similarly to spur gears (see Figure
6.20b). Finally, TE mean level in modified geometry is close to the initial curve and peak
to peak values have been reduced by approximately 0.2µm due to the thermally-induced
barrelling effect which seems to be beneficial from the NVH point of view.
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(a) Including backlash change (b) Without backlash

Figure 6.30: Influence of distorted and compensated geometries on loaded transmission error

6.5 Design recommendations

It has been shown in previous sections that thermal distortion effects are multiple.
From a geometrical point of view, temperature increase enlarges reference diameters
and reduces local pressure angles and helix slope, which affects pitch deviations and
backlash as well. The way that such geometrical defects combine and interact in pinion
and gear determines mesh behaviour; as a consequence, load distribution and transmission
error diagrams are distorted accordingly with respect to those computed at ambient
temperature. Therefore, it is of interest to give an overview of thermal distortion
effects and corresponding modification proposals to enhance contact behaviour under
combined thermo-mechanical loads.

Table 6.2 summarizes the influence of each temperature distribution parameter on
composite geometry deviations and corresponding gear mesh parameters. Temperature
variables are located in columns and affected mesh parameters in rows. The former are
represented by: i) equal temperature increase, ii) temperature differences between pinion
and gear, iii) radial thermal gradients, iv) longitudinal gradients and v) housing expansion.
Meanwhile, geometry deviations are classified according to ISO 1328-1 standard [284]
terms and mesh-related variables are grouped into those affecting backlash, transmission
error, load distribution or stress behaviour.

The upward or downward-pointing arrows in Table 6.2 indicate increasing or decreasing
composite effect and the large, small or negligible influence boundaries are expressed in
terms of length of the line of action, with values 5 µm and 1 µm for geometry deviation
variables. This way, temperature parameters affecting more than the upper boundary
indicate considerable influence while those values less than the lower limit are negligible.
In case of mesh-related parameters these boundaries are expressed in terms of percent
change and correspond to 10% and 5% respectively. The effect of each temperature
parameter on geometry and contact behaviour relative to these limits is summarized next.
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Table 6.2: Summary of the influence of temperature distribution parameters on geometry, mesh
behaviour, load distribution, transmission error and stresses

∆Θb1 = ∆Θb2 ∆Θb1 6= ∆Θb2 ∆Θsh 6= ∆Θb ∆Θβ 6= ∆Θb ∆ΘH 6= 0

G
eo
m
et
ry

∆fpt – ↑↑ ↑ ≈ –
∆fHα – ↓↓ ↓ – –
∆ffα – – ≈ – –
∆fHβ – ↓↓ – – –
∆ffβ – – – ↑ –

M
es
h ∆jbn ↓↓ ↓↓ ↓ ↓ ↑↑

∆cy ≈ – – – ≈

T
E ∆TE ↓↓ ↓↓ ↓ ↓ ↑↑

PTP – ↑ ≈ ↑ –

Lo
ad KHα – ↑↑ ↑ ↑ –

KHβ – ↑↑ ↑↑ ↑↑ –

St
re
ss σF – ↑↑ ↑ ↑ –

σH – ↑↑ ↑ ↑↑ –

* Legend: ↑↑/↓↓: large increasing or decreasing effect respectively, ↑/↓: small increasing or
decreasing effect, ≈: approximately equal, negligible influence, –: does not affect, no influence.

a) Equal temperature increase (∆Θb1 = ∆Θb2) produces an overall gear expansion,
thus, increasing the reference circle diameter and transverse pitch by the same amount,
while profile slope and helix angle are decreased in the same proportion. No form errors
exist because there are no thermal gradients. Thus, the only parameter affected by
temperature is backlash which is decreased in a constant proportion (proved in Equation
6.30). Moreover, same pitch and slope errors produce no change in load distribution
(nor stresses) and the influence of premature contact is negligible. The only significant
effect is shown in transmission error where the mean level is increased with respect to
that calculated at ambient temperature due to backlash decrease (see Figures 6.16a and
6.20a). As a consequence, no special counter-measures need to be taken; and if tight
backlash allowances are to be used, attention should be paid to gear jamming probability
by checking Equation 6.27 carefully (see Figure 6.13b).

b) Temperature differences between pinion and gear (∆Θb1 6= ∆Θb2) mainly
produce a relative slope deviation, both in profile and longitudinal directions, while relative
pitch errors arise accordingly. These effects can be inter-related as shown later in this
section. No form errors exist because temperatures are constant in each gear. Similarly to
the preceding situation backlash is reduced, but in this case, the individual contribution
to total backlash decrease is different with one of the gears expanding less than the other.
Moreover, the influence of temperature differences on transmission error is not merely
due to backlash decrease and corresponding diagrams present a different look with curves
bent increasingly with temperature due to the no-load transmission error term (compare
Figures 6.14a and 6.20b). Peak to peak values are slightly modified due to relative profile
deviations and mean level reduction is smaller with respect to the equal temperature
case. On the other hand, relative slope errors produce uneven load distribution and stress
behaviour diagrams as local normal loads are affected by non-uniform deviations in the
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base tangent plane. Thermally-induced relative profile deviations produce increasing
loads in the double teeth contact region in the recess path of contact, and composite
longitudinal deviations overload one of the ends in helical gears. The combination of
both effects tends to increase contact and bending stress considerably towards one of the
ends accelerating tooth failure. To overcome this situation, lead and profile need to be
modified following guidelines in section 6.5.1. According to results in Figures 6.7 and 6.9,
special attention is to be paid to gear designs with modules above 3mm, low pressure
angles (less than 20◦), helix slopes above 20◦ and large face-widths (more than 50 mm).
Any combination of these parameters and sufficiently large temperature differences may
require further thermo-mechanical analysis (e.g. turbo gears, marine gears, etc.).

c) Temperature gradients in the profile direction (∆Θsh 6= ∆Θb) reduce the total
amount of deformation due to the existence of thermal stresses 6.3. Two reasons may
produce such behaviour: i) large temperature differences between teeth and shaft and
ii) gradient type. The latter is usually parabolic and it is not very affected by operating
conditions, therefore any factor contributing to temperature differences between teeth and
shaft may reduce the total amount of deviation which is beneficial, as profile slope errors
(and pitch deviations) are reduced with respect to the constant temperature case. Radial
gradients result in form deviations but these are negligible as the size of the teeth with
respect to that of the body is usually small and therefore teeth are usually subject to an
almost constant temperature. Furthermore, in case of large face widths with longitudinal
temperature differences, radial gradients reduce the amount of thermally-induced crowning
and unit loads and stresses are reduced too as a consequence (see Figure 6.24). This
effect seems to be beneficial as it controls the amount of distortion. Therefore, no special
requirements are needed in thermal situations characterized by small radial gradients.

d) Temperature gradients in the lead direction (∆Θβ 6= ∆Θb) produce a bar-
relling of the pitch cylinder that concentrates load in the middle of the face width as
shown in Figure 6.18. The amount of form deviation depends on the pitch diameter and
maximum temperature difference; with curvature radius calculated following Equation
6.24. Large face width gears are prone to significant temperature differences along the
face width, but they are usually followed by a large diameter with radial gradients as well,
which limit total deformation as previously stated. The final amount of thermally-induced
crowning largely depends on the size of the gear and the specific temperature distribution.
This effect can be considered beneficial to compensate mesh misalignments provided that
maximum temperature is located in the middle of the face-width. However, in cases of large
temperature differences and/or non-symmetric distributions, such as the one produced by
axial oil pumping in turbo-gears, this effect can be detrimental as it concentrates load
towards the exit side. In such cases special counter-measures are needed [8].

e) Centre distance expansion (∆ΘH 6= 0) is influenced by the overall temperature
increase of the housing which is inevitable due to the heat generated in the transmission.
The main effect is the increase of backlash which helps reduce mesh jamming probability
(see Figure 6.13a). If front and back faces of the housing are subject to temperature
differences mesh misalignment may occur due to uneven expansion.
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6.5.1 Tooth modification guidelines

As it can be concluded from the preceding summary the main detrimental effects of
thermal distortion are due to the existence of relative profile and helix slope deviations
along with the increase of local loads due to thermally-induced crowning. Pitch deviations,
separating distance change and backlash decrease are collateral geometry effects and
they can be predicted from the preceding ones, while loaded behaviour depends on the
composite effect of pinion and gear geometry distortion plus torque.

In order to determine simple design rules to deal with thermal deformations it will be
assumed that the influence of gradients is negligible; thus pinion and gear temperatures
are considered constant. Under such conditions, thermal distortion in the profile direction
is exclusively due to pressure angle variation as shown in Figure 6.31.

Figure 6.31: Derivation of profile slope error for tooth modification

Transverse pressure angle modification proposal, CHα, should compensate for the
amount of profile slope deviation at the tip; relative to the form diameter which starts at
roll angle ξFf . Thus, CHα = −fHα, and applying Equation 6.29 we have:

CHα,i = ∆ε(ξNa,i)−∆ε(ξFf,i) = αL,i ·∆Θb,i · rb,i · (ξNa,i− ξFf,i) (6.31)

Where ξNa and ξFf are the roll angles at the active tip and root form diameters respectively.
Similarly, according to Figure 6.8, suggested flank line modification should compensate

for the helix slope deviation according to the relation CHβ = −fHβ. Therefore from
Equation 6.22 helix slope modification is computed as:

CHβ,i = bF,i ·αL,i ·∆Θb,i · tan(βb) (6.32)

Where bF,i is the usable tooth face width which is reduced by end chamfers.
Figure 6.32 depicts the amount of recommended tooth profile and helix slope modifica-

tions as a function of temperature computed using Equations 6.31 and 6.32 for the helical
gear pair in the case study in section 6.4. For average pinion and gear bulk temperatures of
120◦C and 90◦C respectively, recommended profile and helix slope modifications are 17 µm
and 15 µm for the pinion and 14 µm and 9 µm for the gear; which are in perfect agreement
with the proposed modifications in section 6.4.2. Furthermore, to facilitate practical
application, it is possible to compute the relative profile and helix slope modifications
and apply them to the pinion following common practice in gear manufacturing. This
procedure yields 3 µm and 6 µm for profile and helix slope modifications respectively.
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Figure 6.32: Profile and helix slope modification proposal for the helical gear pair in case study

Note that increased temperature “adds” material to the active flank at the tip (see
Figure 6.31), hence, according to ISO 21771 [176] sign convention, such slope deviations
are negative and therefore, profile modifications applied at ambient temperature must be
positive values by removing material to compensate thermal effects. In case of flank line
modifications, if we assume that pinion is subject to the highest temperature, thermally-
induced helix slope deviations are positive in the pinion and negative in the gear, thus,
flank line modifications are negative and positive respectively. To simplify the graphical
description in Figure 6.32, the latter has been depicted as a negative value.

As far as the thermally-induced barrelling term is concerned, this is not easy to
compensate at ambient temperature because it requires a negative parabolic crowing.
Thus, it is only recommended to watch contact pressure levels closely by following the
formulation presented in Appendix C and the longitudinal curvature radius computed
by Equation 6.24. This situation is only detrimental in cases of significant gradients and
narrow face widths leading to small radius of curvature and high contact pressures.

Similarly, to avoid the probability of mesh jamming, it is interesting to define tooth
thickness allowances, Es, according to thermally induced backlash decrease. As a close
approximation of the mean value along the line of action, it is possible to calculate the
latter on the working pitch circles of the fixed end in the base tangent plane where
Equation 6.27 reduces to:

1
2 · |Es,1 +Es,2| · cos(αn)> [u1(rw,1) +u2(rw,2)−uH(aw)] · sin(αwt) · cos(βb) (6.33)

As in previous simplifications, temperature of pinion, gear and housing are assumed
constant and each can be manufactured with a different material thus:

ui(rw,i) = rw,i ·αL,i ·∆Θb,i (6.34)
uH(aw) = aw ·αH ·∆ΘH (6.35)

Where, rw and aw are the working pitch radius and centre distance. Note that if pinion
and gear are subject to the same temperature increase, the right hand side in Equation
6.33 is equivalent to that presented in DIN 3967 standard [156].



6. Thermal Distortion 195

Finally, the derivation of pitch errors as a function of profile slope deviations is
described for completeness. From Figure 6.31 one can easily see that pitch errors and
backlash decrease are closely related to slope deviations. Applying similar triangles,
distortion at the pitch point (characteristic point C) is:

∆ε(ξC)
rb · ξC

= ∆ε(ξNa)
rb · ξNa

(6.36)

Relating this result to Equation 6.18 single pitch deviations are computed as:

fpt = τ ·u(rC) = τ ·∆ε(ξC)
sin(αt)

= τ

cos(αt)
·∆ε(ξNa)

ξNa
(6.37)

Where ∆ε(ξNa) is calculated from Equation 6.29. Therefore, one can model thermally
induced pitch errors as slope deviations and vice-versa, which is consistent with the
results by Kashyap [140] in plastic gears.

6.6 Conclusions of Chapter 6

In this chapter, a thermally-induced geometry distortion model for spur and helical gears
has been developed and the effects of such deviations on loaded behaviour have been
tested. The model is based on the classical thin slice approach used in the computation
of load distribution and it assumes that thermal expansion of each point in the involute
is mainly radial, thus dependent on the transverse temperature distribution and thermal
stresses of the considered slice. Meanwhile, the influence of longitudinal temperature
distribution is neglected which implies that there is no axial coupling between slices.
Thermal growth is computed following the disc approximation and deformations are
assumed to be small in steel gears, as a consequence, the contact point still lies in the base
tangent plane which allows solving the load distribution problem as usual by introducing
local normal deviations as initial separations.

In the first section, the type and amount of deviation has been analysed following
classification in ISO 1328 standard [284]. It has been shown that profile and helix
slope deviations are the main causes of thermal distortion; and for a given temperature
distribution, the amount of profile slope error is mainly affected by normal module
and pressure angle while helix deviations depend on face width and helix angle. Form
alterations have been shown to be negligible in the transverse plane and rather small
in the longitudinal direction, however, if the composite effect of pinion and gear helix
form deviations is considered, crowning effects may be noticeable in loaded behaviour.
Pitch deviations have also been analysed and it has been proved to be significantly
increased with respect to the limitations of the standard, however, if pinion and gear
are subject to the same temperature increase, no relative pitch deviation exists and
therefore no change in load distribution is expected.

The influence of temperature increase on mesh behaviour has been analysed next.
The relationship between changes in unloaded transmission error and backlash has been
discussed and the latter has been found to be one of the most important parameters in
NLTE behaviour together with relative profile slope differences. Then, geometry deviation
effects on load distribution have been studied. Premature contact increase has been found
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to be negligible relative to the influence of torque and uneven load distributions have been
found to be dependent on temperature differences between pinion and gear. Moreover,
longitudinal thermal gradients produce a barrelling of the pitch cylinder giving rise to
load concentrations in the middle of the face width, but the composite effect of radial and
longitudinal gradients tends to reduce the amount of form deviation and load concentration
effect as well. The influence of uneven load distribution in transmission error and stress
field has been studied showing that thermal effects on root stresses are prominent at the
lowest line loads while contact pressure is mainly affected by the barrelling effect.

Finally, a practical test case has been defined where an EV gearbox helical gear
stage has been analysed. It has been shown that maximum stress increases up to
46% as a consequence of the composite effect ot pinion and gear thermal distortion.
Tooth modifications to compensate thermally-induced deviations have been proposed and
corresponding reduction on load distribution and transmission error have been reported.
At the end of the chapter, thermal distortion effects have been summarized and design
recommendations to deal with thermal distortion effects have been proposed.



No amount of experimentation can ever prove me right;
a single experiment can prove me wrong.

— Albert Einstein, 1879 - 1955
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This chapter meets the demands of objective O.6 in Section 1.3. First,
the development of a custom back-to-back test rig is described and
supported gear geometries, operating conditions and sensor characteristics
are presented. Next, thermo-mechanical tests to be carried out are discussed,
test specimen characteristics are gathered and working conditions are set up.
In this section, transmission error measurement procedure is described; from
the acquisition of raw data, as measured by position encoders, until the
characteristic shape of TE diagram is obtained, together with reference
values such as the mean level or the peak to peak value. Quasi-static
mechanical tests will be carried out first in order to validate TE behaviour
under load; and the influence of temperature will be analysed next by
heating up the system in a controlled manner. Finally, measurements are
compared to analytical predictions, results are discussed and conclusions are
withdrawn. To the authors knowledge, no previous experimental evidence
of the effect of temperature on quasi-static transmission error exist and
therefore, results presented in this chapter are novel.

197



198 7.1. Back-to-back gear test bench design

7.1 Back-to-back gear test bench design

In order to validate the thermo-mechanical behaviour of external cylindrical gears in
mesh, a back-to-back test rig has been designed based on the standard FZG machine
architecture [285]. The main differences between the test bench designed at Mondragon
University and those commercially available are the speed and torque limitations which
have been increased to analyse high power density transmissions.

Description

The designed test rig, shown in Figure 7.1, is composed of two equivalent gearboxes (known
as “test” and “drive”) with inverse gear ratios which are connected by two shafts, one of
them being split in two parts. A load clutch is inserted in the split section of the shaft and
a lever arm allows to load the system by rotating one of the ends of the clutch while the
other is held fixed. Then, a set of eight bolts is tightened to couple both ends of the clutch
and the lever arm is removed letting both gearboxes subject to a prescribed torque. The
amount of torque is determined placing a different number of specific weight discs pulling
the lever arm and the exact value can be measured in a torque transducer located inside
the loop. Finally, the traction motor rotates the main shaft which is connected to the split
one by means of the test and drive gearboxes, thus closing the mechanical loop. This way,
the torque necessary to rotate the system is equal to the torque loss inside the loop which
allows reducing the traction motor size while maintaining a high torque inside the loop.

Motor

Position encoder

Torquemeter
Test gearbox

Drive gearbox

Load clutch

Slip ring

Thermocouple 

Lubrication holes

Figure 7.1: Designed back-to-back test rig for external cylindrical gears
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The test gear set is located inside the test gearbox in the front and an identical gear
pair is assembled in the drive gearbox in the back. Pinion and gear are mounted in such
a way that the rotational speed of each shaft is the same from the perspective of the test
gearbox or the drive one. However, the lubrication characteristics (oil type, viscosity, etc.)
of each transmission is not required to be the same; this way, two different lubricants or
lubrication conditions can be compared within the same test rig. Furthermore, several
gear failure phenomena can be analysed with this architecture (pitting, scuffing, wear,
etc.) and if both gearboxes are identical and an additional torque-meter is placed in
the output of the traction motor, mesh efficiency measurements can be carried out as
well; by measuring the total torque loss of the system and subtracting the corresponding
torque loss of bearings, seals and that produced by oil drag.

Design characteristics

As it can be noticed, this type of architecture is very versatile, but it has not been designed
to support the high tangential speeds present in EV transmissions. Motor speeds in
common FZG test rigs are usually around 3000 rpm producing a maximum of 10 m/s
circumferential speed in standard FZG gear type C geometry, and speed increasing units
are used to reach 5000 rpm resulting in approximately 20 m/s [28]. Tangential velocities in
EV transmissions are in the order of 50 m/s and such speed levels require special bearing
types and lubrication systems. Moreover, in order to analyse helical gears the bearing
type must be replaced due to the thrust force produced by the helix angle. Therefore,
the basic FZG design has been modified to cope with these requirements and additional
enhanced characteristics have been provided together with the new speed limitations:

� Operating centre distance: aw = 110 mm
� Face width: b ≤ 50 mm (up to 75 mm with special gear design)
� Gear ratio: u ≤ 2
� Helix angle: β ≤ 30◦

� Tangential speed: Vt ≤ 60 m/s
� Torque inside loop: T ≤ 1000 Nm
� Nominal motor speed and torque: N = 6000 rpm, T = 136 Nm
� Maximum motor speed and torque (1h): Nmax. = 10000 rpm, Tmax. = 60 Nm
To achieve these traction speed and torque characteristics a liquid-cooled squirrel-cage

induction AC motor for EV vehicles has been selected (reference 1PV5135-4WS14-Z from
Siemens) with built-in temperature sensors and position encoders. Moreover, in order to
maximize tangential speeds, centre distance has been increased to allow for larger diameter
and gear ratios with respect to the standard FZG test rig. Shaft diameters have also
been modified from 30 mm to 40 mm and maximum torque inside the loop now reaches
1000 Nm. Front bearing supports are type NU208-E-XL-TVP2 separable cylindrical roller
bearings from INA-FAG and those in the back are reference 3308-DA-MA double row
angular contact ball bearings with split inner ring. The thermally safe reference speed
for both bearings is 7500 rpm and the mechanical limiting speed reaches 10900 rpm.
Besides, the rotary shaft seal material must be designed to support high peripheral shaft
speeds and temperatures, as a consequence, common elastomer seals are not valid. In
the proposed design, Trelleborg’s Turcon Varilip© PDR [288] rotary shaft seals are used
with a maximum surface speed of 100 m/s and very low torque loss (≈ 0.12 Nm).
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When the test rig is subject to high speeds, considerable heating of the bearings arises
and a continuous cooling system is required. An independent lubrication circuit has been
designed such that the oil from the bearings is physically separated from the gear oil
sump by means of a specially designed housing. An ISO VG 46 oil is pumped into each
of the bearing supports through the lubrication pipes in Figure 7.2 at 1 l/min oil flow
rate. In order to avoid overflowing the bearings, an additional suction pump has been
installed which is driven by a servomotor and balances the oil level inside the individual
supports by controlling the oil level in the tank with a digital level and a PLC.

Load clutchTest gearbox Drive gearbox

Optical position encoders Wireless torque transducer Slip ring

Figure 7.2: Overall view of designed test rig

On the other hand, gears inside the gearbox are dip lubricated and the relative
immersion depth can be adjusted easily. If necessary, oil is heated by means of high power
density thermoelectric resistances located inside a sealed aluminium plate submerged
in the oil bath (see Figure 7.3a). A thermocouple immersed in the oil sump measures
the temperature of the lubricant which is then heated by means the thermal resistances
connected to a PID temperature controller.

Oil debris sensor

Oil heating system

Thermocouples

(a) Oil sump heating system

Separating lip seals

Independent housing 
for bearings

Gear oil sump

Exit hole for gear 
tooth thermocouple

(b) Oil level

Figure 7.3: Oil sump heating system and oil level inside gearbox
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Sensoring

Figure 7.4: Thermocouple in-
serted in small module tooth

The test rig includes several sensors to measure temper-
ature, torque, speed, transmission error and oil condition.
Several T-type thermocouples measure the temperature
of different parts and a National Instruments chassis with
thermocouple modules synchronizes all temperature signals.
For instance, outer ring of bearings, housing, oil sump and
oil-air mixture inside each gearbox are monitored. Tem-
perature of gear teeth centre and several radial locations
are measured too and the rotating thermocouple signals
are transmitted by means of a pair of slip rings reference
1988-2BR-FAG180 from Fabricast. Figure 7.4 shows a 0.5
mm diameter thermocouple assembled in 3 mm module
gear teeth with a thin metal sheet pressing it against the
tooth end to avoid loss of contact.

Meanwhile, two wireless torque transducers with double range (1:5) up to 1 kNm
from Kistler with rotor and stator Ki-Torq 4550A and 4541A respectively, measure
torque in the loop and system friction torque. These torquemeters also include speed
measurement capabilities allowing to measure instantaneous total power loss. Moreover,
each gearbox includes a Gill 4212 oil debris sensor (located in the middle of the oil
heater in Figure 7.3a) monitoring wear rate and allowing for tooth failure detection
by tracking small and large particles.

The measurement of transmission error is carried out with the aid of a pair of high
resolution optical angle encoders from Heidenhain reference RCN 2510 and a EIB 741
interpolation unit. These encoders have been selected because they are considered a
good compromise between compact size, ease of installation, speed limitations and system
accuracy. A picture of their assembly is presented in Figure 7.5. Pinion and gear shafts
are hollow and a shaft extension coaxial within ±0.02 mm tolerance is used to mount
both encoders at the shafts ends, which are later locked by means of a ring nut.

Thermocouple cables 
for bearing outer ring

Position encoders

Independent, continuously-cooling 
lubrication system for bearings

Figure 7.5: Position encoder assembly and independent bearing lubrication system
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The overall characteristics of the position encoders are gathered in Table 7.1. Their
accuracy is ±2.5 second of arc which is equivalent to ±0.6 µm in terms of length of
the line of action for a 100 mm base diameter gear. Similarly, the position error per
signal period is ±0.07 µm for the same specimen.

Table 7.1: Heidenhain RCN 2510 optical encoder characteristics

Parameter Units Value

System accuracy [′′] ± 2.5
Position error per signal period [′′] ± 0.3
Signal periods per revolution [–] 16384
Position values per revolution [–] 268435456 (28 bits)
Clock frequency [MHz] 16
Permissible speed [rpm] 3000
Maximum temperature [◦C] 50

These optical encoders are single-turn absolute-type encoders and they operate using
the photoelectric imaging principle [289] which is a non-contacting optical scanning method.
The exact angular position value is read immediately from a graduated disk at any time,
even after several tests and conditions, provided that the encoder is not disassembled
in between measurements. Therefore, it is possible to manually align the zero degree
reference of the encoder with a given tooth during the installation so that the angular
position of any other tooth is located unambiguously in different tests. This characteristic
allows to track the influence of composite manufacturing deviations or tooth defaults of a
specific mesh cycle on the corresponding transmission error diagram. However, to obtain
transmission error as a function of time, it is necessary to convert the single-turn absolute
values to continuous incremental signals following the procedure described in Appendix D.

Finally, encoders mounted on the input and output shaft of the test gearbox are
connected to the EIB 741 evaluation unit via EnDat 2.2 interface. Angular positions of
both shafts are synchronized with the internal clock signal and up to 250000 position values
can be recorded per channel which is enough for off-line TE measurements. The EIB appli-
cation software controls the different measurement options, allows programming triggers
and processes the measured values which can be exported to a .csv file for further analysis.

7.2 Experimental methodology

The test rig described above has been specially designed to research on gear efficiency
and thermal behaviour at high tangential speeds; and similarly to the standard FZG
test bench, common gear failure modes such as pitting, scuffing or wear can be analysed
as well. In this work, thermal distortion is studied by means of the analysis of the
transmission error behaviour under quasi-static conditions.

7.2.1 Test specimens

In this work, two spur gear sets are selected from several available gear geometries. Both
gear sets are characterized by having a common 3 mm module, 25 mm face width and
20◦ pressure angle while gear ratios are different as shown in Figure 7.6 (specimen A is a
1:1 transmission while set B is 2:1). Additional information can be found in Table 7.2.
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Set A

Set B

Figure 7.6: Spur gear sets A and B for quasi-static transmission error measurements

Note that the number of teeth is non-hunting and therefore each tooth will contact
the same mate in the gear every time so that the composite manufacturing pitch and
profile deviations will be constant for each mesh cycle. This allows to clearly identify
thermal distortion effects as variable composite tooth errors are not expected. Finally,
both geometries have been manufactured with the same reference profile, material, quality
and tooth thickness tolerance; the only difference being the profile shift coefficient which
have been selected to balance specific sliding on each gear set. As a consequence, pinion
and gear teeth geometry in set A are identical and those of set B are different due to
dissimilar addendum modifications. Profile diagrams and corresponding manufacturing
deviations are presented in Appendix E.

Table 7.2: Spur gear sets A and B for experimental measurements

Parameter Symbol Set A Set B

Normal module mn [mm] 3
Normal pressure angle αn [◦] 20
Number of teeth z1,2 [-] 37, 37 25, 50
Profile shift coefficient x1,2 [-] -0.1608, -0.1608 -0.0234, -0.7337
Effective face width b [mm] 25
Shaft diameter dsh [mm] 40
Tip rounding hk [mm] 0.6
Tolerance field acc. DIN 3967 Es [µm] cd25
Quality acc. ISO 1328 Q [-] 5
Reference tool acc. ISO 53 [-] A (1.25/1.0/0.38)
Contact ratio (approach, recess) εα (εa, εf ) [-] 1.48 (0.74, 0.74) 1.63 (0.95, 0.67)
Material and treatment [-] 17NiCrMo6, case-hardened
Surface hardness [-] 58-62 HRC
Flank roughness (ground) Ra (Rz) [µm] 0.4 (2)
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7.2.2 Working conditions

The test program considers two steps: mechanical tests are carried out first and thermo-
mechanical behaviour is analysed next. The former is used as a reference to analyse the
effects of temperature increase on the quasi-static transmission error. Table 7.3 shows
the working conditions for each of the gear sets.

Table 7.3: Operating conditions for experimental transmission error tests

Parameter Symbol Value

Input speed N1 [rpm] 60
Input torque T1 [Nm] 50, 100, 200, 400, 600
Immersion depth H/R [-] 0.5
Oil temperature Θo [◦C] 50, 75, 100, 125, 150

Tests will be completed at 1 Hz constant rotational speed which is considered sufficiently
low to avoid introducing dynamic effects according to Munro [290]. Lower speeds can
be achieved by the traction motor, however, at the highest temperatures and torques,
mesh friction affects speed control and stick-slip phenomena shows up producing an
intermittent TE pattern. Therefore, in order to avoid changing the preset speed in between
tests, a common 60 rpm reference is used for mechanical and thermo-mechanical tests.
Nevertheless, in order to guarantee quasi-static behaviour, a preliminary dynamic study
will be carried out and transmission error repeatability measurements will be completed.

Besides, the test program comprises five torque levels, from 50 Nm to 600 Nm.
Reference torque of 200 Nm corresponds to an approximate unit load of 150 N/mm in
gear set A which is the lower limit of application of ISO 6336 standard [11] and the
maximum torque of 600 Nm leads to the pitting and bending stress limits in sets A
and B respectively; thus, torque levels have been selected such that low and high unit
loads are considered in combination with thermal effects.

Finally, quasi-static thermo-mechanical tests are completed by progressively heating
the oil sump up to 150◦C while rotating the gear pair at the same speed and prescribed
torque; until the steady-state temperature in gear teeth is reached in both gears for
each temperature stage. FVA3 paraffinic mineral oil will be used in the tests whose
properties are well characterized by several reports [31, 282] and it has already been
presented in Chapter 4. The relative immersion depth will be kept constant just below
the gear hub as shown in Figure 7.3b.

7.2.3 Experimental setup and procedure

The experimental setup for the thermo-mechanical tests is depicted in Figure 7.7. Three
main acquisition systems stand out: i) a Kistler Ki-Torq wireless torque transducer, ii)
a National Instruments compact DAQ chassis with thermocouple modules and iii) a
Heidenhain EIB interpolating unit for position encoders. A personal computer centralizes
all acquisition systems and includes the corresponding measurement software along with
the interface to the PLC and PID controllers for the traction motor speed and oil
bath temperature control respectively. After each test, transmission error calculation
is completed off-line by means of an automated Matlab script.
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Figure 7.7: Experimental setup for thermo-mechanical transmission error measurement

The experimental procedure is carried out as follows. First, gears are mounted on the
test and drive gearboxes and contact pattern is checked with prussian blue. If the latter is
not satisfactory, precision gauges are placed in the front cover such that the shaft position
is corrected and gear mesh is aligned. Then, lubricating oil is poured into the sump until
the desired immersion depth is reached. If both gears are correctly assembled, torque
level is adjusted with the lever arm by loading different weights similarly to the standard
FZG test rig. Once the exact value of torque is measured in the torque-meter, bolts are
tightened in the load clutch and the lever arm is removed. Then, motor speed is preset
in the control software and prescribed value is sent to the PLC controller which turns
on the traction motor. Real-time condition monitoring system allows measuring motor
speed, electrical current, temperature and resistance torque. Simultaneously, the bearing
independent lubrication pumps are turned on along with the motor cooling system. Gears
are run-in for at least three ours at 1500 rpm and 300 Nm torque. If contact pattern
under load is still correct after the running-in cycle, encoders are mounted on the input
and output shafts of the test gearbox and both are connected to the EIB evaluation
unit. On the other hand, gear thermocouples and slip ring are mounted on the drive
gearbox which is connected to the NI-DAQ chassis. If both gearboxes are identical the
temperature measurement of the latter can be extrapolated to the test gearbox.

Mechanical tests are carried out first at room temperature (20±1◦C). Torque is preset
to the first load stage of the test program and motor is rotated at constant 60 rpm
rotational speed. Then, angular position measurements are conducted at steady-state
rotational speed with three different measurements at one minute intervals. Each of these
measurements comprises a minimum of 20 full rotations and a maximum of 40. Then,
motor is stopped and next load stage is prescribed with the lever arm. The measurement
procedure is repeated with each of the torque levels until maximum load is reached. Once
the first load cycle is finished, the next cycle begins and the same steps are repeated from
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the lowest load stage to the highest one. A minimum of three repetitions are carried
out in mechanical tests each of them comprising several torque levels and three different
individual measurements. Although no significant temperature increase is expected in
these tests due to their short duration, temperature is measured continuously in several
parts such as gears, bearings, oil sump, housing and room.

The test program continues with the thermo-mechanical tests. The general procedure
is kept but this time oil sump temperature is increased progressively in each load stage.
Once torque value is preset, traction motor is rotated at constant speed and oil sump
is heated with thermal resistances. Oil temperature is measured with a thermocouple
immersed in the oil sump which sends instantaneous measurements to the PID controller
and the acquisition system. The temperature of the oil bath, gear and housing is monitored
in real time and when steady-state condition is reached in all of them, angular position
measurements are conducted following the procedure of the mechanical tests, with the
same number of individual measurements. Temperature is increased afterwards and
when the next steady-state thermal stage is reached, measurements are completed in
the same way. When the maximum temperature level for the considered load stage is
attained, the measurements are finished until the whole system is cooled down. Then,
next load stage is prescribed and the process is repeated. When all combinations of
load and temperature are finished the process starts again with a new repetition until
three full repetitions are completed.

Finally, when all tests in set A are finished, set B is tested following the same
procedure. In between, additional tests such as no-load transmission error tests and
backlash measurements are performed.

7.2.4 Transmission error measurement

Transmission error has been defined in Chapter 3 as the variation of the output rotational
motion of the driven wheel for constant rotational speed in the driver one. Therefore TE
is a relative magnitude relating angular positions of pinion and gear, requiring a common
zero reference position and continuous incremental measurements. Considering that the
RCN 2510 is a single-turn absolute encoder, measured values must be corrected. The
method to compute transmission error from absolute values is described in Appendix D.

Fast Fourier Transform and high-pass filtering

In order to analyse transmission error behaviour correctly, the influence of gear eccentricity
is filtered while maintaining the mean level and peak to peak values. To this aim, a Fast
Fourier Transform (FFT) is carried out followed by a high-pass filtering of the signal.
The main steps in the procedure are depicted in Figure 7.8.

First, the original signal is detrended by an amount equal to the mean level, so that the
sinusoidal curve is located on the abcissa as in Figure 7.8a. If the FFT is performed with
the original signal, a big amplitude arises at 0 Hz masking small amplitudes of interest
hence the offset must be removed. However, it is important to keep the mean value of
TE as it depends on the initial position of the gear, the applied load and the available
backlash. Thus, for the same initial position, it is expected to be affected by torque and
temperature and therefore, this value is preserved until filtered TE curve is reconstructed.
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(a) Unfiltered TE acquisition (b) Fast Fourier transform and high-pass filtering

(c) Filtered TE time history (d) Peak to peak and mean level of TE

Figure 7.8: TE measurement process in gear set A at 60 rpm and 100 Nm torque

Fast Fourier Transform is computed in Figure 7.8b. Mesh frequency corresponds to the
number of teeth multiplied by the shaft rotation frequency in Hertz, fm = z ·fs. In these
tests the latter is 1 Hz thus, mesh frequency is equal to the number of teeth. Subsequent
harmonics are located and N integer times the mesh frequency, fm. Gear eccentricities to
be filtered are low frequency terms (below mesh frequency), therefore the high-pass filter
must keep frequencies above the desired cut-off value (fc ≈ 1

2 ·fm here). Once the original
signal has been filtered, it can be reconstructed by computing the inverse transform (see
Figure 7.8c) and finally initial offset is added to keep the mean level as shown in Figure 7.8d.

Repeatability tests

In order to analyse the degree of repeatability of loaded TE tests, the procedure described
in [291] is followed, where the amplitude of the signal at the mesh frequency and subsequent
harmonics are measured for different repetitions. It has been observed that these
parameters differ significantly for each load stage. Moreover, the location of the maximum
at the mesh frequency is slightly shifted with respect to 1 Hz reference. These errors are
probably due to small speed variations induced by the traction motor control at 60 rpm
along with torque fluctuations caused by assembly misalignments and eccentricities.
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Figure 7.9: FFT amplitude repeatability at
mesh frequency as a function of torque

Figure 7.9 summarizes the transmis-
sion error amplitude variation at mesh
frequency for both geometries subject to
different torques. Similar behaviour of the
harmonics has been observed but they are
not displayed here for simplicity. It is
observed in this figure that the amplitude
fluctuation is considerable for each load
stage and therefore, contrary to procedure
described in reference [291], it is not pos-
sible to extract reliable information of the
thermo-mechanical tests relying exclusively
on amplitude at mesh frequency and sub-
sequent harmonics. To solve this issue
additional Fourier transforms and filtering
needs to be carried out followed by individual analysis of each test. However, this procedure
is time consuming and may lead to loss of information if relevant frequencies are ignored.

Moreover, it has been observed that the disassembly and assembly of the same gear
set during contact pattern check and correction procedure yields different unfiltered TE
diagrams. A beating effect distorting the signal, similar to that described in reference [292],
has been found in some cases typically repeating itself once per revolution. The origin of
this effect has been identified in the torque variations due to misalignments between the test
and drive gearboxes which are rigidly connected by shafts without flexible couplings. After
the inverse Fourier transform is performed, a periodic TE peak is still observed in such
cases (see Figure 7.8c) which can be filtered out following the procedure described in [292].

In view of these mechanical issues, the following approach has been adopted in
this thesis. The full signal is analysed (with a minimum of 20 full rotations) and only
low frequencies are filtered out, those corresponding to gear eccentricities. The cut-
off frequency, is set to 20 Hz in gear set A and 10 Hz in gear Set B. All the rest of
frequencies above the cut-off value are used for reconstruction. Then, a reliable and
distant region from the beating effect is selected for comparison. In order to simplify
the analysis a finite number of mesh cycles is selected (usually five). Mean level is
extracted from the unfiltered TE diagram and peak to peak value is calculated directly
from the filtered graph corresponding to the selected number of mesh cycles. The latter
is computed as the difference between the mean maximum TE and mean minimum TE

of the selected five mesh cycles. In all tests, the same five mesh cycles are selected for
analysis, those just before the angular position of 270◦ relative to the zero reference
identified by the position of the keyseat in the pinion.

In order to investigate the repeatability of this procedure, the transmission error under
load of both gear sets is analysed. Two torque levels are studied at constant 60 rpm
rotational speed: 100 Nm and 200 Nm, both relative to the driven gear. The measurement
is conducted for approximately 30 seconds, then stopped and restarted after a minute
pause. Three different repetitions are measured at the same constant torque. The pause
is limited to a minute to avoid temperature increases affecting the mean level.
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Figure 7.10 depicts the repeatability of the selected mesh cycles in both gear sets
under this conditions. Ordinate axis represents the raw mean level of transmission error
after reconstruction of the Fourier transform, which follows the procedure described in Ap-
pendix D. As it can be seen, the results are within approximately 5 ·10−4 degree tolerance in
both gear sets which corresponds to the order of magnitude of the accuracy of the encoder.

(a) Repeatability of TE in set A (b) Repeatability of TE in set B

Figure 7.10: Repeatability of transmission error in gear sets A and B

In view of the good repeatability of the mean level and peak to peak parameters it is
possible to analyse their behaviour under combined torque and temperature, provided
that no dynamic effects distorts the results.

Dynamic effects

According to Munro [290] no dynamic effect should be expected at 60 rpm rotational speed.
Nevertheless, this assumption is validated through an preliminary test where rotational
speed of gear set B is varied from 0 to 500 rpm at constant reference torque of 200 Nm.
Figure 7.11 summarizes TE mean level and peak to peak results as a function of speed.

Figure 7.11: TE mean level and peak to peak behaviour with increasing rotational speed
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It is observed in Figure 7.11 that mean level decrease starts at approximately 80 rpm
while peak to peak differences become noticeable from 200 rpm on. In both cases, the
change is very small, below the accuracy of the encoder. Thus, if the limitations of the
latter are considered, the speed limit to avoid dynamic effects is set in 160 rpm producing
a mean level decrease of 0.7 µm, just above the resolution of the encoder. Thus, constant
test speed of 60 rpm is sufficient to analyse quasi-static transmission error and it can
be doubled if necessary, specially in high temperature high torque conditions where the
traction motor may show a stick-slip motion pattern.

7.3 Results

In the following section experimental results are summarized. Three types of measurements
are shown: i) no-load transmission error tests at different temperatures (backlash tests),
ii) loaded TE tests at room temperature and iii) thermo-mechanical tests. In all cases,
mean level of transmission error and peak to peak values are analysed following the
procedure described in the Section 7.2.4.

7.3.1 Backlash tests

Torque applied by the lever arm produces teeth deflection making the driven gear lag
behind its theoretical position, thus resulting in a negative transmission error [293]. If
backlash exists, an additional negative separation exists because the pinion needs to rotate
an amount equal to the angular backlash before contact with the driven gear occurs.
Furthermore, it has been shown in Chapter 6 that if temperature is increased, backlash is
reduced and the negative angular position of the gear is shifted towards positive values.
Thus, the effect of torque and that of temperature coexist an they must be combined
within the same diagram for correct assessment of transmission error behaviour. Therefore,
in order to analyse thermo-mechanical loaded transmission error, a common mean level
reference for both gear types needs to be set before hand.

Up to this point it has been shown that the mean level of raw transmission error
measurements is located in an arbitrary position between 0◦ and 360◦ relative to the
driven gear’s encoder zero angular position (see axis y in Figure 7.10). If no torque is
applied, this position theoretically corresponds to the unloaded contact between pinion
and gear flanks, once backlash angle is overcome and gear eccentricity effects are filtered
out. If rotation direction is changed, the sinusoidal diagram is shifted by an amount equal
to the backlash angle until the opposite flanks meet each other. Therefore, following Fish
[292], the reference position is defined by the average of mean levels corresponding to
clockwise and counter-clockwise rotations under no load. In this position, pinion teeth
are located in the middle of the space width with half backlash angle on each side (if no
manufacturing errors exist). The latter can be used as the zero transmission error position
so that the start of loaded behaviour takes place once half normal backlash is overcome.
Hence, in the following diagrams half normal backlash position, jbn/2, will be highlighted
as the reference position indicating the start of tooth deflections at room temperature.
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Backlash tests are preliminary measurements to characterize the amount of available
clearance at increasing oil sump temperatures. These tests are carried out before thermo-
mechanical ones and they are used to validate the influence of temperature on backlash so
that a correlation between this parameter and the mean level behaviour can be established
in future experiments. The driven gear position is fixed with the load clutch support
while the pinion is rotated in clockwise and counter-clockwise directions until contact of
the flanks occurs and loop torque signal is increased in the torque transducer. Several
repetitions are completed in three different angular positions and constant oil sump
temperature. The graphical representation of the measurements of both encoders shows
the amount of available backlash and the mean value among the different measurements
is used for comparison with the design backlash.

Figure 7.12 depicts the influence of temperature on total normal backlash, jbn, relative
to the design value. Analytical predictions effectively meet the design value at ambient
temperature while increasing the oil temperature reduces the amount of available backlash
linearly; which is the expected behaviour if pinion and gear temperatures are assumed to be
constant and equal to that of the oil sump. Meanwhile, experimental measurements follow
the analytical prediction provided that the influence of the housing expansion is suppressed.
Note that gear dilatation tends to reduce backlash while centre distance expansion
increases it. Hence, if the effect of the latter is not eliminated from the raw experimental
measurement, it is not possible to analyse the influence of the gear expansion term.

(a) Set A (b) Set B

Figure 7.12: Influence of temperature on backlash reduction

Both gear sets show the same trend with temperature with analytical predictions
following closely at least up to 100◦C temperature. However, it is to be noted that the
experimental measurement slightly deviate from the analytical predictions due to several
reasons. On the one hand, housing and gear manufacturing and assembly tolerances affect
this correlation and on the other hand, theoretical linear thermal expansion coefficient
for steel may deviate up to ±5 · 10−7 K−1 from its real value. Moreover, temperature
differences may exist between the preset oil sump temperature and that of pinion and
gear. Although manufacturing tolerances of the housing and thermal expansion coefficient
deviations have been considered in the shaded error bar, the temperature differences
are difficult to control as it will be shown later in this section, specially at the highest
temperatures where the largest deviations arise.
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7.3.2 Loaded transmission error measurements

Figure 7.13 summarizes loaded transmission error results for both gear sets. The overall
behaviour is depicted in subfigures 7.13a and 7.13b, while the summary of mean level
and peak to peak trend with torque can be found in Figures 7.13c to 7.13f. Analytical
predictions have been included in these pictures to highlight the expected behaviour.

(a) Overall TE for increasing loads, set A (b) Overall TE for increasing loads, set B

(c) Mean level for increasing loads, set A (d) Mean level for increasing loads, set B

(e) Peak to peak for increasing loads, set A (f) Peak to peak for increasing loads, set B

Figure 7.13: Experimental loaded TE results for gear sets A and B
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If attention is paid to the TE diagrams in Figures 7.13a and 7.13b, it is observed
that load tends to increase both, transmission error mean level and peak to peak
values; therefore, the gear is increasingly delayed with respect to its theoretical position.
Reference position corresponding to half normal backlash and coincident with the no-load
transmission error term is highlighted in all diagrams such that increasing separation
from this position indicates that the backlash gap increases with load. Moreover, it is also
remarked that peak to peak values increase with torque while the premature contact effect
tends to contract the region of single tooth contact at higher loads. These characteristics
are coincident with the expected features at increasing loads already described in Chapter 3.

However, it must be stressed at this point that the experimental values need to be
corrected to be comparable to analytical values as the torsional compliance of the key
and the shaft have not been considered in the analytical model presented in Chapter 3.
This issue has already been pointed out by Munro [293] and it mainly affects to the mean
level; also known as DC component of transmission error by this author. Key and shaft
sizes being equal for both gear sets, the correction factor is constant and takes the value
0.15 in these tests. The agreement between analytical and experimental TE mean level is
excellent after this modification. As far as the peak to peak TE behaviour is concerned,
analytical predictions closely follow experimental results in both gear sets, except at low
loads in set B where the experimental values seem to deviate from the overall trend.

7.3.3 Loaded and thermally affected TE tests

Figure 7.14 shows the influence of increasing temperature at constant torque in both gear
sets. The lever arm loads the gear pair at 200 Nm (corresponding to the driven gear)
and the set is rotated at constant speed of 60 rpm (measured in the driving pinion). The
oil sump is heated to the prescribed temperature and transmission error measurements
are completed once steady-state temperature is reached in the thermocouple located
in the tooth of the drive transmission gear.

Transmission error diagrams in Figures 7.14a and 7.14b show that temperature increase
shifts the initial curve at ambient temperature towards positive values, thus reducing the
backlash gap which is the expected behaviour. The overall shape of TE remains unchanged
and no additional features are observed at first sight; therefore, no apparent peak to peak
change is noticed. If these figures are compared to the corresponding ones in the loaded TE
measurements it is observed that the effect of temperature increase on mean level is greater
than that of load which is confirmed by the slope of the curve in Figures 7.14c and 7.14d.
Moreover, if the mean level behaviour in these figures is compared to that of backlash
in Figure 7.12 it is observed that the shift in mean level perfectly correlates to backlash
change due to temperature which is one of the conclusions addressed in Chapter 6. Again,
slight deviations between analytical predictions and experimental results arise at the
highest temperatures due to the influence of temperature differences between components.

It is interesting to remark that if pinion and gear temperatures are constant and equal
to that of the oil sump, the analytical model does not predict any significant change in
peak to peak transmission error behaviour. However, experimental results in Figures 7.14e
and 7.14f show increasing peak to peak values with temperature, which indicates that
temperature differences must exist, specially at the highest temperatures. This trend is
reproduced in all combinations of temperatures and torques as shown later in Figure 7.15.
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(a) Overall TE for increasing temperatures, set A (b) Overall TE for increasing temperatures, set B

(c) Mean level for increasing temperatures, set A (d) Mean level for increasing temperatures, set B

(e) Peak to peak for increasing temperatures, set A (f) Peak to peak for increasing temperatures, set B

Figure 7.14: Experimental thermal TE results for gear sets A and B at 200 Nm torque

Figure 7.15 gathers all thermomechanical results in gear sets A and B. All torque
and temperature combinations repeat the mean level and peak to peak patterns already
described in preceding figures. Increasing torque decreases TE mean level (stretches
available backlash gap) while increasing temperature increases it (contracts available
backlash gap); the influence of temperature on the latter being more prominent.
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(a) Mean level behaviour in set A (b) Mean level behaviour in set B

(c) Peak to peak behaviour in set A (d) Peak to peak behaviour in set B

Figure 7.15: Summary of experimental and analytical transmission error mean level and peak
to peak results for variable temperatures and torques for both gear sets

Mean level analytical predictions are consistent with conclusions in Chapter 6 and
closely follow the experimental trend, at least up to 100◦C oil sump temperature for all
torque levels. Meanwhile, analytical peak to peak values remain almost constant for each
load stage but experimental results slightly increase with temperature. Furthermore, it is
interesting to note that the effect of temperature on experimentally measured peak to
peak seems to be more pronounced at low torques which is consistent with analytical
predictions made in Section 6.3.2. Such differences in mean level and peak to peak arising
at the highest temperatures may be explained by existing temperature gradients between
components which has already been shown to affect TE in Figure 6.21.

7.4 Discussion

Comparison of analytical results and experimental measurements has shown that accurate
predictions of thermo-mechanical TE behaviour can be made when the temperature distri-
bution is known. In this sense, measurements point out that at high temperatures (above
100◦C) thermal gradients may exist which explains that experimental results deviate from
the analytical trends. Thus, the influence of temperature distribution is discussed here.
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Figure 7.16 summarizes the measured mean temperatures and corresponding deviations
of different parts of the gearbox for each oil sump temperature stage. At oil bath
temperatures below 100◦C, the steady state sump temperature is almost equal to the
preset value. Furthermore, no significant temperature differences exist between the oil
sump and the gear teeth and the standard deviation is quite small, approximately ±3◦C.
Thus, the PID control accurately maintains the oil sump temperature at the prescribed
value. However, at higher temperatures, the standard deviation increases significantly
indicating that the PID control hardly maintains oil sump temperature. Moreover, gear
tooth temperature is higher than that of the oil bath probably due to oil film thickness
decrease in the contact zone. As a consequence, friction coefficient in the mesh takes
the boundary friction coefficient value and progressively heats gear teeth above the oil
bath temperature due to surface sliding.

Figure 7.16: Gearbox temperature distribution relative to preset temperature in PID

In cases where the tooth temperature is higher than that of the oil, the available
backlash should be reduced more than expected. Therefore, experimentally measured
mean level of transmission error in Figure 7.15a should overcome the predicted value,
but this is not the case. It is to be noted in Figure 7.16 that at high temperatures not
only thermal gradients arise between the oil sump and the gear teeth but also between
the teeth and the shaft. Consequently, radial thermal gradients prevent maximum tooth
deformations and corresponding backlash reduction. The final transmission error value
depends on the exact temperature distribution for each case. Thus, the initial assumption
on the temperature of the gear being constant and equal to that of the oil bath is not
true at the highest temperature levels.

Moreover, the existence of thermal gradients also explains the increasing peak to
peak TE with temperature. Analytical predictions discussed in Section 6.3.2 showed
that an approximate temperature difference between pinion and gear of 30◦C produced a
peak to peak increase of about 1.5 µm. The maximum increase for the reference torque
is approximately 0.7 µm for gear set A and 1 µm for set B. Therefore, temperature
differences between pinion and gear must be close to 15◦C and 20◦C respectively.
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Figure 7.17 shows the influence of an increasing temperature difference on both gear
sets. As expected, peak to peak transmission error computed including temperature
differences approaches the experimental result. However, it is not probable that such
a significant thermal gradient exist between pinion and gear, especially on gear set A.
Temperature distributions presented in Chapter 2 have shown that thermal gradients
depend on rotation speed, gear ratio and lubrication conditions; therefore, if the immersion
depth is high, gear ratio is equal to one and speed is low, pinion and gear temperatures
are expected to be equal and constant.

(a) Set A (b) Set B

Figure 7.17: Influence of temperature differences on peak to peak transmission error

Currently it is not possible to measure transmission error and pinion and gear
temperatures at the same time as encoders and slip rings must be mounted on the
same shafts. The measured tooth temperature values correspond to the driven gear in
the drive gearbox. Test and drive gearboxes being equal, temperatures measured on one
side can be extrapolated to the other. The problem is that only temperatures of one gear
can be measured in the drive gearbox and therefore it is not possible to validate such
temperature differences unless individual thermal and TE tests are carried out under the
same operating conditions. This study will be left for future work.

7.5 Conclusions of Chapter 7

In this chapter an experimental study of thermo-mechanical quasi-static transmission
error behaviour has been presented. Scientific literature review in Chapter 2 has shown
that no experimental evidence on the composite effect of temperature and torque on
quasi-static transmission error exists up to date. Although some authors (e.g. [292])
already pointed out that temperature influences mean level of transmission error and thus
affects positioning accuracy, no previous reference to peak to peak behaviour has been
found and comparison to torque effects have not been performed. Overall results show
that the effect of temperature and torque coexist in TE diagrams. Both parameters have
a significant role in the mean level of transmission error while the influence of torque
on peak to peak is prominent relative to that of temperature. Although the correlation
between the change of mean level and that of backlash for increasing temperatures is
clear, peak to peak variation due to temperature is not obvious.
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In the first section of this chapter the design characteristics of a new back-to-back
gear test rig developed during this thesis have been presented. The test bench is based
on the standard FZG machine but enhanced characteristics to study thermal behaviour
of high speed gear transmissions have been introduced. Then, experimental methodology
has been described, geometrical characteristics of two test specimens have been presented
and operating conditions for the tests have been defined.

The experimental setup and measurement procedure have been described next. It
has been shown that due to the nature of the optical encoders, single-turn absolute
angular position measurements need to be converted to continuous incremental signals
before transmission error is computed. Fast Fourier Transform and high pass filtering
procedures have been described and repeatability tests have been carried out. It has
been shown that due to manufacturing and assembly errors, the amplitude at mesh
frequency and subsequent harmonics can not be used to determine the influence of torque
and temperature on transmission error due to lack of repeatability; as a consequence,
a different approach has been proposed.

Finally, quasi-static thermo-mechanical transmission error measurement results have
been presented. Tests have been carried out at low rotational speed, constant torque
and constant oil sump temperatures such that pinion and gear teeth temperature is
assumed equal to that of the oil bath. It has been shown that temperature increase
reduces the amount of available backlash and therefore mean level of transmission error is
affected. Both parameters have been shown to be correlated as proved analytically in the
Chapter 6. Transmission error behaviour under load and temperature have been analysed
next. Analytical results closely follow the experimental measurements and mean level of
TE and peak to peak values have been compared. Although, results under load are far
more accurate than those of temperature, the predicted trend is correct in all cases. It
has been shown that existing errors are probably due to thermal gradients arising at the
highest oil sump temperature which are difficult to control. Although such temperature
differences explain the discrepancies of the measured mean level and peak to peak TE,
further experimental study is required before definite conclusions are withdrawn.



Reasoning draws a conclusion, but does not
make the conclusion certain, unless the mind
discovers it by the path of experience.

— Roger Bacon’s Opus Majus, 1267
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This chapter summarizes the principal contributions of the thesis. At this
point, it is fundamental to recall the main objective of this work which
has been stated as: “To predict, evaluate and correct uneven mechanical
behaviour of spur and helical gears due to thermally-induced flank geometry
distortion”. To this aim, it has been necessary to quantify frictional heating
from the gear mesh which is one of the primary heat sources affecting gear
bulk temperature. A new friction coefficient model for cylindrical gears has
been proposed and a power loss prediction methodology has been defined.
Then, a thermal model of meshing gear pairs has been developed to compute
steady-state temperature distribution. The latter has been coupled to the
power loss prediction algorithm such that predicted temperatures are used
to recalculate mesh frictional heating with greater accuracy. Once steady-
state condition is reached, radial and longitudinal temperature distributions
have been analysed and a thermal expansion model has been proposed.
The understanding of the type and amount of thermal distortion, along
with its effects on loaded behaviour, have allowed to correct tooth geometry
and compensate undesired contact behaviour. The present research work
concludes with an experimental study validating some of the analytical
predictions. Overall results indicate that thermal distortion does play an
important role on mechanical behaviour and it should be considered in tooth
contact analysis, specially in high-speed and high gear ratio applications. In
the following, the main conclusions relative to each of the initial objectives
are gathered, other tasks carried out during the thesis are outlined and
recommendations for future work are highlighted.

219



220 8.1. Concluding remarks

8.1 Concluding remarks

In the present thesis a complete analytical thermo-mechanical approach for the prediction
and compensation of thermally-induced geometry distortion is proposed. Several tasks
have been covered in the chapters of the thesis, each of them meeting the requirements of
one of the six specific objectives stated in Section 1.3, namely: geometry generation and
tooth contact analysis, mesh heat prediction, temperature distribution calculation, thermal
expansion modelling, distorted tooth geometry modification and experimental observation
of thermal distortion effects on mesh behaviour. Individual conclusions are outlined here.

O.1) Load distribution and kinematic behaviour modelling. An analytical load
distribution and transmission error computation model based on the classical thin-slice
approach and including convective effects has been proposed in Chapter 3. Following Conry
and Seireg’s definition of the load distribution problem [187], the system of equations has
been restated numerically as a Linear Complementarity Problem (LCP) where Lemke’s
pivoting algorithm [201] has been used to obtain the exact solution. Analytical results
computed with this novel procedure, have been compared to finite element simulations
showing very good agreement; except at the highest torques where large teeth deflections
produce a significant increase of the contact ratio under load thus involving adjacent teeth
compliance. This model is used in the Chapter 4 to predict load dependent instantaneous
friction coefficients and heat flux in the base tangent plane (stated as objective 2).

O.2) Frictional heat flux prediction. Literature review in Chapter 2 has shown
that most of the available sliding friction coefficient models require empirical lubricant-
specific coefficients and therefore they cannot be used with different oils without prior
characterization in tribometers. To solve this issue, a new EHL friction coefficient model
has been proposed in Chapter 4 based on primary rheological parameters of the lubricant.
The Ree-Eyring non-Newtonian model [59] is used in this work where the reference stress
is predicted from piezo-viscosity and limiting shear stress coefficients. Furthermore, the
range of applicability of the model has been extended to cover partial EHL regime; by using
a simple asperity load sharing equation described by the complementary error function of
the specific film thickness. Moreover, an original thermally-coupled power loss prediction
method has also been proposed in this chapter, which accounts for tooth temperature
distribution and separates skin temperatures (necessary to compute oil film thickness)
from film temperature (required to compute traction). Both, the friction coefficient model
and the power loss prediction method, have been compared to experimental results from
literature using different oils. Errors below 25% were obtained in all the considered test
cases and less than 10% in 70% of them, which is acceptable considering the number of
assumptions involved in pursuit of simplicity. This heat estimation is used in Chapter 5
to compute temperature distribution in cylindrical gear pairs (objective 3).

O.3) Temperature distribution calculation. A thermal lumped parameter model of
dip lubricated gear pairs has been developed in Chapter 5. The new model is characterized
by computing simultaneously the temperature distribution of shafts, pinion and gear in
the radial and longitudinal directions with minimum computational effort with respect
to finite element models. For this purpose, gear body and shaft are discretized in
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cylindrical volumes while gear teeth are assumed to be subject to a constant temperature;
as thermal gradients are negligible due to its small size with respect to the rest of the
body. Moreover, heat inputs from bearings, sealings, oil churning and windage have
been quantified and the influence of variable immersion depths on local convection heat
transfer coefficients has been considered. Resulting temperature distributions show a
power law type behaviour in the radial direction and parabolic type in the longitudinal
one, with up to 20◦C difference between tooth centre and shaft and 10◦C gradient along
the face width in large gears. The proposed model has been compared to experimental
results from Otto [28] and, although discrepancies have been found, the overall trend with
immersion depth is predicted. Further refinement of the model is required to increase
accuracy at the lowest immersion depths but the proposed model is used to calculate
thermal distortion in the next chapter (objective 4).

O.4) Thermal distortion modelling. A novel thermally-induced geometry distortion
model for spur and helical gears has been developed in Chapter 6 and the effects of flank
deviations on loaded behaviour have been analysed. The thermal distortion model is
based on the thin-slice approach used in the computation of load distribution and assumes
that the expansion of each point in the involute is mainly radial, thus dependent on
the transverse temperature distribution of each slice. Thermal growth is computed
following the disc approximation and considering the effect of thermal stresses due to
power law-type temperature distributions previously observed in Chapter 5. It has been
shown that profile and helix slope deviations are the main causes of thermal distortion
while form errors are negligible; except when large longitudinal thermal gradients exist
which produce a barrelling of the pitch cylinder. Furthermore, it has been found that
thermal stresses limit the amount of total deviation and loaded behaviour is only affected
when significant temperature differences between pinion and gear exist (> 10◦C); which
is consistent with experimental observations in scientific literature [24]. Finally, an helical
gear stage from an EV application has been fully analysed from geometry distortion to
loaded behaviour. The numerical results point out that uneven load distribution due to
the composite effect of profile and helix slope deviations affect root and contact stresses
with a 46% increase in the maximum bending stress in the pinion and a 54% in the
maximum contact stress. Transmission error behaviour is also affected; both in the overall
behaviour and peak-to-peak values. The identification of the main parameters influencing
thermally-induced geometry distortion and its effects on mesh behaviour, leads to the
definition of tooth geometry compensation methods (objective 5).

O.5) Tooth geometry compensation. The type and amount of flank deviation have
also been analysed in Chapter 6 following the classification and limitations defined by
ISO 1328 standard [284]. It has been observed that, for a given temperature distribution,
the amount of profile slope error is mainly affected by normal module and pressure angle
while lead deviations depend on face width and helix angle. Besides, it has been proven
that pitch deviations and backlash are geometrically related to slope deviations. Although
the former significantly increases with temperature, no relative pitch deviation exists if
pinion and gear are subject to the same temperature increase, and therefore, no load
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distribution alteration is expected. Meanwhile, thermal effects on backlash should only
be considered in applications with high positioning accuracy requirements or in case of
tight manufacturing allowances where gear jamming may occur. Design recommendations
have been gathered at the end of Chapter 6 and simple tooth modification guidelines have
been established assuming that gear temperature is constant. It has been shown for the
first time that it is possible to compensate thermally-induced geometry distortion at the
design stage provided that temperature differences between pinion and gear are known.

O.6) Experimental observation of thermal distortion effects. The present thesis
concludes with an experimental study on thermo-mechanical quasi-static transmission
error behaviour of spur gears (objective 6). For this purpose, a back-to-back gear test
rig has been designed, manufactured and assembled during the thesis; with enhanced
characteristics with respect to the standard FZG machine to study thermal behaviour of
cylindrical gears. Two different sets of spur gears have been analysed and it has been shown
that the effects of temperature and torque coexist in TE behaviour. Temperature increase
reduces the amount of available backlash and therefore rises the mean level of transmission
error, while torque increase affects in the opposite way, by descending the TE diagram.
The influence of temperature on mean level is prominent with respect to that of torque;
on the contrary, peak to peak TE is clearly affected by load while temperature effect is
almost negligible. Both observations agree well with predicted analytical trends from
Chapter 6 but further experimental investigation is required to validate other results such
as the influence of temperature differences between pinion and gear on tooth rooth strain.

8.2 Recommendations for future work

This PhD dissertation has provided a fundamental understanding of heat generation
sources in cylindrical gears, parameters affecting temperature distribution and resulting
thermally-induced geometry distortion effects. The analytical and experimental obser-
vations made during the development of each of the objectives presented in Section 1.3
has led to the definition of the following directions for future work.

� O.1: Literature review has shown that double helical gears are subject to complex
thermo-mechanical interactions. It is desirable to extend the load distribution
model to include such gears specially focusing on edge effect modelling and accurate
contact pressure distribution calculation (i.e. Boussinesq-Cerruti type solution).

� O.2: Friction coefficient model has been developed in the full EHL regime and
partial EHL regime behaviour has been largely simplified. To keep an engineering
perspective avoiding extensive numerical calculations, a master curve for asperity-
load sharing modelling is desired, either empirical or numerical, similarly to [294].

� O.3: The thermal model has been developed for dip-lubricated gear pairs and
extension to jet lubricated systems is necessary to analyse axial oil pumping effects.
The latter can be modelled as an advection heat transfer along the tooth face width
yielding a non-symmetrical temperature distribution and contact pattern.
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� O.4: Thermal distortion model has been developed following a power law type
temperature distribution and temperature deviations near the tooth tip or in the
axial directions have been neglected. A different approach is required to include the
latter and quantify the influence of local thermal gradients on computed deviations.

� O.5: Tooth modification guidelines have been provided, assuming that if no thermal
gradient exist form deviations are negligible and slope errors prevail. However, helical
gears subject to longitudinal temperature gradients are frequent and form deviations
do exist. It is necessary to further analyse compensation techniques for such cases.

� O.6: Transmission error and backlash behaviour in spur gears subject to load and
temperature has been analysed and extension to helical gears is expected. Moreover,
measurement of tooth root strain misbehaviour relative to temperature differences
between pinion and gear is desired; as it is an indicator of uneven load distribution.
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A gem cannot be polished without friction,
nor a man perfected without trials.

— Lucius Annaeus Seneca, 5 BC - 65 AD

A
Bearing and Sealing Power Loss Models

To enhance the readability of the document, bearing and lip sealing power loss models
to be used within Chapter 5 are gathered in this appendix. The most common models
in scientific literature are presented: that of SKF [295] for bearing power losses and
the model by Freudenberg [296] for lip sealings.

Lip sealings

Shaft sealing losses are difficult to characterize as complex microscopic polymer-shaft
friction mechanisms occur in the contact zone [297]. Generally speaking, power losses
are computed from the torque loss in the rotating shaft following Equation A.1:

PV D = TV D ·ω = 1
2 ·dsh ·µ ·W ·ω = π

2 ·d
2
sh ·µ ·p · b ·ω (A.1)

The problem with the proposed approach is computing the friction coefficient in the
contact zone, µ, the contact pressure, p, and the width of the contact area, b, due to the
large deflections occurring in the contact zone due to polymer elasticity and micro-scale
asperity interactions. To solve this issue, manufacturer Freudenberg Simrit [296] derived
the following empirical equation based on a large number of measurements:

PV D = 7.69 ·10−6 ·d2
sh ·N (A.2)

However, this equation does not consider the influence of lubricant temperature, Θo,
which tends to reduce friction coefficient and thus, power losses. Linke [298] further
developed this equation to account for oil kinematic viscosity, νk, at its operating
temperature; yielding the same results for the SAE 20 oil at 100◦C, which is the reference
oil in the derivation of Equation A.2. The model derived by Linke reads:

PV D = [145−1.6 ·Θo+ 350 · log(log(νk,40 + 0.8))] ·10−7 ·d2
sh ·N (A.3)
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Figure A.1a at the end of Appendix A depicts the general behaviour of Equation A.3
with the main variables. Note that the influence of oil temperature is considerable increas-
ing or decreasing power losses approximately 1% per degree at 4000 rpm. Furthermore,
shaft diameter effect is also highlighted as power losses depend on the square of the
latter. For the considered diameters, lip sealing losses are larger than those produced by
oil churning and windage in Figure 5.5 thus contributing to shaft heating and altering
the gear temperature distribution if it is nearby.

Bearings

Two different types of bearing power loss models are frequent in scientific literature: i) the
classical Avrid Palmgren empirical model [299] and ii) the SKF computational model
[295]. The former is the basis of current thermal rating standards [16] and determines the
rolling bearing friction torque as the sum of a load dependent term and a no-load one,
both of which are evaluated through experimental measurements of different bearing types
and sizes. The latter, analytically extends this approach by considering that the total
friction torque is the sum of four different physical sources of torque loss, namely: rolling,
sliding, oil drag and sealings. Recent experimental evidence [29] shows that appreciable
differences exist between both models and therefore, the SKF model is preferred in this
work where total bearing power loss is computed from:

PV L = TV L ·ω (A.4)
TV L = TV L0 +TV LP = [Tdrag +Tseal] + [Trr +Tsl] (A.5)

with the no-load term, TV L0, corresponding to the sum of torque losses produced by
sealings, Tseal, and oil drag, Tdrag; while the loaded term depends on rolling and sliding
friction torques, Trr and Tsl respectively.

On the one hand, drag losses due to oil agitation can be predicted following Equa-
tions A.6 and A.7 for ball bearings and roller bearings respectively.

Tdrag =N2 ·d3
m ·
[
0.4 ·VM ·Kball ·d2

m+ 1.093 ·10−7 ·
(
N ·d2

m ·ft
νk

)−1.379
·Rs

]
(A.6)

Tdrag =N2 ·d3
m ·
[
4 ·VM ·Kroll ·CW ·B ·dm+ 1.093 ·10−7 ·

(
N ·d2

m ·ft
νk

)−1.379
·Rs

]
(A.7)

with dm being the bearing mean diameter, νk the kinematic viscosity of oil at the
operating temperature and N the rotational speed in rpm. The rest of the parameters:
VM , Kball,roll, CW , B, ft and Rs are dependent on the geometry of the bearing, its
size and the operating conditions. The reader is referred to SKF catalogue [295] for
additional information on them.

On the other hand, if bearings contain contact seals, frictional torque is estimated with:

Tseal =KS1 ·dβs +KS2 (A.8)

where ds is the seal counterface diameter and β and KS1,2 are exponents and constants
depending on the bearing type and size.
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Figure A.1b depicts the predicted trend for no-load losses in deep groove ball bearing
type 6306 and cylindrical roller bearing reference NJ406. The former is usually the rear
bearing support in each shaft of the FZG back to back test rig while the latter is commonly
the front bearing. These bearings do not include sealings and therefore, curves only
represent drag losses. Note that drag moment is higher in roller element bearings with
almost three times higher power losses at the highest speed. This behaviour is explained by
the geometry of the rollers which creates more drag than perfect spherical balls, however,
it is also highlighted that the mean diameter of reference NJ406 is larger than that of
6306 and therefore, composite drag and size effect is shown in the figure. Furthermore, it
is also interesting to remark that the influence of oil viscosity is negligible at mid to high
temperatures, therefore, low viscosity oils are desired to minimize bearing spin losses.

Meanwhile, load-dependent rolling friction term is computed following:

Trr = φsh ·φrs ·Grr · (νk ·N)0.6 (A.9)

where νk is the kinematic viscosity of the lubricant at operating temperature, N is the
rotational speed in rpm and Grr is a variable dependent on bearing type, size and loads.
Parameters φsh and φrs are factors accounting for the inlet shear heating effect in the
contact area and the starvation of lubricant at high speeds respectively.

φsh = 1
1 + 1.84 ·10−9 · (N ·dm)1.28 ·ν0.64

k

(A.10)

φrs = 1

e

[
Krs·νk·N ·(d+D)·

√
Kz

2·(D−d)

] (A.11)

with D, d and dm the outer, inner and mean diameters respectively and Krs and Kz

constants depending on lubrication method and gear geometry. Note that the inlet shear
heating effect has already been introduced in Equation 4.51 for the gear mesh, which
accounts for the influence of the oil film thickness reduction at high speeds.

Finally, the sliding friction torque is calculated using:

Tsl =Gsl ·µsl (A.12)

where Gsl depends on bearing type, size and loads and µsl is the sliding friction coefficient
which is also based on a asperity load sharing approach similarly to Equation 4.25 in gears.

µsl = φbl ·µbl+ (1−φbl) ·µEHL (A.13)

φbl = 1
e[2.6·10−8·(νk·N)1.4·dm] (A.14)

with µbl and µEHL the boundary lubrication and the elastohydrodynamic lubrication
friction coefficients respectively. SKF model recommends, µbl ≈ 0.15 for mineral oils and
µEHL = 0.05 for ball bearings and µEHL = 0.02 for roller bearings. These values are
already known to be dependent on the lubricant type, rheological properties, surface
roughness and contact conditions, however, no analytical method is proposed in [295]
to compute these parameters and experimental values are used instead.
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Figures A.1c and A.1d summarize the loaded behaviour of ball and roller bearing refer-
ences 6306 and NJ406 respectively for different radial loads, speeds and oil temperatures.
It is observed that the influence of oil temperature in Figure A.1c is important if compared
to no-load power loss terms. At low temperatures the viscosity is high and additional effort
is required to shear the lubricant in the contact zone thus increasing friction coefficient
and power losses. As temperature is increased, viscosity is reduced and friction and power
losses decrease as a consequence. The effect of load is depicted in Figure A.1d, increasing
loads produce larger rolling and sliding torque losses through the Grr and Gsl terms in
Equations A.9 and A.12. However, load is known to affect on EHL friction coefficient value
as well but SKF model does not allow to introduce this effect. If the influence of bearing
type is analysed, roller bearings also produce a larger power loss similarly to spin losses.

(a) Oil temperature effect on sealing losses (b) Oil temperature effect on bearing spin losses

(c) Oil temperature effect on bearing load losses (d) Radial force effect on bearing load losses

Figure A.1: Influence of speed, load and temperature on lip sealing and bearing power losses



We may have all come on different ships,
but we’re in the same boat now.

— Martin Luther King, 1929 - 1968

B
Analytical - Numerical Distortion Comparison

Thermally-induced geometry distortion in external cylindrical gears has been modelled
following analytical solutions for disc expansion under the plane stress condition (see
Section 6.2.1). The main underlying assumptions for such simplification are that
temperature distribution in each gear slice is fundamentally radial and no circumferential
thermal gradient exits in the steady-state regime. The size of gear teeth being relatively
small with respect to that of the gear body, and if tooth thermal gradients are neglected,
local displacements in the involute profile are mainly due to the gear body expansion.
Therefore, the whole gear can be approximated as a disc subject to a radial temperature
distribution. In order to validate this approach, analytical distortions computed with
Equations 6.5 and 6.17 are compared to those obtained with a finite element model where
spur gears are subject to power law type temperature distribution.

Figure B.1: FE modelling of gear expansion
subject to a parabolic radial thermal gradient

Two different geometries have been
meshed following the procedure and ele-
ment type presented in Section 3.4.1, but
in this case, only a single gear has been
considered. The power law temperature
distribution follows Equation 6.8, no rota-
tion has been applied and the displacement
boundary conditions have been defined
such that the local horizontal and vertical
axis of the gear have been left free for
expansion, while the displacements in the
orthogonal directions are restrained (see
Figure B.1). Only deformations of the
active profile are analysed and the influ-
ence of thermal stress is closely observed.
Table B.1 summarizes basic geometrical
parameters of the considered test cases.
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In order to analyse the influence of tooth size relative to that of the gear body, two
different modules are proposed in Table B.1 with the number of teeth updated accordingly
to yield the same pitch diameter. Furthermore, temperature distributions are exaggerated
to analyse the influence of thermal stresses on flank deviations; with gradients following
a linear, parabolic or hyperbolic trend and temperature differences between the shaft
and the tooth tip ranging from 20◦C to 200◦C.

Table B.1: Spur gear geometries for finite element simulation of thermal distortion

Parameter Symbol Value

Normal module mn [mm] 1.25 / 5
Number of teeth z [-] 80 / 20
Profile shift coeff. xE [-] -0.0989/ -0.0247
Pressure angle αn [◦] 20
Shaft diameter dsh [mm] 30
Reference tool acc. ISO 53 [-] A (1.25/1.0/0.38)
Thermal expansion coeff. αL [K−1] 12 ·10−6

Modulus of elasticity E [GPa] 206
Poisson’s ratio ν [-] 0.3

Figure B.2 shows a sample thermal distortion of the smallest module gear subject
to a 100◦C tip temperature increase of parabolic shape. Analytical results follow those
obtained numerically and the influence of thermal stresses is also depicted. Note that the
shaft is subject to ambient temperature while the tooth tip temperature is considerably
increased with respect to the latter, hence, thermal gradients are important and thermal
stress influence on the total amount of deformation is significant. This behaviour is
repeated in all the considered test cases and it becomes more visible with increasing
temperature differences between tip and shaft.

Figure B.2: Influence of thermal stresses on analytical predictions and comparison to numerical
results for the case of small module gear subject to a 100◦C parabolic temperature increase at tip
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The overall performance of the analytical thermal distortion model with respect to
the finite element simulations is summarized in Figure B.3. The acceptance criteria for
the so called “disc approximation” has been defined as maximum errors not exceeding
5% of the result computed numerically in every point in the profile direction. It can
be observed that this limiting situation is achieved at the largest module subject to
high temperature differences between tip and shaft. Therefore, the initial assumption
concerning the aspect ratio between tooth and gear body seems to be limited to tooth
heights less than 10% of the pitch diameter. In case of smaller modules, analytically
computed thermal deformation is predicted with sufficient accuracy.

(a) Effect of temperature distribution (b) Effect of tooth size

Figure B.3: Influence of thermal gradient and tooth size on computed distortion error

Moreover, if one considers that maximum bulk temperature must not exceed the
tempering temperature (approximately 170◦C for case carburized steels), it can be assumed
that the disc approximation is satisfactory up to 5 mm module as shown in Figure B.3a.
Nevertheless it must be emphasised that the imposed thermal gradients are very steep
as shaft temperature is assumed to be equal to the ambient temperature. In a real
situation, differences between the shaft and the tooth reach a maximum of 20◦C to
30◦C as shown by [119] and therefore, the effect of thermal stresses is reduced. Hence,
the disc approximation for gear thermal distortion modelling is considered sufficiently
accurate for common operating conditions.





Life was always a matter of waiting for the right
moment to act.

— Paulo Coelho’s Veronika Decides to Die, 1998

C
Hertz Theory for Elliptical Contacts
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Figure C.1: Schematic representation of non-
conformal solids in contact (adapted from [248])

When two non-conformal elastic bodies
with different radii of curvature in the
principal directions are pushing against
each other, the contact region is elliptical.
This situation is found in spur or helical
gears when one or both of the wheels are
longitudinally crowned and, in such case,
classical Hertz theory for line contacts must
be modified to account for the radius in the
face-width direction. Figure C.1 depicts
the general case of two ellipsoids in contact,
with parallel orthogonal planes where the
common rolling direction is defined by x
axis, which is perpendicular to the semi-
minor axis, bH of the contact ellipse. In the
case of spur gears, this direction is tangent
to the involute profiles of pinion and gear
and it is contained in the transverse plane
along with one of the principal radius of curvature; while the other, is parallel to the
tooth trace. However, in the case of helical gears, Euler’s theorem must be applied to
find the principal radius of curvature in the common rolling direction which is inclined an
angle, ψ, with respect to the tooth trace. For this purpose the following transformation
must be applied to the curvatures in the profile and lead directions and the new radii
of curvature are obtained from the inverse of the latter [175]:

kx′,i = kx,i · cos2(ψ) +ky,i · sin2(ψ) (C.1)
ky′,i = kx,i · sin2(ψ) +ky,i · cos2(ψ) (C.2)

From these values, reduced curvature radius can be predicted and finally, Hertzian con-
tact parameters for elliptical regions are computed following the formulation in Table C.1.
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Table C.1: Summary of Hertzian parameters for elliptical contacts

Parameter Equation

Reduced radius 1
R′

= 1
Rx

+ 1
Ry

=
(

1
Rx,1

+ 1
Rx,2

)
+
(

1
Ry,1

+ 1
Ry,2

)
(C.3)

Reduced elasticity
1
E′

= 1
2 ·
(

1−ν2
1

E1
+ 1−ν2

2
E2

)
(C.4)

Mean pressure pm = W

π ·aH · bH
(C.5)

Maximum pressure pH = 3
2 ·pm (C.6)

Semi-major axis aH = α ·
(

3 ·W ·R′
E′

) 1
3

(C.7)

Semi-minor axis bH = β ·
(

3 ·W ·R′
E′

) 1
3

(C.8)

Normal approach δ = γ ·
(

9 ·W 2

8 ·R′ ·E′2

) 1
3

(C.9)

The dimensionless parameters, α, β and γ are computed following Moes equations [300]:

α≈ κ
1
3 ·
[ 2
π
·E(m)

] 1
3

(C.10)

β ≈ κ
−2
3 ·
[ 2
π
·E(m)

] 1
3

(C.11)

γ ≈ κ
2
3 ·
[ 2
π
·E(m)

]−1
3
·
[ 2
π
·K(m)

]
(C.12)

where the elliptical integrals, E(m) and K(m), are calculated from the analytical solutions
by Reussner [301], which yield maximum errors less than one percent provided that κ>0.

E(m)≈ π

2 · (1−m) ·
[
1 + 2 ·m

π · (1−m) −
1
8 · ln(1−m)

]
(C.13)

K(m)≈ π

2 · (1−m) ·
[
1 + 2 ·m

π · (1−m) · ln
( 4√

1−m

)
− 3

8 · ln(1−m)
]

(C.14)

In these equations parameterm= 1−κ2 and the ellipticity ratio is defined as κ= bH/aH
which can be approximated from the ratio of reduced curvatures λ=Rx/Ry following:

κ≈
[
1 +

√
ln(16/λ)

2 ·λ −
√

ln(4) + 0.16 · ln(λ)
]−1
⇐⇒ 0< λ≤ 1 (C.15)



If you do not change direction, you
may end up where you are heading.

— Lao Tse, 601 BC - 531 BC

D
Absolute to Incremental Angle Conversion Method

Heidenhain RCN 2510 optical encoders are single-turn absolute-type encoders. Thus,
angular positions of pinion and gear directly obtained from the EIB 741 evaluation unit
are given in angular units relative to a common time sample and not a common angular
zero position. The starting positions θ1(t= 0) and θ2(t= 0) are different and values change
from 359◦ to 0◦ periodically, as each shaft’s rotation exceeds the zero angular position of
the corresponding encoder. Therefore, absolute values need to be converted to incremental
before computing transmission error. If one considers that the number of position values
per revolution is constant for these encoders (see Table 7.1), it is possible to compute
continuous incremental positions if a common reference is set. Figure D.1 summarizes the
computation algorithm for this and the procedure is briefly described herein.

The sense of rotation is determined first by analysing the values of the angular positions
of pinion and gear: increasing values indicate counter-clockwise rotation (positive rotation)
while decreasing values are related to clockwise direction (negative). The reference position
for the former is 0◦ and that for the latter is 360◦. The index of the angular positions
closest to the reference of the pinion are identified and all measurements up to this index
are deleted in pinion and gear. The first position in the angular position array of the pinion
now corresponds to a value close to 0◦ or 360◦. If the gear ratio is other than unit, several
gear positions exist for the same pinion references. In order to avoid considering different
positions in each test, the closest value to 0◦ in the gear is selected always and results up to
this index are deleted in pinion and gear so that the same reference position is used always.

In a second step, absolute measurements are converted to incremental values by
computing time and position differences and adding them to the initial references. Time
reference is 0 seconds and position reference is the first angular position in the preceding
arrays. A rotation counter is also included for completeness. Pinion and gear relative
position arrays are fulfilled and initial positions are corrected at the end, such that the
first value of the pinion array is always 0◦.

Finally, transmission error is computed as a function of time and the mean value is
also calculated as it is used to perform Fast Fourier Transform (FFT) and filtering signals.
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START

Find reference positions in pinion and gear

idx2= find(min[   (idx1)]);

Find indices of closest points to reference in the pinion

resetPositions

idx1= find(           );

for i = 1 to (idx2 -1)
Delete values up to reference index

end
delete[                     ];

Convert to incremental positions

procedure resetPositions;
Delete values before reference

addIncrements

Find indices of full rotation completion
idx = find(      >359);

Find first index of closest points to 0 in the gear (only if             ) 

Correct initial position
procedure shiftPositions; shiftPositions

if R1= 0
Set reference position

else

end

Set first value to zero and shift positions
if R1 = 0

else

end

Compute position and time differences
(repeat for pinion and gear)for i = 1 to 2

end

Calculate incremental values
for j = 2 to n

procedure addIncrements;
Add increments

end

Fill arrays

Initialize new variables

(arrays)
(counters)

(constant)   Add angular position increment
if (j -1) = idx

else
(update full rotation counter)

end

(check completion of full rotation)

Add time increment

R1= 0; (clockwise rotation in pinion)
R2= 1; (counterclockwise rotation in gear)

R1= 1; R2= 0

Compare discrete positions
if and

else

end senseRotation

Determine sense of rotation
procedure senseRotation;

END

Compute transmission errorLimit data to N full rotations in pinion
procedure fullRotations;

Calculate TE in gear (units of rotation)

Compute mean level
fullRotations

Find indices of measurements complying with 
idx = find(     < N );

for i = [max(idx)   1] to end
Delete remaining values

end
delete[                        ];

 

N

Figure D.1: Experimental transmission error measurement algorithm for absolute encoders



All we have to decide is what to do with the time
that is given to us.

— J.R.R. Tolkien’s The Lord of the Rings, 1954

E
Manufactured Gear Inspection Data

In the following pages manufacturing drawings and inspection data of the gear sets
used in the experimental study in Chapter 7 are shown and Table E.1 below gathers
complementary information.

Table E.1: Additional data for spur gear sets A and B used in experimental measurements

Parameter Symbol Set A Set B

Working pitch diameters d1,2 [mm] 110, 110 73.33, 146.67
Tip diameter da1,2 [mm] 116.04, 116.04 80.86, 151.60
Root diameter df1,2 [mm] 102.54, 102.54 67.36, 138.10
Base diameter db1,2 [mm] 104.31, 104.31 70.48, 140.95
Active tip diameter dNa1,2 [mm] 114.82, 114.82 79.66, 150.40
Active root diameter dNf1,2 [mm] 106,57, 106.57 70.98, 142.93
Tip clearance c1,2 [mm] 0.847, 0.847 0.695, 0.655
Generating profile shift coeff. xE1,2 [-] -0.202, -0.202 -0.065, -0.789
Transverse base pitch pbt1,2 [mm] 8.86, 8.86 8.86, 8.86
Length of the path of contact gα [mm] 13.06 14.34
Chordal tooth thickness sc1,2 [mm] 4.27, 4.27 4.66, 3.11
Tooth height h [mm] 6.75 6.75
Normal backlash jbn [mm] 0.1695 0.1970
Backlash angle ϕj [◦] 0.1859 0.3209
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240 E.1. Pinion and gear type A

E.1 Pinion and gear type A

Figure E.1: Drawing of pinion and gear type A for manufacturing
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Figure E.2: Pinion and gear type A profile measurements



242 E.1. Pinion and gear type A

Figure E.3: Pinion and gear type A flank line measurements



E. Manufactured Gear Inspection Data 243

E.2 Pinion type B

Figure E.4: Drawing of pinion type B for manufacturing



244 E.2. Pinion type B

Figure E.5: Pinion type B profile measurements
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Figure E.6: Pinion type B flank line measurements



246 E.3. Gear type B

E.3 Gear type B

Figure E.7: Drawing of gear type B for manufacturing
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Figure E.8: Gear type B profile measurements



248 E.3. Gear type B

Figure E.9: Gear type B flank line measurements



You cannot hope to build a better world
without improving the individuals.

— Marie Curie, 1867 – 1934
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