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Abstract

Cyber-Physical Systems (CPSs) are embedded computing systems in which computa-

tion interacts closely with the physical world through sensors and actuators. CPSs are

used to control context aware systems. These types of systems are complex systems

that will have different configurations and their control strategy can be configured

depending the environmental data and current situation of the context. Therefore, in

current industrial environments, the software of embedded and Cyber-Physical systems

have to cope with increasing complexity, uncertain scenarios and safe requirements at

runtime.

The UML State Machine is a powerful formalism to model the logical behaviour

of these types of systems, and in Model Driven Engineering (MDE) we can generate

code automatically from these models. MDE aims to overcome the complexity of

software construction by allowing developers to work at the high-level models of

software systems instead of low-level codes. However, determining and evaluating the

runtime behaviour and performance of models of CPSs using commercial MDE tools

is a challenging task. Such tools provide little support to observe at model-level the

execution of the code generated from the model, and to collect the runtime information

necessary to, for example, check whether defined safe properties are met or not.

One solution to address these requirements is having the software components

information in model terms at runtime (models@run.time). Work on models@run.time

seeks to extend the applicability of models produced in MDE approaches to the

runtime environment. Having the model at runtime is the first step towards the runtime

verification. Runtime verification can be performed using the information of model

elements (current state, event, next state,etc.)

This thesis aims at advancing the current practice on generating automatically

Unified Modeling Language - State Machine (UML-SM) based software components

that are able to provide their internal information in model terms at runtime. Regarding

automation, we propose a tool supported methodology to automatically generate

these software components. As for runtime monitoring, verification and adaptation,

we propose an externalized runtime module that is able to monitor and verify the
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correctness of the software components based on their internal status in model terms at

component and system level. In addition, if an error is detected, the runtime adaptation

module is activated and the safe adaptation process starts in the involved software

components. All things considered, the overall safe level of the software components

and CPSs is enhanced.
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Laburpena

Sistema Ziber-Fisikoak, konputazio sistema txertatuez osatuta daude. Konputazio

sistema txertatu hauek, mundu birtuala mundu fisikoarekin uztartzeko gaitasuna es-

kaintzen dute. Sistema ziberfisikoak orokorrean sistema konplexuak izan ohi dira eta

inguruan gertazen denaren araberako konfigurazio desberdinak izan ohi dituzte. Gaur

egungo industria ingurunetan, sistema hauek daramaten kontroleko softwarea asko

handitu da eta beren konplexutasunak ere gorakada handia izan du: aurrez ezagunak

ez diren baldintza eta inguruetan lan egin beharra dute askotan, denbora errealeko

eskakizunak eta segurtasun eskakizunak ere beteaz.

UML State Machine formalismoa, goian aipaturiko sistema mota horien por-

taera logikoa modelizatzeko erabiltzen den formalismo indartsu bat da. Formalismo

honen baitan eta Model Driven Engineering (MDE) enfokea jarraituaz, sistema mode-

latzeko erabilitako grafikoetatik sisteman txertatua izango den kodea automatikoki sor

genezake. MDEk softwarea sortzeko orduan izan genezakeen konplexutasuna gain-

ditu nahi du, garatzailei software-sistemen goi-mailako ereduetan lan egiteko aukera

emanez. Hala ere, MDE-an oinarrituriko tresna komertzialak erabiliaz, zaila izaten

da berauen bidez sorturiko kodearen errendimendua eta portaera sistema exekuzioan

dagoenean ebaluatzea. Tresna horiek laguntza gutxi eskaintzen dute modelotatik

sortutako kodea exekutatzen ari denean sisteman zer gertatzen ari denaren informazioa

modeloaren terminoetan jasotzeko. Beraz, exekuzio denboran, oso zaila izaten da

sistemaren portaera egokia den edo ez aztertzea modelo mailako informazio hori

erabiliaz.

Eskakizun horiek kudeatzeko modu bat, software modeloaren informazioa denbora

errealean izatea da (models@run.time enfokea). Model@run.time enfokearen helburu

nagusietako bat, MDE enfokearekin garapen fasean sortutako modeloak exekuzio

denboran (runtime-en) erabilgarri izatean datza. Exekuzio denboran egiaztapen edo

testing-a egin ahal izateko lehen urratsa, testeatu nahi den software horren modeloa

exekuzio denboran eskuragarri izatea da. Honela, exekuzio denborako egiaztapen edo

berifikazioak softwarea modelatzeko erabili ditugun elementu berberak erabiliaz egin
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daitke (egungo egoera, gertaera, hurrengo egoera, eta abar).

Tesi honen helburutako bat UML-State Machine modeloetan oinarritutako eta

exekuzio denboran beren barne egoeraren informazioa modeloko elementu bidez

probestu ahalko duten software osagaiak modu automatikoan sortzea da. Automati-

zazioari dagokionez, lehenik eta behin, software-osagai horiek automatikoki sortzen

dituzten tresnak eskaintzen dituen metodologia proposatzen dugu. Bigarrenik, UML-

SM oinarritutako software osagaiak automatikoki sortuko dituen herraminta bera

proposatzen dugu. Exekuzio denboran eguneraketen jarraipenari, egiaztatzeari eta

egokitzeari dagokionez, barne egoera UML-SM modelo terminoetan eskaintzen duten

software osagaiak egiaztatzeko eta egokitzeko gai den kanpo exekuzio modulo bat

proposatzen dugu. Honela, errore bat detektatzen bada, exekuzio garaian egokitze

modulua aktibatuko da egokitzapen prozesu segurua martxan jarriaz. Honek, dagokion

software osagaiari abixua bidaliko dio egokitzapena egin dezan. Gauza guztiak kon-

tuan hartuta, software osagaien eta CPSen segurtasun maila orokorra hobetua izango

da.
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Resumen

Los sistemas cyber-físicos (CPSs) son sistemas de computación embebidos en los que

la computación interactúa estrechamente con el mundo físico a través de sensores y

actuadores. Los CPS se utilizan para controlar sistemas que proveen conocimiento del

contexto. Este tipo de sistemas son sistemas complejos que suelen tener diferentes

configuraciones y su estrategia de control puede configurarse en función de los datos

del entorno y de la situación actual del contexto. Por lo tanto, en los entornos

industriales actuales, el software de los sistemas embebidos tiene que hacer frente a la

creciente complejidad, los escenarios inciertos y los requisitos de seguridad en tiempo

de ejecución.

Las máquinas de estado UML son un formalismo muy utilizado en industria

para modelar el comportamiento lógico de este tipo de sistemas, y siguiendo el

enfoque Model Driven Engineering (MDE) podemos generar código automáticamente

a partir de estos modelos. El objetivo de MDE es superar la complejidad de la

construcción de software permitiendo a los desarrolladores trabajar en los modelos de

alto nivel de los sistemas de software en lugar de tener que codificar el control mediante

lenguajes de programación de bajo nivel. Sin embargo, determinar y evaluar el

comportamiento y el rendimiento en tiempo de ejecución de estos modelos generados

mediante herramientas comerciales de MDE es una tarea difícil. Estas herramientas

proporcionan poco apoyo para observar a nivel de modelo la ejecución del código

generado a partir del modelo. Por lo tanto, no son muy adecuadas para poder recopilar

la información de tiempo de ejecución necesaria para, por ejemplo, comprobar si se

cumplen o no las restricciones definidas.

Un enfoque para gestionar estos requisitos, es tener la información de los compo-

nentes de software en términos de modelo en tiempo de ejecución (models@run.time).

El trabajo en models@run.time busca ampliar la aplicabilidad de los modelos produci-

dos en fase de desarrollo mediante el enfoque MDE al entorno de tiempo de ejecución.

Tener el modelo en tiempo de ejecución es el primer paso para poder llevar a cabo la

verificación en tiempo de ejecución. Así, esta verificación se podrá realizar utilizando

la información de los elementos del modelo (estado actual, evento, siguiente estado,
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etc.).

El objetivo de esta tesis es avanzar en la práctica actual de generar automática-

mente componentes software basados en Unified Modeling Language - State Machine

(UML-SM) que sean capaces de proporcionar información interna en términos de

modelos en tiempo de ejecución. En cuanto a la automatización, en primer lugar,

proponemos una metodología soportada por herramientas para generar automática-

mente estos componentes de software. En segundo lugar, proponemos un marco de

trabajo de generación de componentes de software basado en UML-SM. En cuanto a

la monitorización, verificación y adaptación en tiempo de ejecución, proponemos un

módulo de tiempo de ejecución externalizado que es capaz de monitorizar y verificar

la validez de los componentes del software en función de su estado interno en términos

de modelo. Además, si se detecta un error, se activa el módulo de adaptación en

tiempo de ejecución y se inicia el proceso de adaptación seguro en el componente de

software correspondiente. Teniendo en cuenta todo esto, el nivel de seguridad global

de los componentes del software y de los CPS se ve mejorado.
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1. INTRODUCTION

This chapter introduces the main motivation and scope of the research carried out

by the Ph.D. candidate and the problems that have been tackled. The selected research

methodology is introduced. The main technical contributions are summarized and the

publications for each of the technical contribution are highlighted. In addition, the

accomplished research activities are described.

1.1 Motivation and Scope of the Research

Cyber-Physical Systems (CPSs) integrate digital cyber computations with physical

processes. These CPSs are composed of embedded systems and networks that monitor

and control physical processes by means of sensors and actuators [DLV12]. As stated

in [AGJ+14], CPSs include embedded systems, which are inherently self-adaptive,

because they are meant to observe and/or influence the environment they are embedded

in. On the other hand, System of CPSs (SoCPSs) are systems where each component

of the overall system is a CPS [E+14].

In our live, we are surrounded by CPSs and SoCPSs due to an increasing number

of intelligent systems that involve safety, life and business-critical requirements in

domains such as transportation, healthcare or home equipment. These systems directly

interfere with our physical world which makes their safe, dependable and resilient

operation one of their primary requirements.

In recent years, software components have gained importance as controller part of

the CPSs. Control and safety features that were previously added mechanically or by

hardware are now carried out by software. This has led to the control software taking

more responsibility and needing mechanisms to enhance correct and safe behaviour.

Furthermore, every component of a CPS is a potential point of failure. This is true not

only for embedded systems but also for purely software systems such as distributed

and cyber applications.

These systems require extra tasks in the development process to ensure dependa-

bility. For instance, verification and validation of software are of vital importance in

order to give a certain level of confidence in the correctness of these systems. V&V

techniques are effective at detecting and avoiding faulty scenarios.

In addition, mechanisms such as Fault Tolerance Mechanisms (FTMs) are used to

enhance the CPSs and SoCPSs safety level. Those solutions usually need redundancy

on hardware and/or software diversity which increases the final cost of the solution.

However, CPS are often resource-limited because of the industrial cost requirements.

Thus, developers have to deal with additional restrictions such as memory size, power

and processing capacity of those CPSs. Moreover, we need a cost effective way to
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detect and mitigate hazardous and uncertain scenarios. Runtime verification techniques

could be used to maintain safe control in unanticipated circumstances.

Monitoring information related to the internal status of the CPSs at runtime can

anticipate the occurrence of failures. This makes it possible to take corrective actions

earlier and prevent faulty scenarios. This idea is described as a safety bag in [IEC10]

and [BCLS17]. The goal is to prevent software systems’ hazardous states by means of

safety verification at runtime. Thus, we increase their robustness enhancing reliability.

One way to take corrective actions at runtime is by Runtime Adaptation (RA).

The adaptation could be predefined or dynamic at runtime. The former could be the

first step towards enhancing the overall safe operation of such systems. As stated in

[CK10], the use of runtime techniques such as quantitative verification and model

checking are a way to obtain dependable self-adaptive software.

Moreover, the scope, complexity, and pervasiveness of CPSs continue to increase

dramatically. The inclusion of safety mechanism also increase the complexity of these

type of systems. In order to manage this complexity, on the one hand, it could be

a good practice to separate tasks (separation of concerns for dependable software

design [JK10]) to be performed by software engineers (more focused on the logic and

behaviour of the CPSs) and safety engineers (concerned about system correctness and

reliability).

On the other hand, Model-Driven Engineering (MDE) aims to overcome the com-

plexity of software construction by allowing developers to work at the high-level

models of software systems instead of low-level code [AVW07]. MDE provides

methodologies for software development that help in developing software components

with a high degree of reliability. This approach allows us to develop software based

on functional behavioural models, test its functionality at model level and also auto-

matically generate the source code. Nevertheless, generating the code automatically is

not enough. There is still a need to provide low-cost mechanisms to ensure correct

and safe behaviour at runtime.

Work on models@run.time seeks to extend the applicability of models produced

in the development phases to the runtime environment. Having the model at runtime

is the first step towards runtime verification; and having the mechanism to adapt the

model at runtime which automatically implies a software change is the next step once

an unexpected situation or error is detected. Those mechanisms could contribute to

enhance the safety and availability of the system.

Determining and evaluating the runtime behaviour and performance of models of

CPSs using commercial MDE tools is a challenging task. Such tools provide little

support to observe at model-level the execution of the code generated, and to provide
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this observed information at runtime in order to verify, for example, whether defined

constraints are met or not [AHJ+16].

Recent approaches recognize the need to produce, manage, and maintain software

models all along the software’s life time to assist the realization and validation of

system adaptations while the system executes[CEG+14]. In addition, works such

as [CK13] point out that the information in model terms is very useful to check the

correct behaviour of the software components at runtime.

In contrast, in traditional Runtime Verification the states of an observed execution

usually do not completely reflect the system’s or software components’ state but only

contain the value of certain variables of interest.

Considering all the issues identified above, some challenges and work to be done

in the area of Monitoring, Verification and Adaptation of Models at Runtime have

been identified. Some of these include:

1. How to increase the safe behaviour level of resource-limited CPSs and SoCPSs that

interfere with the physical world not increasing the complexity of their development

process.

2. How to provide low cost mechanisms based on model terms in order to enhance

the safe-behaviour/reliability of CPSs and SoCPS. In addition, this challenge could

be decomposed in the following sub-challenges:

a) How to obtain runtime information in model terms that reflects the internal

status of the resource-limited CPSs.

b) How to check the behaviour in model terms of CPSs and SoCPSs at runtime in

order to enhance the safe behaviour of those systems.

c) How to perform an adaptation process in model terms at runtime when an

unexpected situation or error is detected.

1.2 Research Methodology

The selected research method is an iterative model named Design and Creation [VK04].

The methodology is composed by five phases, which are also named process steps.

Each process step has an output that can be understood as the result of the activity

related to the process step. Figure 1.1 depicts an overview of the methodology. The

process steps are described bellow:

� Awareness of Problem: It is the first step, where an interesting problem is detected.

The awareness of the problem might come from sources such as new developments
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Figure 1.1: General overview of the research methodology

in the industries or reading in an allied discipline. The output of this phase is a

formal or an informal proposal.

� Suggestion: The second step is related to the suggestion; in this phase, a creative

step with novel functionalities is envisioned. A tentative design is suggested as an

output and likely, the performance of a first version or a prototype of the design

could be shown.

� Development: The tentative design is further developed and implemented in the

third phase, following different techniques for its implementation depending on the

artifact to be created. As output, a novel artifact is provided.

� Evaluation: The developed artifact is evaluated according to a certain criteria in

the evaluation phase. This phase contains analytic sub-phases where hypotheses

are tested. The output of this phase will be a set of fault detection and performance

measures.

� Conclusion: It is the end of a research cycle or a research effort. It is the last phase

of the iterative model and the results from the design and creation model meet

the requirements specified in the previous steps. Results are consolidated and the

obtained knowledge is detailed and disseminated.
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1.3 Technical Contributions

The solution developed in the PhD is a models@run.time approach to enhance the

safe behaviour of CPSs and SoCPSs with limited resources through introspection,

verification and adaptation ability at runtime of software components. The REflective

State-Machines based observable software COmponents (RESCO) methodology and

framework are the solutions that enable the automatic generation of these software

components with introspection and adaptation ability at runtime. In addition, an

externalized runtime checker and adaptation system have been developed. The main

contributions of this thesis can be summarized as follows:

1. A methodology supported by a framework, REflective State-Machines based obser-

vable software COmponents (RESCO), that is able to generate software compo-

nents modeled by Unified Modeling Language - State Machine (UML-SM) that

provide their internal status information in model terms at runtime.

2. RESCO framework: Automatic generation of software components with internal

status information observation ability in UML-SM model terms (current state,

event, next state,. . . ). The software engineer focuses on the design of the functional

behaviour of the software component, whereas the internal observability ability

in model terms is added automatically. The software engineer is not involved in

changing the model or source code to provide this information at runtime and thus,

can focus exclusively on modelling the behaviour of the software components by

UML-SMs. Additional infrastructure for having internal status information and

adaptation ability at runtime is automatically added by the framework. As a result,

this information could be used to increase the safe behaviour of the CPSs without

increasing the complexity of the development process. Software components

generated by this framework especially address resource-limited systems.

3. Runtime Verification. An external monitor and verification system is used to check

the internal status of the UML-SM based software components in model terms

before a transition in their state and a change in the output signal is performed.

This allows us to detect faults before the failure happens, increasing the resilience

against faults. Different types of monitor and verification systems have been

considered: (1) monitor and verification systems that check the correct behaviour

of each software component and (2) monitor and verification systems able to

check the rules governing the relations between different software components in

component based systems based on component level model based information. In
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the latter, system-wide rules or safe properties, based on software components’

internal state status information in model terms, are defined by the safety engineer.

4. Runtime Adapter. An externalized runtime adaptation module has been developed.

In the solution, the adaptation is triggered by unexpected events or when a fault is

detected at runtime. This allows to protect the system against unsafe situations and

scenarios ensuring that the software component performs safe actions.

1.4 Publications

Different peer-reviewed publications were published at conferences during the Ph.D.

Notice that some of them were directly related to the results of the thesis whereas

others show results from broader research projects partially related to the scope of this

work.

The conference publication papers are ranked by a raking systems supported

by the Spanish Informatics Scientific Society (SCIE (www.scie.es)).1 The journal

publications are scored within the Journal Citation Report (JCR) system as well as

their quartile.

1.4.1 Journal Articles

Journal Articles directly related to the work

By the time this is delivered a journal article to be sent to review at the IEEE

Transactions on Engineering Management - Special Issue "Smart Services and Soft-

ware Platforms" is being written.

Journal Articles indirectly related to the work

Two journal articles were published: one at Journal of Risk and Reliability and another

at DYNA Ingeniería e Industria. They are listed below in chronological order:

� Elena Gómez-Martínez, Ricardo J. Rodríguez, Clara Benac Earley, Leire Etxeberria

Elorza and Miren Illarramendi Rezabal. “A Methodology for Model-based Verifi-

cation of Safety Contracts and Performance Requirements” in Journal of Risk and

Reliability: Proceedings of the Institution of Mechanical Engineers, Part O, 2018,

pp. 227-247 JCR: 1.373. Q2.

1http://gii-grin-scie-rating.scie.es/
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� Felix Larrinaga Barrenechea, Iñigo Aldalur Ceberio, Miren Illarramendi Rezabal,

Mikel Iturbe Urretxa, Txema Perez Lazare,Gorka Unamuno Eguren, Jon Salvidea

Campuzano, Inaxio Lazkanoiturburu. “Análisis de arquitecturas tecnológicas para

el nuevo paradigma de la industria 4.0: Analysis of technological architectures for

the new paradigm of the industry 4.0” in Dyna Ingeniería e Industria, 2019, pp.

267-271 http://dx.doi.org/10.6036/8837 JCR: 0.5. Q4.

1.4.2 International Conferences

A total of 5 publications were achieved at international conferences, including SEAA,

ICRE and SAC.

By the time this dissertation was submitted a conference paper was sent to review

at the 30th International Symposium on Software Reliability Engineering (ISSRE

2019).

International Conference directly related to the work

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia, Goiuria Sagardui.

“Runtime Contracts Checker: Increasing Robustness of Component-Based Software

Systems” 3rd International Conference on Reliability Engineering (ICRE 2018).

Barcelona. 24-26 November, 2018

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia, Goiuria Sagardui.

“Runtime observable and adaptable UML State Machines: Models@run.time

approach” 34th ACM/SIGAPP Symposium On Applied Computing (SAC), 2019,

Ranking_SCIE: A-

International Conference indirectly related to the work

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia. “Reuse in safety

critical systems : educational use case” 39th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA). Santander. 4-6 September, 2013,

Ranking_SCIE: B-

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia. “Reuse in safety criti-

cal systems : educational use case first experiences” EUROMICRO DSD/SEAA,

Euromicro Conference series on Software Engineering and Advanced Applications

(SEAA) and Euromicro Conference on Digital System Design (DSD). Verona.

27-29 Agosto. Pp. 417-422, 2014, Ranking_SCIE: B-
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� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia. “Reuse in Safety

Critical Systems: Educational Use Case Final Results” Proceedings 41st Euromicro

Conference on Software Engineering and Advanced Applications. Funchal. 26-28

August. Pp.290 - 297, 2015, Ranking_SCIE: B-

1.4.3 Workshops, Fast Abstracts, Posters and National
Conferences

In addition to international conferences, two national conference papers were publi-

shed. Furthermore, a workshop paper at SAFECOMP-DECSOS 2017, a poster at the

Safety Critical Systems Symposium and a Fast Abstract at SAFECOMP-2018 were

published.

Directly related to the work

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia, Goiuria Sagardui.

“Increasing dependability in Safety Critical CPSs using Reflective Statechart” DEC-

SOS Workshop in Computer Safety, Reliability, and Security. SAFECOMP 2017.

Trento, September, 2017

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia, Goiuria Sagardui.

“Increasing dependability in Cyber-Physical Systems using Reflective Statecharts

based Software Components” Evolution of System Safety. Proceedings of the

Twenty-sixth Safety-Critical Systems Symposium. York, UK. 6-8 February,2018

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia, Goiuria Sagardui.

“Models adaptation at runtime: enhancing the safety of software systems in uncer-

tain scenarios” Fast Abstract Session in 37th International Conference on Computer

Safety, Reliability, and Security (SAFECOMP). Vasteras, Sweden. 19-21 Septem-

ber,2018

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia, Goiuria Sagardui.

“Exekuzio Denboran barne egoera ikusi eta aldatzea ahalbideratzen duten UML

Egoera Makinak: Models@run.time” IkerGazte 2019. Baiona, Euskal Herria. May,

2019.

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia, Jose Maria Perez,

Felix Larrinaga, Goiuria Sagardui. “MDE based IoT Service to enhance the safety

of controllers at runtime”II International Workshop on Model-Driven Engineering

for Design-Runtime Interaction in Complex Systems. Co-located with STAF 2019.

Eindhoven, The Netherlands. July, 2019.
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Indirectly related to the work

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia. “SafeCer: safety

certification of software intensive systems” XIV Congreso de confiabilidad, libro

de ponencias Madrid, 27 y 28 de noviembre de 2012. Madrid: Asociación Española

para la Calidad

� Miren Illarramendi, Leire Etxeberria, Xabier Elkorobarrutia. “Reuse in safety

critical systems : TCMS railway use case first experiences” Actas de las V Jornadas

de Computación Empotrada. Valladolid. 17-19 Septiembre. Valladolid, 2014

1.5 Other Related Activities

In addition to attending the conferences of the aforementioned conference publications,

the Ph.D. student has accomplished other activities that helped her in her training as a

researcher. These activities have included a participation in competitions, service to

the community and participation in European projects.

1.5.1 Competitions

The work developed during this dissertation was also disseminated in the following

forums:

� Runtime Verification Competition: Miren Illarramendi, Leire Etxeberria, Xabier

Elkorobarrutia, Goiuria Sagardui. “Runtime Verfication of CRESCO software

components: enhancing the safety of software systems”. RV Benchmark Chal-

lenge 2018 (Open category). Evaluation took place during the 18th International

Conference on Runtime Verification.

1.5.2 Service

Researchers are often involved in peer-reviewing articles or organizing conferences

and workshops. As part of his training, the Ph.D. student has been involved in the

following activities as a service to the research community:

� Reviewer for the Journal DYNA Ingeniería.

� Proceedings chair and Program committee member of the IEEE 13th International

Workshop On Electronics, Control, Measurement, Signals and their Application in

Mechatronics, ECMSM’17. 2

2http://ecmsm2017.mondragon.edu/en
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� Program committee of ACM-W: Informática para tod@s 2016-2018-2019.

� Reviewer at Jornadas Sarteco (2013-1018)

1.5.3 Project Proposals Preparation

Writing proposals for funding is one of researchers’ key activities. The Ph.D. student

has been involved in the proposal of an European project that is related to this disserta-

tion. The project name was the “Productive 4.0” project, part of the ECSEL call. The

project was funded by the European commission.

At this moment, in this project we are working on the proof of concept of what

may be a Safety Manager in the Arrowhead framework [Del17]. This preliminary

definition is based on the work presented in this document.

1.6 Document Structure

The thesis is structured as follows: the first part of the thesis corresponds to the

Foundation and Context. Chapter 1 introduces the main motivation of the thesis, the

employed research methodology, the contributions, the achieved publications and the

activities accomplished by the Ph.D. student. Basic background as well as terminology

used during the rest of the document is provided in Chapter 2. Chapter 3 gives an

overview of the state of the art and highlights the most relevant studies related to this

thesis. The theoretical framework is explained in Chapter 4, including the research

objectives, the research hypotheses, an overview of the proposed solutions and the

employed case studies.

The second part corresponds to Reflective UML-SM Software Components Ge-

neration. Chapter 5 provides the method we propose and develop for generating

reflective UML-SM based software components automatically.

The third part corresponds to runtime monitoring, verification and adaptation.

First, our proposal for the Software Components Level Runtime Verification and

Adaptation module is presented in Chapter 6. Second, we propose a Software System

Level Runtime Verification system in Chapter 7.

To conclude, in the final remarks part in Chapter 8, we summarize the contributions

of the thesis, we validate the hypotheses, we discuss the main limitations of the

proposed solution and we provide a set of lessons learned. Furthermore, we propose

and discuss future research.
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2. TECHNICAL BACKGROUND

The goal of this chapter is to make the reader familiar with the areas covered

by the thesis. First, background related to the type of the systems addressed in the

dissertation is provided in Section 2.1. Second, basic definitions to better understand

the work are presented in Section 2.2 and in Section 2.3 we present fault injection

techniques. Next, in section 2.4 verification and validation and Fault Tolerance

Mechanism (FTM) are presented. Section 2.5 presents Runtime Verification (RV),

Runtime Enforcement (RE) and Runtime Adaptation (RA). Lastly, background related

to the concept of Models@Runtime is shown in Section 2.6.

2.1 Application Domain

The increased connectivity of embedded systems and sensors has led to the emergence

of CPSs, systems of collaborative computational elements controlling a physical pro-

cess. Areas such as avionics, smart grids, medical devices, traffic control, automotive

are examples of domains where CPS is growing at an exponential pace.

These CPSs increasingly require cooperation from human users or operators

and other embedded systems and CPSs that have been developed by third parties

which may not do what they are expected to do [Gar10]. Not all the interaction

possibilities and scenarios can be anticipated and there will be non-controlled and

uncertain scenarios. This dissertation proposes a framework to generate automatically

software components with reflection and introspection ability for embedded systems,

CPSs and System of CPSs (SoCPSs). Thus, these software components will help

detecting non-controlled, uncertain or erroneous scenarios based on their internal

information provided at runtime and therefore, safe behaviour of these systems will

be enhanced.

In the next subsections we are going to explain the basic characteristics of these

kind of systems.

2.1.1 Cyber-Physical System (CPS)

Cyber-Physical Systems (CPSs) are computer-enabled mechanism interacting net-

works of physical and computational components with feedback loops where physical

processes affect computations and vice versa. CPS will provide the basics of our

critical infrastructure, in terms of emerging and future smart services, and improve

our quality of life in many aspects [Wol09, Alh17].

Cyber-Physical Systems can be described in terms of five dimensions that are

built upon each other as they evolve towards increasing openness, complexity and

intelligence:
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Figure 2.1: Cyber-physical systems. A concept map [ABL+17].

Figure 2.1 presents a Cyber-Physical Systems concept map.

� merging of the physical and virtual worlds,

� systems of systems with dynamically adaptive system boundaries,

� context-adaptive systems with autonomous systems; active real-time control,

� cooperative systems with distributed and changing control,

� extensive human-system cooperation.

2.1.2 Embedded Systems

An embedded system is a system that, like a CPS, incorporates a digital computing

element (e.g., control software) and some physical components that interact with the

physical environment [FLPV13].

The embedded nature allows the computational elements to interact directly (i)

with a physical computing platform on which it is executed on and (ii) with its physical

surroundings. In other words, computational logic may obtain input from sensors that
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measure physical parameters, execute physical instructions of a computing platform,

and provide the output to actuators that effect change in physical parameters and affect

the physical behavior of the system that is controlling [MZ16].

An embedded system has a much more limited scale than a CPS; an embedded

system is commonly considered at the level of a device, incorporating a limited

functionality designed for a specific task with associated control logic and hardware

elements [RI16].

Comparing to embedded systems, CPSs’ provide bigger functionality and net-

working interoperability, growing importance and reliance on software and the number

of non-functional constraints such as robustness or scalability [NYA+13]

2.1.3 Dependability, reliability and safety concepts and their
relevance in CPSs and Embedded Systems

In this section we are going to define the concepts of dependability, reliability and

safety and the interpretation we make of them in our work.

� Dependability [Som07]: the dependability of a system reflects the user’s degree of

trust in that system. Dependability is a non-functional requirement. Redundancy

and diversity techniques are used for reaching dependability. But adding diversity

and redundancy adds complexity and this can increase the chances of error. Princi-

pal dimensions of dependability are: Availability, Reliability, Safety, Security and

others.

� Reliability [IEE08]: is the ability of a system or component to perform its required

functions under stated conditions for a specified period of time.

� Safety [Som07]: is a judgment of how likely it is that the system will cause damage

to people or its environment.

Having all these definitions into account, we can argue that the solution presented

in this work does not address dependability because it does not address some of

the dimensions such as security or availability. Regarding reliability, the solution

addresses improving correctness of software systems and components.

The present work addresses error and uncertain situation’s detection in their early

stages in order to avoid hazardous scenarios. We can conclude that it is focused on

improving the safe and undamaged status of software systems.

All things considered, we have defined (our interpretation) two different roles

when developing software components based on our solution:
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� Software Engineer: person in charge of the functional and behavioural design of

software components and systems.

� Safety Engineer: person in charge of the safety related requirements.

Relevance of Reliability and Safety in CPSs and Embedded Systems The major

problem of achieving reliable operations for CPS’s open and networked control sys-

tems is approached using a system engineering process to gain an understanding of the

problem domain. Air traffic control systems, railway signaling, automatic car braking

systems, defense systems, nuclear power stations and medical equipment (increasingly

including home medical electronics) are some of complex systems in use, on which

life and property depend. These systems do work well because of the expertise and

diligence of professional safety engineers, regulators and other practitioners who work

to minimise both the likelihood of accidents, and their consequences [Clu].

In these systems the implemented functionality must not only be reliable, but must

also meet real-time constraints. As a consequence, their development process is more

complex and its cost increases. FTMs are commonly used mechanisms to decrease the

probability of having accidents. Nevertheless, fault tolerance cannot be tackled just

as a software problem due to the nature of CPSs, which includes close coordination

among hardware, software and physical objects [Alh17].

There are other industrial domains that are not safety-critical but where reliability

and safety are important. For instance, home appliances or electronic toys for children

must avoid hazardous situations. The techniques and methods to increase the reliability

and safety are usually expensive solutions. Nonetheless, these types of industries need

low-cost mechanisms for the development of reliable, safe and cost-effective systems.

2.2 Faults, Errors and System Failures

First of all Fault, Error and Failure concepts are described in the following [Sto96]:

� Fault is a defect within the system. A faulty system is the one with defects such

as malfunction of a hardware component, mistake within a piece of software or a

defect in the design of the system.

� Error is a deviation from the required operation of the system or subsystem. The

presence of a fault may lead to an error. An error is the mechanism by which the

fault becomes apparent.

� System Failure occurs when the system fails to perform its required function.
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Different authors define dissimilar fault classifications. Some of them divide faults

in the next categories [Wea08]:

� Random faults: are due to physical causes and only apply to the simple hardware

components within a system. This type of fault is caused by effects such as corro-

sion, thermal stressing and wear-out. Statistical data gathered on large numbers of

similar devices may enable predictions to be made concerning the probability of

a component failing within a given period of time. All physical components are

subject to failure, and thus all systems are subject to random faults. Example of

random faults: random bit flip, hardware component malfunction, . . .

� Systematic faults: are produced by human errors during system development and

operation. They can be created in any stage of the system’s life including specifica-

tion, design, manufacturing, operation, maintenance and decommissioning. After a

systematic fault has been created, it will always appear, when the circumstances

are exactly the same, until it is removed. These faults are not random and are thus

not usually susceptible to statistical analysis. It is therefore more difficult to predict

their effect on the reliability of the system.

Other possible classification could be made based on their duration [Dub13]:

� Permanent faults: remain active until a corrective action is taken. These faults are

usually caused by some physical defects in the hardware, such as shorts in a circuit,

broken interconnections, or stuck cells in a memory. All design faults and most

random faults (even when their effects may not be visible all time) belong to this

group.

� Transient or Temporary faults: remain active for a short period of time. A transient

fault that becomes active periodically is an intermittent fault. Because of their short

duration, transient faults are often detected through the errors that result from their

propagation. Some hardware faults like the effects of a noise spike, or an alpha

particle hitting a memory device are in this group. The errors they produce may

remain in the system unless some action is taken to remove them.

Another classification which has been extensively used in this domain is the one

described by Laprie [Lap92]. He defines three main groups of faults that are shown in

Figure 2.2.

� Faults defined in terms of their "Nature":

I Accidental Faults: Faults that occur randomly,
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2.2. Faults, Errors and System Failures

Figure 2.2: Laprie Fault Hierarchy

I Intentional Faults: Faults that occur deliberately,

� Faults defined in terms of their "Origin":

I Cause:

• Physical faults: Result of adverse physical phenomena,

• Human made faults: Caused by human imperfections,

I System Bounds:

• Internal faults: Occur within a system,

• External faults: Result of environmental interference,

I Phase of Creation:

• Design faults: Human made internal fault,

• Operational faults: Occur during use of the system,

� Faults defined in terms of their "Persistence":

I Permanent Faults: Internal or External, unrelated to specific system conditions,

of indefinite duration,

I Temporary Faults: Present in system for limited time,

I Transient Faults: Temporary external physical fault.
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Figure 2.3: Venn diagram of software fault types [GT05].

Certain type of systems that we are addressing have to consider the Functional

Safety Standard [IEC10]. This standard classifies the faults according to their:

� Causes: random (hardware) faults, systematic faults (including software faults)

� Effects: safe failures, dangerous failures

� Detectability: detected (revealed by online diagnostics), undetected (revealed by

functional tests or upon a real demand for activation)

Our work is mainly focused on software faults. That is why we also considered

the fault classification suggested by [GT05]. They classify the software faults in four

different groups: Bohrbugs, Mandelbugs, Heisenbugs and Aging-related bugs. A Venn

diagram showing the relationships between the four fault categories is depicted in

figure 2.3.

� Bohrbug: A fault that is easily isolated and that manifests consistently under a

well-defined set of conditions, because its activation and error propagation lack

“complexity” as set out in the definition of Mandelbug. Complementary antonym

of Mandelbug.

� Mandelbug: A fault whose activation and/or error propagation are complex, where

“complexity” can take two forms:

I The activation and/or error propagation depend on interactions between con-

ditions occurring inside the application and conditions that accrue within the

system internal environment of the application.

I There is a time lag between fault activation and failure occurrence, e.g., because

several different error states have to be traversed in the error propagation.
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Typically, a Mandelbug is difficult to isolate, and/or the failures caused by it are not

systematically reproducible. Complementary antonym of Bohrbug.

� Heisenbug: A fault that stops causing a failure or that manifests differently when

one attempts to probe or isolate it. Sub-type of Mandelbug.

� Aging-related bug: A fault that leads to the accumulation of errors either inside the

running application or in its system-internal environment, resulting in an increased

failure rate and/or degraded performance. Sub-type of Mandelbug.

There are other type of errors such as operation errors or maintenance errors that

we are not going to consider them in this work.

2.3 Fault Injection techniques

Software fault injection (SFI) is an acknowledged method for assessing the reliability

of software systems. The solution presented in this work has been evaluated by

implementing some experiments (based on industrial use cases) and in order to

simulate faults and errors that would have the evaluated systems in real scenarios we

have used these SFI techniques. When an injected fault causes a system failure, this

can indicate insufficient fault tolerance mechanisms. Fault Injection (FI) campaigns

have been used to test system’s robustness.

Fault injectors can be custom-built hardware or software and they can support

different fault types, fault locations, fault times, and appropriate hardware semantics

or software structure.

Choosing between hardware and software fault injection depends on the type of

faults you are interested in and the effort required to create them. For example, if you

are interested in stuck-at faults (faults that force a permanent value onto a point in a

circuit), a hardware injector is preferable because you can control the location of the

fault. The injection of permanent faults using software methods either incurs a high

overhead or is impossible, depending on the fault. However, if you are interested in

data corruption, the software approach might suffice. Some faults, such as bit-flips

in memory cells, can be injected by either method. In a case like this, additional

requirements, such as cost, accuracy, intrusiveness, and repeatability may guide the

choice of approach.
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2.4 Verification & Validation and Fault Tolerance
Mechanisms

2.4.1 Verification & Validation

The main objective in Verification & Validation (V&V) of software requirements,

design specifications and source code is to identify and resolve software problems and

high-risk issues early in the software life-cycle. These V&V techniques are used to

detect mainly systematic faults. However, it is not always possible to detect all types

of faults during this phase. Residual or remaining software faults are included in this

category. We can define them as systematic faults that remain after the validation and

verification of design and development phase.

In order to detect this type of faults and others defined as unanticipated faults

(not considered in the design and development phase and dependent of the final

environment of the CPS) we will need Fault Tolerance Mechanism (FTM) or other

techniques such as Runtime Verification.

2.4.2 Fault Tolerance Mechanisms

The goal of a fault tolerant system is to provide safety, liveness and avoid system

failures even if faults are present. If a fault occurs, the system hides its effects. Safety

alone is not sufficient because it does not guarantee that the system does anything

useful. The system has to be both, safe and alive, even in presence of faults.

The fault tolerance process is that set of activities whose goal is to remove errors

and their effects from the computational state before a failure occurs. The process

consists of [Pul01]:

� Error detection: in which an erroneous state is identified;

� Error diagnosis: in which the damage caused by the error is assessed and the cause

of the error is determined;

� Error containment/isolation: in which further damages are prevented (or the error

is prevented from propagating);

� Error recovery: in which the erroneous state is substituted with an error-free state.

This process plays an increasing role for technical processes in order to improve

reliability, availability, maintenance and life-time of software components. Having as

an objective to improve the safe behaviour of the addressed systems by using these
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fault tolerance mechanisms, one of the first step would be to reduce the number of

faults and errors. Whatever the reason for a fault, we would like the software to be able

to recognize that there is an error and to avoid and recover from it before it becomes

a failure. There are four steps for doing this: (1) noticing that there is an error; (2)

when possible, diagnosing exactly which of the software components is affected by

the error; (3) finding an alternative way of achieving a safe intended behaviour; and

(4) executing the alternative way identified in the previous step.

Error detection is one of the most important aspect of fault tolerance because

a system cannot tolerate a problem of which it is not aware. The starting point of

any fault tolerance activity is error detection. Error detection mechanisms are often

referred to as "failure/fault detection", and the presence of an error in the output of a

component is declared as failure of the component.

An error is observable if there is information about its existence available at the

system interface. The information that indicates the existence of a fault is a symptom.

A symptom may be a directly observed error or failure, or it may be a change in system

behavior while still the system meets its specifications.

A system is fault tolerant if it can mask the presence of faults in the system by

using redundancy [JJ94]. Redundancy is the key to support fault tolerance; there can

be no fault tolerance without redundancy. Redundancy is defined as those parts of

the system that are not needed for the correct functioning of the system when the

system has not faults. There are different types of redundancy: hardware, software,

information and time [Avi76, PG05]:

� Hardware: Hardware redundancy duplicates entire components and compares the

results on equality. A majority voter takes at least two matching results out of three,

whereas a comparator only detects the fault but cannot decide which result is right.

� Software: Software redundancy executes the same piece of software programmed

in diverse implementations and compares the outcomes.

� Information redundancy: Information redundancy adds extra nonfunctional relevant

information to the original data like checksum or duplication to data to detect faults.

The fault coverage depends on the quality of the error detection correction code.

� Time: Time redundancy executes the task several times. It is the additional time

that is used to deliver the service of the system (e.g., multiple execution of the

operation)

Hardware redundancy may be partial (redundancy of processors, hard disks,

network adapters,...) as well as complete with replication or software diversity. In
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Figure 2.4: Hardware redundancy example: Triple Modular Redundancy.

Figure 2.4 a typical Triple Modular Redundancy (TMR) architecture is shown. TMR

is a fault-tolerant form of N-modular redundancy, in which three systems perform a

process and that result is processed by a majority-voting system to produce a single

output. If any one of the three systems fails, the other two systems can correct and

mask the fault.

Software diversity is usually used to prevent software or hardware failures caused

by design faults. In this case, different versions of the software are developed and

the software for each version must be developed by different teams. To prevent non

evident failures, the voting scheme must be used [BJRT06].

The incorporation of redundancy in a software system requires a structured and

disciplined approach, otherwise it may increase the complexity of the system and

consequently it may decrease, rather than increase the system’s robustness.

2.5 Runtime Verification, Enforcement & Adaptation

In the next subsections we will present the different runtime techniques that have been

considered in the solution developed in the thesis.

2.5.1 Runtime Verification

Rather than replicate a piece of hardware or a piece of software, another approach to

error detection is dynamic or runtime verification. Dynamic or runtime verification is
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performed during the execution of software, at runtime, and dynamically checks its

behaviour.

Runtime Verification (RV) consist of extracting information from a running sys-

tem and using it to detect, and possibly react to, observed behaviors satisfying or

violating certain properties [DGH+16]. Runtime verification avoids the complexity of

traditional formal verification techniques (like model checking and theorem proving)

by analyzing only one or a few execution traces and working directly with the actual

system.

2.5.2 Runtime Enforcement

Runtime Enforcement (RE) consists of monitoring the controller in order to ensure that

the system behaviour is always in agreement with the correct specification [CFAI18].

Before performing a transition to another state, this technique checks the current

status of the system and in case it identifies something wrong, it does not conclude

the transition. The runtime monitor should therefore be capable of anticipating

incorrect behaviour before the transition actually happens. One way to perform

runtime enforcement is to observe the runtime information (traces) sent by the software

controller to an externalized runtime verification module. Since correct traces will be

finite and predefined in the verification module, when the received trace is not defined

as a correct one, the verification module comes to a state that trace-violation has been

detected.

2.5.3 Runtime Adaptation

Once an error is detected at runtime, one possible solution is to adapt it to ensure

a safe situation. This technique is known as Runtime Adaptation and it is a way to

enhance the safe operation of a system. Nevertheless, the adaptation process itself has

to be safe, too.

Runtime Adaptation (RA) is a technique prevalent to long-running, highly availa-

ble software systems, whereby system characteristics (e.g., its structure, locality etc.)

are altered dynamically in response to runtime events (e.g., detected hardware faults

or software bugs, changes in system loads), while causing limited disruption to the

execution of the system [CF15].

Regarding the concepts of dynamic adaptation in general, in [TAFJ07] they distin-

guish between dynamic behavior adaptation and dynamic reconfiguration. Dynamic

adaptation of behavior enables unconstrained adaptation by modifying the actual

behavior, examples are artificial neural networks and evolutionary algorithms. This

provides the highest flexibility, but it is unpredictable, not verifiable and therefore not
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applicable for safety-critical systems. Dynamic reconfiguration provides constrained

adaptation by defining a set of behavior variants at design time and selecting one

of these predefined variants at run time. Compared to dynamic behavior adapta-

tion, dynamic reconfiguration is less flexible, but the resulting adaptation behavior is

predictable.

Other definitions for runtime adaptation are given in [GAM17]. In this case, they

define two main dynamic software adaptation approaches using runtime models of

the software but from a different point of view compared to the previous definitions

given in [TAFJ07]. In this case, they define planned and unplanned adaptations.

Planned adaptation is proactive in which manual or automated decisions are made

to dynamically change the software system at runtime. The unplanned adaptation is

triggered by unexpected events or when a fault is detected at runtime and reactive

decisions are needed to dynamically adapt the system to avoid system failures.

In [GS02] is proposed an "externalized" runtime adaptation system that is com-

posed of external components that monitors the behaviour of the software component

of the running system. These external components are responsible for determining

when a software component’s behaviour is within the envelope of acceptable system

parameters. When the software component’s behaviour fall outside of the expected

limits, the external components start the adaptation process. To accomplish these tasks,

the externalized mechanisms maintain one or more system models, which provide

an abstract, global view of the running system, and support reasoning about system

problems and repairs. In figure 2.5, the architecture of the solution is shown.

When designing adaptive systems, we need to design different modes of operation

to evolve the system at runtime. We define as normal-mode of operation the situations

in which all elements of the system are functioning as intended and the software com-

ponent’s behaviour is within the envelope of acceptable system parameters. When the

software component’s behaviour is not working in the expected limits, the adaptation

process starts and the software component is sent to a safe-mode operation (graceful

degradation). The safe-mode operation is an aspect of a fault tolerant software system,

where in case of some faults, system functionality is reduced to a smaller set of

services/functionalities that can be performed by the system [Dha17].

To accomplish the adaptation process, the externalized components (1) maintain

the model of the monitored running software component and (2) support reasoning

about system problems.
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Figure 2.5: Model-based Adaptation

Adaptive Fault Tolerance

A system that remains dependable when facing changes is called resilient. The fast

evolution of systems, including safety critical systems, requires that fault tolerance

mechanisms remain consistent with their assumptions and the non-functional require-

ments of the application. A change event may impose the adaptation of a Fault

Tolerance Mechanism (FTM) in order to provide an appropriate response to the new

system’s assumptions. Consequently, system resilience should rely on adaptive fault

tolerant computing [EFL17].

2.5.4 Runtime techniques comparison

In figure 2.6, the differences between the presented different techniques (Runtime

Verification (RV), Runtime Adaptation (RA) and Runtime Enforcement (RE)) are

shown.

As we can see, in Runtime Verification (RV) monitors adopt a passive role which is

to receive system events and detect violations. On the other hand, monitors in Runtime

Adaptation (RA) are not passive and in this case, they execute adaptation actions once
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Figure 2.6: Distinguishing between Runtime Verification, Adaptation and Enforcement
[CFAI18]

they detect a wrong behaviour. In the last approach, Runtime Enforcement (RE), the

system behaviour is kept in line with the correctness requirement. For doing that, the

incorrect behaviour is avoided by the monitor which analyses the transitions of the

system before executing them. Thus, the incorrect event is suppressed by inserting

events that avoid the incorrect situation. This contrasts with RA, where the monitors

may allow a violation to occur but then execute remedial actions to mitigate the effects

of the violation.

2.6 Models@Runtime: Basic Concepts

2.6.1 Reflection and Introspection

Reflection [Mae87a] can be defined as the property by which a component enables

observation of its own structure and behavior from outside. A reflective system

is basically structured around a representation of itself or a model that is causally

connected to the real system.

A reflective program is one that reasons about itself. A fully reflective procedural

architecture [Smi84] is one in which a process can access and manipulate a full,

explicit, causally connected representation of its own state.

As stated in [RKFTF03], a reflective component provides a model of itself, inclu-

ding structural and behavioral aspects, which can be handled by an external component.

This information is used as an input to perform appropriate actions for implement-

ing non-functional properties (concerning, for instance, fault-tolerance or security
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strategies). The reflective systems that we consider are thus structured in two different

levels of computation: the base-level, in charge of the execution of the application

(functional) software and the meta-level, responsible for the implementation of obser-

vation and control (non-functional) software. The meta-level software has a runtime

view of the behaviour and structure of its base-level and changes/adaptations are

programmed at meta-model.

Generally, reflection is about inspecting (observing and therefore reasoning about)

and changing the internal representation (structural reflection) and also reasoning

about the normalization (behavioral reflection) of a system. To be more specific, the

inspection of the internal representation is typically called introspection and changing

the internal representation and also reasoning about the normalization is well-known

as intercession and the mechanism that enable these manipulations is called reification

[Jam12].

Introspection supports runtime monitoring of the program execution with the goal

of identifying, locating and analyzing errors [JSZ10].

The computational reflection as a concept is originated by Brian Cantwell Smith

[Smi82] and it was elaborated by Pattie Maes [Mae87b] and Gregor Kiczales [KDRB91]

and his colleagues in programming languages. Afterward, the emerging new paradigms

and the need for distributed and transparent systems by embracing the component-

based concepts, the computational reflection found its way all the way down to dis-

tributed systems and their underlying middleware infrastructures to make them highly

adaptive. As a result, a number of reflective component model specifications (Fractal)

and a middleware implementation (Julia) had emerged. Finally, by arising the need

for dynamic software evolution in self-* systems, the need for explicitly maintaining

the architectural description which causally connected to runtime model was raised.

"Causally connected" means that any changes made to a process’s self-representation

are immediately reflected in its actual state and behavior.

These concepts have been extensively explored by Walter Cazzola, Peyman Oreizy,

Nenad Medvidovic, Richard Taylor, Jeff Magee, Jeff Kramer and their colleagues in

[OMT98].

A runtime model provides a view on a running software system that is used for

monitoring, analyzing or adapting the system through a causal connection between

the model and the system. Most approaches, such as [GCH+04, MZ16], employ one

causally connected runtime model that reflects a running system. As shown in figure

2.7 Runtime Models are divided into two top categories, Reflection and Adaptation

Models, based on the way they are used at runtime.

As an extension of the work in the area of reflective components a new research
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Figure 2.7: Categories of Runtime Models for Self-Adaptive Software Systems
[VSG10]

line focused on Models@runtime started at the beginning of the last century. The first

edition of the workshop Models@run.time was celebrated in 2006. This approach

aims to gain of the benefits that provides the MDE techniques.

2.6.2 Model-Driven Engineering (MDE) & Models@Runtime

Model-Driven Engineering (MDE) aims at facilitating the development of complex,

reliable and highly reusable systems by using models as the primary artifacts of the

software development process [BSAN17].

The models@runtime pattern [MBJ+09] applies these MDE ideas to self-adaptive

systems: The system thus maintains a domain-specific model of its state (tailored for

a given adaptation) and any change made to this model is automatically synchronised

with the running system. A models@runtime environment keeps a model in synchrony

with a running system, this way a reasoning engine adapts the system by modifying

this model. Existing models@runtime environments typically fail to let the user

control not only which are the elements or concepts that form the model but also how

the model is synchronised with the running system [FCSS17].
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In this chapter, we give an overview of the state of the art and highlight the most

relevant studies related to this thesis. Furthermore, a critical analysis of the state of

the art in runtime verification and adaptation and the Models@run.time approach is

performed, which aims at finding research opportunities.

3.1 Model Driven Approach: Models@run.time

Event-driven architecture is a commonly used pattern to develop reactive control

systems, and Unified Modeling Language - State Machines (UML-SMs) constitute a

widely used formalism to design the behaviour of such systems. Following the Model-

Driven Engineering (MDE) approach, we are able to design and develop the control

system by models, but then, although the final code can be obtained automatically

assisted by a code generation tool, at runtime the model itself is lost. In the next

subsections, we are going to present different topics that address the Models@run.time

approach. First, in subsection 3.1.1 solutions that adds the ability to trace the UML-

SM based software components are presented. Then, in subsection 3.1.2 different

solutions for Reflective State Machines with introspection and reflection ability at

runtime are shown. Last, subsection 3.1.3 presents different tools that generate code

automatically from models.

3.1.1 Tracing UML State Machines

Some research lines are open seeking how to maintain the models also at runtime but

still more mature results are needed. In the next paragraphs, some of the current works

are presented.

Mazak et al. propose an execution-based model profiling as a continuous pro-

cess to improve prescriptive models at design-time through runtime information in

[MWPB16]. In order to have runtime information in model terms, they defined a

observation language which determines the runtime changes to be logged. The code

generator provides the appropriate logging line to that. In their solution, they instru-

ment the source code and not the model. Source code instrumentation technique is

used to modify source code to insert appropriate code (usually conditionally com-

piled so you can turn it off). Programmers implement instrumentation in the form

of code instructions that monitor different aspects of a system. In contrast to this

technique, model instrumentation technique specifies which elements of the model

will be monitored at runtime and it automatizes the source code instrumentation. The

latter technique is more reliable as it is an automatic process and is less likely to insert

faults.
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Table 3.1: Approaches to generate runtime traces from UML-State Machines

Approaches Instrumentation (Code or Model) Model persists at runtime
[MWPB16] Code Yes
[DGJ+16] Code Yes
[ALG15] Code No
[SSL+14] Code Yes
[BHD17] Model Yes

In the same vein, in [DGJ+16] Das et al. present their solution based on instrumen-

ting the code (not the model) to monitor real-time embedded systems at runtime. They

combine the use of MDE, runtime monitoring, and animation for the development and

analysis of components in real-time embedded systems.

The solution presented in [ALG15] defines a textual language for trace specifica-

tion of state machines. As the aforementioned works, this approach is also based on

code instrumentation. They define different commands to trace different specifications

at runtime but the solution does not provide information at model level and the logged

information is not related to model elements: it is not a model centered solution.

In [SSL+14] Saadatmand et al. propose a solution for runtime verification of state

machines based on model-based testing. Their solution does not generate automatically

the final code and, as the previous solutions, they instrument the code manually to

have the software components information in model terms at runtime.

In [BHD17] they present a platform-independent model-level debugger. The

solution is focused on real-time embedded systems. This approach relies on model

transformation to instrument the model to be debugged. When instrumenting the

model, they add a new object for each transition that debugs/traces the execution.

The presented solution is applicable to models expressed in UML for Real-Time

(UML-RT).

In the Table 3.1 the summary with the main characteristics is shown. We can

conclude that only one of the solutions ([BHD17]) is able to instrument the model

and not the source code and most of them provide the information in model terms at

runtime.

3.1.2 Reflective UML State Machines

The translation to code of UML-SMs have suffered an extensive evolution. First, we

are going to have a brief review of this evolution in order to have a better understanding

of how reflective ones can be obtained.

In [Sam02] there is an initial survey about how state machine models have been
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transformed to code when using procedural languages. Basically two approaches have

been used (and are still in use). The first one consist of a switch sentence nested within

another, being the first one for state selection and the second for current processing

event, and thus the desired activity can be launched. The second one organizes the

activities in a matrix-like structure according to states and transitions.

With object orientation, new design patterns were created aiming at better code

structuring or easier modification: In [Gam95] it can be found the well known State

Patterns; [Ada03] is about an anthology of finite state patterns.

[Sam02] introduced the so called Quantum Programming aimed to C++ progra-

mming language. The author extended the idiom of double-switch so it could be

used with hierarchical state machines, but lacking some elements of the state machine

specification. [PM03] improved it fixing some alteration of the state machine semantic

and adding support for concurrent regions.

[AT99] also extended the State Pattern of [Gam95] defining the so called Helper

Object Pattern in order to support state hierarchy for Java language, but also lacking

support for concurrent regions and other elements of the state machine specification.

Boost statechart library [Dön07] is a library aiming at transforming from UML-

SM to executable C++ code and vice versa. This solution, adds the option to extract

the model from the code and it has the possibility to design hierarchical state machines

as well as models with concurrent regions. One of its drawback is that it makes an

extensive use of C++ templates becoming impractical for big sized state machines.

All the mentioned solutions were not considering reflective state machines. [FR98]

created the Reflective State Pattern for finite state machine aiming at reflecting the

state structure of a component and changing its behaviour at runtime for tolerating

faults. [VGB00] was perhaps the first that proposed to reflect in code not only state

but also transitions.

But to our knowledge, it is [Bar06] who in first place created a framework for

state machine based component that implicitly supported runtime introspection of

a UML-SM based software component at runtime. Based on this work, [BHB09],

[Bar08] and [EMS+08] propose a component model that carries models at runtime,

focusing on UML-SM. The frameworks of [BHB09] and [EMS+08] provide a runtime

state-based component model. In addition, [EMS+08] defined a framework for Java

that supports runtime modification of the behaviour of a state machine based software

component.

Table 3.2 shows the summary of the evolution of UML State Machines. We can

conclude that only one of the solutions ([BHB09]) has the reflection ability but it

does not address resource-limited solutions (it is implemented in Java). On the other

36



3.1. Model Driven Approach: Models@run.time

Table 3.2: Evolution of UML State Machines

Approach Language Resource-
Limited
Solution

Hierarchical
SM

Concurrent
Regions

Reflection

[Sam02] C++ Yes Yes No No
[PM03] C Yes Yes Yes No
[AT99] Java No Yes No No
[Dön07] C++ Yes Yes Yes No
[BHB09] Java No Yes Yes Yes

hand, there are three solutions that could address resource-limited solutions ([Sam02],

[PM03] and [Dön07]) but they have not reflection ability.

3.1.3 Automatic UML-SM to Code Generation Tools

There are many commercial tools that transform state machine specification to code,

but this is their only aim. Moreover, the transformation rules are quite tool and version

specific.

Table 3.3 shows the different solutions to generate code and their characteristics.

One of the main conclusion is that there is a lack of solutions able to generate UML-SM

based software components that provide runtime information in model terms.

Analyzing this table, we can divide it in two big families. On the one hand, we

have generic frameworks that are able to generate code from UML-State Machines for

different programming languages. They address different types of solutions and are

not specialized in resource limited systems (EA, Yakindu and IBM Raphsody). On the

other hand, there are other frameworks that address embedded systems (SinelaboreRT,

QP/C++, Papyrus-RT and Pham). The last solutions are able to generate code for C++.

We have to add that none of them is able to provide the UML-SM model at runtime.
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3.2. Runtime Verification and Adaptation

3.2 Runtime Verification and Adaptation

Verification and validation techniques applied during development give a certain level

of confidence in correctness and are effective at detecting and avoiding anticipated

faulty scenarios. However, in CPSs where a fault can lead to a critical scenario,

we need a way to detect and mitigate hazardous and uncertain scenarios. Runtime

verification and adaptation techniques could be used to maintain safe control in

unanticipated circumstances.

In the following subsections, we are going to present different topics that address

Runtime Verification and Adaptation techniques. First, in subsection 3.2.1 differences

and details about hardware and software runtime verification system are shown. Then,

in subsection 3.2.2 different software monitor solutions that enables runtime verifica-

tion are presented. After that, in subsection 3.2.3 we will present different abstraction

levels for doing runtime verification. Another research topic is the generation of the

runtime verification system itself. Subsection 3.2.4 tackles this topic and presents

different tools for generating runtime verification systems. Lastly, subsection 3.2.5 is

focused on showing different solutions for Runtime Adaptation (RA).

3.2.1 Hardware and Software Runtime Verification

Both runtime software and hardware verification systems have been studied in [DGR04].

While hardware verification systems detect errors at bus level, before change in state

happens and preventing a catastrophic failures before it occurs, software verification

systems detect errors once a change in state has occurred. Hardware verification sys-

tems, such as the Noninterference Monitoring Architecture [TFCB90], need additional

hardware to collect state information and to assist in checking.

In addition, most runtime software verification systems require modifying the

source code of the observed system by instrumented code. However, it is desirable

that runtime verification systems for testing safe properties of the systems should be

isolated from the target system to minimize any disruption of the system being tested

[KFK14].

3.2.2 Software Monitors for Runtime Verification

In this subsection we are going to present different runtime software monitors that are

used for Runtime Verification.

In [ea11a], they defined a generic software monitoring model and analyzed di-

fferent existing monitors. Depending on the programming language used and the

formalism used to express the properties, different implementations of monitors have
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been proposed [MGE], among others CoMA [ea11b], RV-MONITOR [ea16] and

AspectC++ [ea02], BEE++ [BGL93], DN-Rover [DJC94], HiFi [AS98] etc.

CoMA (Conformance Monitoring by Abstract State Machines) [ea11b] is a

specification-based approach and its supporting tool for runtime monitoring of Java

software. Based on the information obtained from code execution and model simula-

tion, the conformance of the concrete implementation is checked with respect to its

formal specification given in terms of Abstract State Machines.

RV-MONITOR [ea16], is a software analysis and development framework that

aims to reduce the gap between specification and implementation by allowing them

together to form a system. In this case, monitors are synthesized from specifications

and integrated into the original system to check its behavior during execution.

Kieker framework is presented in [vHRH+09]. This framework is able to monitor

software runtime behaviour. Its flexible architecture allows developers to replace or

add framework components, including monitoring probes, analysis components, as

well as monitoring record types shared by logging and analysis. As a non-intrusive

instrumentation technique, Kieker employs, but is not restricted to, aspect-oriented

programming. The missing point of this solution is that the runtime information is not

expressed in model terms: a bridge between development models and runtime models

has not been built.

[ZOKR06] presents a Model-based runtime Verification Framework for Self-

optimizing Systems. This framework works at model level and both models and

properties must be known ahead of time. The framework is based on real-time UML

state machines and the properties as well as assertions and invariants to be checked

are limited to time-annotated Action-based Computation Tree Logics (ACTLs) and

Linear Temporal Logics (LTLs).

[PM05] presents a runtime Verification Framework for concurrent monitoring

of applications specified by UML-SM. The framework integrates two aspects of

verification, temporal Syntactically Cosafe Linear Temporal Logics (SC-LTLs) and

implementation errors, with the corresponding error-handling by introducing the

concept of exception events as error indicator events. A runtime verifier module is

integrated in the framework and this module is the one that sends the exception events

to the control system in order to detect errors.

Table 3.4 shows the summary of some of the studied software monitors. The

information shown in the table is classified in terms of:

� Externalized RV: runtime verification system is not integrated with the software

component that is verifying.
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Table 3.4: Software Monitors for Runtime Verification

SW Monitor Externalized RV Model based
formalism for RV

Programming
Language

CoMA [ea11b] Yes Abstract SM and
Simulator

Java

RV-MONITOR [ea16] No Finite SM and LTL
(Lineal Temporal
Logic)

Java, C

Kieker [vHRH+09] Yes No model based so-
lution

Java

RV-Self Opti-
mizing Systems
[ZOKR06]

Yes LTL (modal tem-
poral logic)

Java

Pinter [PM05] No UML-SM and LTL Java

� Model Based Formalism for RV: Formalism that is using the runtime verification

system to check the correctness of the software component.

� Programming Language: Programming language which is used to implement the

runtime verification system.

We can summarize that there are externalized and integrated solutions and most of

them are based on model based formalism.

3.2.3 Runtime Verification: Specification Level vs. Monitoring
Level

Current runtime verification solutions as shown in Figure 3.1, are specified at different

abstraction levels: system, component, class, method or statement. As it can be

observed, most of the approaches check if the specification is fulfilled at the same level

that monitoring is performed. This is the case of all the solutions presented in 3.2.2:

specifications and the verification systems checking properties are at the component

or class level. Thus, for the detection of system level misbehavior, only system level

properties are checked. Nevertheless, component or class level properties can give

valuable information in detecting system level problems and undesired emergent

behaviour.

As far as we know, there are only two works that consider this topic. In [PW16],

they present a solution called LuMiNous which checks system level specifications

by components’ level information. The contribution of this framework relies on the

translation of high-level specifications into runtime monitors but, in this case, their
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Figure 3.1: Abstraction level of specifications vs. runtime monitoring abstraction
levels based on [PW16]

solution is for Java (AspectJ based solution), which is not suitable for embedded

systems.

There is another work [AF17] that presents an instrumentation technique for moni-

toring asynchronous components. Their solution generates partitioned traces reflecting

the interleaved execution of the constituent components under scrutiny. In addition,

the solution considers four architectural set-ups for component-based runtime moni-

toring: (a) Global monitors analysing the universal trace for components, (b) Local

monitors analysing the universal trace for components, (c) Global monitor analysing

the partitioned or component specific traces, and (d) Local Monitors analysing the

partitioned or component specific traces. In figure 3.2 the approach is shown.

Table 3.5 summarizes the section. Neither of the approaches relies on model based

formalism to perform the runtime verification.
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Figure 3.2: Four architectural set-ups characterizing component-based runtime moni-
toring [AF17]

Table 3.5: Software Monitors with different abstraction levels for specification and
monitoring

SW Monitor Externalized
RV

Model based
formalism for RV

Programming
Language

LuMiNous [PW16] Yes No Java
RV-Async [AF17] Yes No Erlang

3.2.4 Automatic generation of Runtime Monitors

One of the first works exploring the idea of generating monitors from a specification

and developing a tool chain for it was the MaC (Monitoring and Checking) framework

[ea04]. They presented a tool that uses the specification information to generate the

verification system. It is a debugging tool, designed to supplement testing. While

the MaC framework showed the effectiveness of monitoring systems for compliance

with specification, the framework’s target was primarily for software systems with

instrumented code, requiring modifications to the source code and making it unsuitable

for usage in safety-critical embedded applications.

In [AT04] a runtime Monitoring of Reactive System Models is introduced. The

core of the approach is automatic creation of monitoring state machines from formulas

that specify the system’s behavioral properties in a proposed assertion language. Such

monitors are then translated into code together with the system model, and executed

concurrently with the system code.

Another related work is [BLS] which presents a dynamic model-based analysis

approach for distributed embedded systems, based on runtime reflection. In this case,
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Table 3.6: Automatically generated Software Monitors

SW Monitor Externalized
RV

Formalism used
for RV

Programming
Language

MaC [ea04] Yes No Java
RV-Statemate [AT04] Yes Assertion Lan-

guage (including
SM information)

C/Assertion
Language

RV-Distributed [BLS] Yes Linear Temporal
Logic (LTL)

C++

the solution is for distributed systems and they don’t consider how the component is

designed. This approach for dynamically analysing distributed embedded systems

could be used in the testing phase or even in operation for detecting failures as well

as identifying their causes. The approach is based upon monitoring safe properties,

specified in a language that allows to express dynamic system properties. For such

specifications, monitoring components are generated automatically to detect violations

of software components.

Table 3.6 summarizes the section. We can conclude that in this case, all the

automatically generated runtime verification systems are externalized solutions and

one of them ([AT04]) has the ability to check the correctness of the checked systems

in behavioral model terms.

3.2.5 Runtime Software Adaptation and Enforcement

As explained in [GAM17], there are two main dynamic software adaptation appro-

aches using runtime models of the software: planned and unplanned adaptation.

Planned adaptation is proactive in which manual or automated decisions are made to

dynamically change the software system at runtime. Unplanned adaptation is triggered

by unexpected events or when a fault is detected at runtime and reactive decisions are

needed to dynamically adapt the system to avoid system failures.

BIP (Behaviour, Interaction and Priority) [FJ17] [EHFJ18] framework aims the

runtime enforcement of specifications at component-based systems. They use run-

time enforcement to complement model repair and this runtime enforcement targets

correctness at operation. At runtime, the monitor consumes information from the

execution and modifies it whenever necessary. In order to reach this target, the solution

needs to instrument the code. It provides a language and a theory for incremental

composition of heterogeneous components, ensuring correctness-by-construction for

essential system properties such as mutual exclusion, deadlock freedom and progress.
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Table 3.7: Runtime Software Adaptation solutions

SW Monitor Code Instru-
mentation

Model based
formalism for RV

Programming
Language

BIP [FJ17] [EHFJ18] Yes No C++
MoP based solution
[CF16]

Yes No Erlang

MoCo [Der15] Mediator Yes Java
ReMinds [VRG+16] Probe No Java based tech-

nology

Cassar and Francalanza presented in [CF16] a Monitor-Oriented Programming so-

lution and that aims runtime adaptation. They observe the behaviour of the controllers

and adapt them when something wrong is detected. Their solution is not based on

Model-Driven Development approach and it is not a models@runtime solution. They

use an Aspect-Oriented Programming framework to instrument injections at specific

points of interest in the code.

There is another solution called MoCo [Der15] that also aims runtime adaptation.

In this case, it is a non-redundant, reusable and executable combination of logically

related models and code in an integrated form where both parts are stored together

in one component. They need a "mediator", an interpreter to link both parts and the

first reference implementation did not address embedded systems. They designed a

very generic approach, but neither automatic code generation nor how to transform the

solution to different technological solutions was addressed at this point. In [DGEE16],

they describe a methodology for performing their approach that will be valid for any

technology.

In [VRG+16] Vierhauser et al. present a flexible runtime monitoring framework

adaptable to different system architectures and technologies called ReMinds. They

use Probe [MSS93] as a component to extract or intercept arbitrary information from

the monitored systems. They instrument the monitored system by Probe.

Regarding Runtime Enforcement (RE), there are specific works that address

generating enforcement monitors such as [FMFR11] and [CFAI18]. The first one,

define notions and properties to be used in these monitors whereas the second presents

a theoretical foundation of how to implement runtime enforcement.

Table 3.7 summarizes the section. After analyzing the summarized information,

we can conclude that all solutions need to instrument the source code of software

components to be monitored and only [Der15] works with model terms information

to perform the runtime adaptation.
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3.3 Critical analysis of the State of the Art

This section critically analyses the current state of the art in Runtime Verification

and Adaptation based on software components’ reflection ability in model element

terms, specifically UML-SM based software components, which aims at providing

potential research opportunities. In addition, the Models@Run.Time approach has

been analyzed.

In the scope of Models@run.time, different solutions to trace the UML-SMs in

order to obtain information about the monitored software components at runtime have

been analyzed. Most of the approaches focus on instrumenting the code and not the

model (e.g., [MWPB16, DGJ+16, ALG15]).

Reflective UML State Machine are one way to have internal status information in

model terms at runtime due to their introspection ability. In this field, there are different

frameworks (e.g., [BHB09, EMS+08]) that provide a runtime state-based component

model but most of them are not oriented to systems with resource limitations. In

addition, they have not defined a MDE approach that enables designers to decide which

states of the model will be observed at runtime and neither are oriented to adapt their

behaviour once an error or an unexpected circumstance is detected. Moreover, these

solutions usually depend on a specific programming language and the transformation

rules are specific for one kind of solutions.

To close the MDE approach, we have to add that there are different tools that

generate the code automatically (shown in Table 3.3). After analyzing the information

of this table, we concluded that there is a lack of solutions able to provide internal

status information in model terms at runtime.

Regarding Runtime Verification (RV) solutions, we focused on software based

runtime verification solutions. After analyzing different software monitor solutions,

we concluded that most of them does not: (1) address resource limited systems and

(2) use UML-SM model based formalism for RV. There are two solutions, CoMA and

RV-Monitor that use similar formalisms. Nevertheless, CoMA needs an extra support

such a simulator to work and RV-Monitor solution is not an externalized RV solution:

it integrates the RV part in the controller. It is not a modular solution.

As regards to the way of performing the runtime verification, most of these tools

perform the runtime checking at the same abstraction level, that is, only by checking

system level properties could system misbehavior be detected (e.g., [ea11b, ea16,

ea02, BGL93, DJC94, AS98]). Nevertheless, component or class level properties can

give valuable information in detecting system level problems and undesired emergent

behaviour.
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We have identified two specific solutions, LuMiNous [PW16] and RV-Async

[AF17], that are able to check at system level using other abstraction level information.

Nevertheless, none of them are using internal information in model terms to check the

correctness of the components or systems at runtime: they are not models@runtime

approaches.

Some of the analyzed Runtime Verification (RV) tools are generated automatically.

The automatic generation of these modules is very important but as long as we know,

current solutions are not addressing UML-SM based formalism to be checked at

runtime.

To close de section, different solution have been analyzed in the area of Runtime

Adaptation (RA) and Runtime Enforcement (RE). Most of the analyzed solutions do

not use model element terms or a model based approach to perform the adaptation.

We have identified one work that considers the model@runtime approach (MoCo

[Der15]) but it needs a mediator to link the code of the software controllers with the

models at runtime. In addition, its implementations is not oriented for resource-limited

solutions.
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In this chapter we give a theoretical overview of the dissertation. Specifically, we

define four research objectives (Section 4.1) together with the hypotheses (Section

4.2). Furthermore, we give an overall overview of the theoretical framework proposed

for generating UML state machine-based software components with reflection and

introspection abilities (Section 4.3). In addition, we explain the employed case studies

that were used to validate the effectiveness of the solutions proposed in the theoretical

framework (Section 4.4). Lastly (Section 4.5), we explain which case studies where

employed for the validation of each of the contributions (shown in subsection 1.3).

4.1 Research Objectives

As we have mentioned and concluded in Section 3.3, low cost mechanisms able to

increase the safe behaviour of resource-limited CPSs is not a topic that is solved by

current solutions.

Having analyzed the existent solutions in the area of the aforementioned topic, we

have identified the desirable characteristics of the software components that control

these types of systems:

� provide internal status information in model element terms at runtime without

instrumenting the code

� provide adaptation ability at runtime

� automatic generation following a MDE approach

� address resource limited systems

As far as we know, there are not solutions that address these four characteristics.

In order to enhance the safe response of the software components and systems

at runtime, as mentioned before, we need a Runtime Verification (RV) system to

check their correctness and start adaptation processes if necessary. After analyzing

the features of the existent RV and RA systems, we decided that our approach will

address software monitoring systems and we have defined which are the desirable

characteristics for our solution:

� independent to the software controller: externalized solution. Verification and

Adaptation process will be independent to the software components or system. The

code of the software components do not need to be modified,

� use of model-based formalism to perform the RV,

50



4.1. Research Objectives

Figure 4.1: Abstraction level of specifications vs. runtime monitoring abstraction
levels based on [PW16]

� use of software component level model information to check different level/abstrac-

tion requirements: software component level and system level requirements will be

considered. Our target area is the one depicted in the fig. 4.1,

� automatic generation of the RV system.

As far as we know, there are not solutions that address these four characteristics,

nor reflective software components automatic generation frameworks.

The presented solution, when performing the Runtime Verification (RV), will

check the safe requirements and safe properties at system or software component level.

We understand these safe requirements and safe properties as:

� Safe Requirements Specification (SRS) is a specification containing all the require-

ments to ensure the correctness and safe behaviour of the software component and

software systems.

� Safe Properties (SP) assert that the system always stays within some allowed region.

The properties asserting that observed behavior of the system always stays within

some allowed set of finite behaviors, in which nothing “bad” happens, have a
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special interest. For example, we may want to assert that every message received

was previously sent.

� State-based Safe Properties (SBSP): a safe property that specifies properties related

to the internal behavior of the software components that are part of the system in

terms of their UML-SM model.

All things considered, this is the main goal defined in this research work:

To provide a set of tools and methods for the enhancement of safe behaviour

on software components and systems. In order to reach this goal:

- define a model based methodology following the models@runtime approach.

Thus, models used at design and development phases will be maintained at

runtime.

- Runtime Verification and Adaptation techniques based on model terms will

be used to enhance safe behaviour of software components and systems.

This objective can be divided into the following sub-objectives:

� Objective 1: Develop a methodology which permits the automatic generation of

UML State Machines based software components with runtime introspection and

reflection abilities in model elements’ terms. The aforementioned runtime intro-

spection and adaptation abilities are added automatically to the software component

and it does not require the developer to make any extra effort.Thus, one expert will

be concentrated designing the behaviour and the logic of the control while the other

has to consider only the system’s and software components’ safe requirements

� Objective 2: Develop and evaluate a tool for automatic generation of UML State

Machines based software components with runtime introspection and reflection

abilities on a cost-effective manner. The information they will provide at runtime

will be in model elements’ terms (models@runtime approach).

� Objective 3: Develop and evaluate an externalized module able to monitor and

verify the status of software components at runtime at different levels (i.e., software

components level safe properties and system level safe properties) based on model

elements’ terms information.

� Objective 4: Develop and evaluate an externalized module able to adapt the

behaviour of the monitored software components in the event that a component or

system level error is detected at runtime. The adaptation performed at runtime will

be based on adapting the model of the software component involved in the process.
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Each objective defined in this section is directly linked with the technical contributions

we defined in Section 1.3 which are:

� A methodology supported by a framework, REflective State-Machines based obser-

vable software COmponents (RESCO), that is able to generate software components

modeled by Unified Modeling Language - State Machine (UML-SM) that provide

their internal status information in model elements terms at runtime.

� RESCO framework: Automatic generation of software components with internal

status information observation ability in UML-SM model terms (current state, event,

next state,. . . ).

� Runtime Verification. An external monitor and verification system is used to check

the internal status of the UML- SM based software components in model terms

before a transition in their state, and therefore a change in the output signal, is

performed.

� Runtime Adapter. This module has been based on a previous work [GS02]: the

adaptation is triggered by unexpected events or when a fault is detected at runtime.

4.2 Research Hypotheses

Based on the objectives defined in this research work, the following research hypothe-

ses have been defined:

� Hypothesis 1: The use of Unified Modeling Language (UML) State Machine based

software components with introspection and reflection ability in model terms helps

the early detection of errors in software systems. This hypothesis corresponds to

research objective 1 and 2.

� Hypothesis 2: A runtime verification system that use software components’ internal

information in model element terms permits to enhance the safe behaviour of

systems composed of these software components and of the software components

themselves. This hypothesis corresponds to research objective 3.

� Hypothesis 3: Runtime adaptation permits to increase the availability and to en-

hance the safe behaviour of software systems. This hypothesis corresponds to

research objective 4.
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4.3 Overview of the Theoretical Framework

Figure 4.2 depicts the overall overview of the developed methods for generating UML

State Machines based software components and the externalized Runtime Verification

and Adaptation system.

We designed a model-driven approach and framework to generate software com-

ponents (namely, RESCO framework), which are able both to provide their internal

information in model terms at runtime and adapt their behaviour automatically when

an error or an unexpected situation is detected. The aforementioned runtime introspec-

tion and adaptation abilities are added automatically to the software component and it

does not require the developer to make any extra effort.

Our approach is based on Unified Modeling Language - State Machine (UML-SM)

and the software components are generated automatically from the UML-SM model

defined at the design phase. In addition, the models used at design time are kept at

runtime. Thus, it is possible to perform Runtime Verification using the information

of model elements (current state, event, next state,. . . ) of the UML-SM model of the

software component(s) under study. This enables us to use a common language to

design and verify software components and systems at runtime.

We can use software component level information in model terms to check diffe-

rent level safe properties at runtime: we can define system level safe properties using

the model elements of the different software components the system is composed of;

we can define safe properties in model terms for each of the software components;

or we can also combine both approaches. In any of the cases, the solution enables

Runtime Verification (RV) systems to detect errors before the software component or

system reaches a failure condition.

Chapter 5 presents the RESCO (1) methodology and (2) framework developed in

the thesis. These two contributions respond to the first two objectives defined in the

research work. Then, Chapter 6 is focused on the Runtime Verification & Adaptation

aspects but in this case the solution presented is used at software component level.

After that, in Chapter 7 same research topics (Runtime Verificaiton & Adaptation) are

discussed and presented but in this case the solution is for software systems. In these

two last Chapters, objectives three and four are addressed.

In table 4.1 the correspondence between Technical Contributions, Objectives and

Chapters of the document is shown.
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4. THEORETICAL FRAMEWORK

Table 4.1: Correspondence between Technical contributions, Objectives and Chapters
of the document

Technical Contributions Objectives Chapters
RESCO Methodology 1 5
RESCO framework 2 5
Runtime Verification module 3 6,7
Runtime Adaptation module 4 6,7

The scope of this dissertation is to advance the practice of enhancing the safe be-

haviour of software components and systems at runtime following a models@runtime

approach and using runtime verification and adaptation techniques.

After analyzing and having identified the technological gaps, our research area has

been limited to generate software components that provide internal status information

in model terms at runtime and will be working in resource limited CPSs. In addition,

as UML-SM is a commonly used formalism to describe CPSs’ behaviour in industry,

those software components will be modelled by UML-SMs. Thus, runtime model

information will be based on this formalism.

In order to answer the identified needs and challenges, a methodology called

REflective State-Machines based observable software COmponents (RESCO) (O1)
has been defined in this work. The aim of this methodology is to define a process to

generate UML-SM based software components that are able to provide their internal

status information in model terms (UML-SM) at runtime. In order to maintain the

model at runtime, the software components need to have introspection and reflection

ability.

Using this methodology, in the first step the developer generates REflective State-

Machines based observable software COmponents (RESCO) State Machine models

that are platform independent and adds information about which states will be available

to send internal information at runtime, enabling introspection at runtime. All these

characteristics will be used at runtime to check the correctness of the final solution in

order to enhance its safe behaviour.

Once the behaviour of the controllers is defined and RESCO State Machine models

generated, the final software component is generated automatically (O2): RESCO

Software Component. Thus, the identified gap for automatic reflective state machines

code generation for different types of system (including the resource limited ones) is

filled. In addition, the approach aims to be independent of the final platform in which

it is going to be deployed.

The solution is supported by existing tools such as Papyrus [ecl18] (behaviour

modeled by UML-SM), ATL [ATL18] (Model To Model (M2M) transformation) and
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Acceleo [A16] (Model To Text (M2T) transformation). In the last step of the methodo-

logy, a Model To Text (M2T) transformation is performed and this step will be specific

for each programming language. In our solution, we implemented a transformation to

C++ programming language and the C++ REflective State-Machines based observable

software COmponents (CRESCO) were generated. Thus, our solution is developed

for resource limited systems.

Even if we apply model checking methods to the models, due to the complexity

of the systems there may be residual faults. In this scenario, solutions that support

runtime verification are needed.

Runtime Verification (RV) [AF17] is a lightweight post-deployment verification

technique that uses monitors or externalized runtime checkers/adapters to incremen-

tally analyse the behaviour of the running system (exhibited as a sequence of trace

events) up to the current execution point, in order to determine whether a correctness

specification is satisfied or violated. Since correct traces will be finite and predefined

in the runtime verification system, when the received trace is not defined as a correct

one, the runtime verification system indicates that a trace-violation has been detected.

Runtime Verification can be performed in different ways and one of them could be

performed using the information of model elements (current state, event, next state,. . . )

of the UML-SM model of the software component under study. There are not mature

solutions that are able to perform runtime verification by using model element terms

and this area has been identified as a research topic. When using models@runtime, the

traces that are observed during runtime verification are information in model terms.

Moreover, working with models allows us to perform the instrumentation at model

level. Software components’ instrumentation is needed for runtime checking and to

receive traces/information from the monitored software component. Traditionally this

instrumentation is made at source code level: this technique is used to modify source

code to insert appropriate code (usually conditionally compiled so you can turn it off).

Programmers implement instrumentation in the form of code instructions that monitor

different aspects of a system. On the other hand, model instrumentation specifies

which elements of the model will be monitored at runtime and it automates the source

code instrumentation. Our approach follows the latter option.

One of the objectives defined for the thesis was to provide a runtime verification

system that was able to use software components’ internal status information in model

elements terms (O3). In this topic we identified different solutions that were able to

detect and monitor at different levels: statement, class, component, system, etc. On

the one hand, most of the identified solutions were only able to monitor and detect the

errors at the same abstraction level. On the other hand, most of them were not able to
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make runtime verification using information in model elements terms.

In our approach, we have developed a solution that consist of monitoring at

software component level in model elements terms and could be used to detect

system or software component level errors. Our approach considers global monitors

for checking system level safe properties and local monitors for checking software

component’s level safe properties (a) and (b) options of the figure 3.2.

In both options, the runtime verification system is an externalized system. Thus, a

communication system to send the internal information at runtime and then receive

the response is needed. In our concrete solution, it was not a research topic and we

just used a middleware called Internet Communications Engine (ICE)1 to implement

the solution. Therefore, the communication between the software components and the

runtime monitoring, verification and adaptation system is based on the aforementioned

middleware.

The last research topic was runtime adaptation. Once the error is detected at

runtime, a solution is needed to avoid system failures. Runtime adaptation is one way

to solve this problem. Nonetheless, a gap in RA systems that address model based

adaptation processes was identified (O4). Our solution aims to fill this gap suggesting

a runtime adaptation based on UML-SMs adaptation at runtime.

All things considered, the overall solution to enhance the safe behaviour of soft-

ware components and systems, an externalized Runtime Verification and Runtime

Adaptation system has been developed. As the UML-SM models used by the solution

will be verified in the development process using techniques such as model checking,

some types of faults will not be present at runtime. Therefore, errors to be detected by

our solutions are mainly random software and hardware errors as well as remaining

software errors and unanticipated environmental errors. Summarizing, we can say that

the faults that can be detected by the solution are:

� random hardware faults such as bit inversions or changing errors,

� random software faults such as heisenbugs [GT05],

� residual faults not detected when testing,

� unanticipated faults that were not considered in the design and development phase.

The overall solution presented in this work provides the following elements to

generate reflective software components and detect and recover from errors at runtime:
1Internet Communications Engine (ICE) [Zer19] belongs to the object-oriented middleware category.

It is conceptually very similar to CORBA [DSE+11], but offers a much smaller and more consistent API,
lighter implementations, advanced services, and good performance [MAJJ08]. The product supports
C++ and Java, and runs on Linux and Windows.
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� RESCO Software Components (O2): Software components with reflection/obser-

vation ability in UML-SM model terms (current state, event, next state,. . . ). The

software components are generated by the RESCO framework [IEES17] which is

one part of the developed solution and presented in the Chapter 5. This framework

is able to generate software components with introspection and reflection ability.

Moreover, in the RESCO framework, logic of the software components and their

reflection/observability ability are orthogonal. The developer focuses on the design

of the functional behaviour of the software component, whereas the reflection/-

observability ability in model terms is added orthogonally and automatically.

� Runtime Monitoring and Verification System (O3): An external checker is used to

check the internal status of the software components and systems in model terms

before the transition in their state, and therefore output signal, is performed. This

allows us to detect faults before the failure happens, increasing the resilience against

the faults enumerated above.

� Runtime Adaptation System (O4): An externalized runtime adaptation is used.

This adaptation is triggered by unexpected events or when a fault is detected at

runtime. This allows us to protect against unsafe conditions ensuring that the

software component performs safe actions. In particular, it supports the "active

monitor" or "safety bag" concept described in [IEC10].

Our approach has the following characteristics: (1) specification of what we want

observe at runtime can be tuned in the models at design phase. Thus, we avoid instru-

menting the source code and we add the required information and infrastructure that

enables introspection and adaptation at runtime; (2) code generation takes this infor-

mation and generates source code automatically; (3) observed information not only

does it consider the outputs of the software components but also monitors their states

and events status; (4) systems composed of C++ REflective State-Machines based

observable software COmponents (CRESCO) software components have the ability to

detect unsafe scenarios if a component’s behaviour deviates from the established one at

specific points of time. In the latter case, the runtime adaptation system sends an event

to the observed software component and this component changes its operation mode

automatically to a previously defined mode (e.g. safe-mode, degraded-mode,. . . ).
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4.4 Case Studies

With the objective of validating the proposed methods, 5 synthetic (academic) uses

cases and two industrial case studies were developed. The industrial case studies were

from different domains (i.e., energy and railway) and complexities. In this document,

we are going to consider the following industrial case studies.

4.4.1 Burner Controller

One of the selected case used for evaluation is an industrial software component

that controls a micro-generation device: the Burner controller of the Whispergen

commercial device [Pra16]. Microgeneration applies to a rather surprising mix of heat

and power technologies with a thermal output below 45kWt or an electrical output

of 50kWe. It covers electrical generation from wind, solar photovoltaic (PV) and

hydro, heat generation from biomass, solar thermal and heat pumps as well as micro

Combined Heat and Power (CHP) which produces heat and power from renewable

or fossil fuels. Centro Stirling S.Coop develops these type of machines and they

collaborate with Mondragon Goi Eskola Politeknikoa S.Coop in the development of

such device’s SW Control components.

For evaluation purposes, the Burner controller shown in figure 4.3 was imple-

mented. The selected Burner controller’s state machine has 10 simple states, 3

composite states, 13 transitions and 13 events. The behavior of the controllers is

modeled by UML-SMs.

In case an error is detected, the behaviour of this controller will be adapted to

a safe operation-mode. In this case, the safe-mode UML-SM has 7 simple states, 3

composite states, 9 transitions and 9 events. In the figure 4.4 the safe-mode UML-SM

is shown.

By means of this use case, we are going to evaluate how RESCO infrastructure is

able to automatically generate software components with reflection and introspection

ability. The information they will send at runtime will come in terms of model so it

will be possible to verify component level behavior at execution time in model terms

as done in the development phase.

4.4.2 Train Control and Monitoring System (TCMS)

In the second case study, a door control management performed by a Train Control

and Monitoring System (TCMS) was considered. The TCMS is a complex distributed

system that controls many subsystems such as the door control, traction system, air

conditioning, etc. of a train.

60



4.4. Case Studies

Figure 4.3: The Burner’s SM

Figure 4.4: The Safe-Mode Burner’s SM
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The case study concerns a real industrial system where some simplifications were

made. Figure 4.5 shows the different subcomponents and their relation with the

TCMS.

The train subsystems such as the door control system are safety-critical systems

and, therefore, railway standards must be applied during their development. The major

standards are the European EN5012x family of railway standards.

In a compositional approach [np15] [Saf13], a safety case would contain the top-

level claim about the safety of the overall system, the decomposition into more detailed

claims about its constituent subsystems or components, the arguments that show that

the components fulfill the safety-related claims that are made about its properties and

parts of the component specification may be expressed as component safe properties

(SP), i.e. as assumptions on the component’s environment and guarantees of properties

that the component will satisfy when those assumptions are fulfilled. Some of these

SPs will address Safe Requirementss (SRs).

Fig. 4.6 shows the UML-SM of the DoorController, ObstacleDetector and Trac-

tion.

System Requirements

The system level requirements concerning the operation of opening and closing of

doors are satisfied by the following components:

� TCMS component decides whether to enable or disable the doors considering the

driver’s requests and the train movement. Thus, doors must be enabled before they

Figure 4.5: The TCMS System and others components.
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Figure 4.6: UML-SM Diagrams of a) DoorController, b) ObstacleDetector and c)
Traction

can be opened;

� Door component controls and commands the opening and closing of a door;

� Traction component controls and commands the train movement;

� Obstacle Detection component manages the obstacle detection in the door.

By means of this use case, we are going to evaluate how RESCO infrastructure is

able to automatically generate software components with reflection and introspection

ability. The information they will send at runtime will come in terms of model so it

will be possible to verify system level state based safe properties at execution time.

4.4.3 Overview of the key characteristics of the case studies

The two case studies correspond to different domains. Furthermore, to ensure the

sufficient degree of heterogeneity, the complexity of each case study is different.

Table 4.2 summarizes the main characteristics of each case study. UML-SM blocks is

referred to the number of UML-State Machines in the use case. Column Complexity

refers to the complexity of the state machines considered in each of the use cases.

Considering the works in [Bel13] and [GMP03], to measure the size and complexity

of state machines we used the Cyclomatic Number of McCabe (Structural Complexity

metric) adapted to state machines.

Safe Properties refers to the number of safe-properties considered in the use case.

Adapt refers to the total number of Safe Mode UML-State Machines considered in case

that an error is detected at runtime and an adaptation process is activated. In addition,
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in some experiments we used software component level Runtime Verification (RV)

module and in others a software system level RV was used. Column RV Level defines

this characteristic. It is important to highlight, that for some evaluations, different

versions of the case studies could have been employed, and thus, these characteristics

could vary.

Table 4.2: Main characteristics of each case study

Case
Study

UML-SMs Complexity
(McCabe)

Safe
Properties

Adapt RV
Level

Burner 1 3 21 1 Component
TCMS 3 Door:4

Traction:2
Obstacle:4

5 0 System

4.5 Case studies employed in each contribution

As mentioned before, each of the contributions defined in section 1.3 was indepen-

dently assessed by means of an empirical evaluation. For each evaluation, one or more

case studies were employed.

Table 4.3 shows which case study was employed in each of the contributions.

Specifically, for the Reflective UML-State Machines based software components

generation, both use cases were used. For measuring the enhancement of the safe

behaviour at software component’s level, the Burner controller use case was used.

In addition, we evaluated the ability of adaptation at runtime using the Burner’s

use case. The Train Controller use case was used to evaluate the ability to check

software systems’ safe properties at runtime. Thus, the safe behaviour at system level

is enhanced.

Table 4.3: Case studies used in each of the contributions

Contributions Burner TCMS
1.Methodology for generating reflective software component X X
2.RESCO framework X X
3.Runtime Verification:
3.1. at software component level X
3.2. at system level X
4.Runtime Adaptation X
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5. REFLECTIVE UML-SM SOFTWARE COMPONENTS GENERATION

5.1 Introduction

In this chapter, we present a models@run.time approach to automatically generate

UML-SM based code with runtime introspection, verification and adaptation ability.

We highlight two main contributions in this chapter: (1) a Model-Driven Develop-

ment (MDD) based methodology to design and develop UML-SM based software

components with introspection and reflection ability at runtime and (2) a framework

for the automatic generation of those software components. As a result, we have

defined and developed the REflective State-Machines based observable software COm-

ponents (RESCO) methodology and framework. These contributions provide the

following benefits:

1. Runtime monitoring, verification and adaptation ability which are based on infor-

mation provided by the software components in terms of their model elements at

runtime.

2. The software engineer is not involved in instrumenting the code and thus, can focus

exclusively on modelling the behaviour of the software components by UML-SMs.

Additional infrastructure for having introspection and adaptation ability at runtime

is automatically generated.

The chapter is structured as follows: Section 5.2 gives a general overview of

the proposed methodology for the automatic generation of UML-SM based software

components. The Reflective UML-SM based software components generator approach

is explained in detail in Section 5.3. Section 5.4 presents a complete evaluation of the

proposed approach. Finally, conclusions are outlined in Section 5.5.

To evaluate the proposed framework, we selected five synthetic (academic) use

cases and two different industrial use cases. Results show that the software components

generated by the presented solution provide reflection and introspection at runtime.

Thanks to these abilities at runtime, the software components are able to provide

runtime information and adapt automatically from their normal-mode behaviour to

a safe-mode behaviour which was defined to be used in erroneous or unexpected

situations at runtime. Therefore, as it is demonstrated in Chapter 6 and in Chapter 7, it

is possible to enhance the safe behaviour of the systems consisting of these software

components.
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5.2 Overview of the Approach

The overview of the approach considered in this study to automatically generate UML-

SM based software components with introspection and reflection ability at runtime is

highlighted in Figure 5.1.

It represents the Model-driven workflow that safety and software engineers must

consider when using the methodology we propose. In the first step, the software

engineer models the behaviour of the software components using the UML-SM

formalism. Depending on the final system, they have to model at least two versions

of the UML-SM: one that defines the normal behaviour of the software component

(normal-mode) and another one or more that define the behaviour of the software

component to be adapted when an error is detected (safe-mode).

Once the UML-SMs are defined, and based on the initial requirements, the states

that may be related to safe requirements are annotated to be instrumented automatically

(model instrumentation). Thus, the annotated states will be observed at runtime. In

addition, other states that are not involved in the safe requirements could be also be

annotated. It is a decision to be made by the safety engineer.

In the second step, those annotated UML-SMs are transformed automatically

(Model To Model (M2M) transformation) and the RESCO-State Machine (RESCO-

SM) models are generated.

In the third and last step, depending on the final system where the software

components will be deployed, the Model To Text (M2T) transformations will be

performed to different programming languages. For instance, if the system addresses

resource-limited systems, we can transform the model to C++.

Figure 5.2 shows the SPEM process of the RESCO methodology. In this figure we

have included the specific tools that we have used in our developments. We have used

Papyrus modeling tool [Pap19] in the first step, ATL [ATL18] for performing Model

To Model (M2M) transformations in the third step and Acceleo [A16] to specify

Model To Text (M2T) transformation in the last step (C++ transformation).

5.3 RESCO: Automatic UML-SM based Reflective
Software Components Generator

This section presents the model-driven approach for generating runtime observable and

adaptable UML-SMs components following a models@runtime approach. In the next

subsections we will present the details of the process of generating reflexive software

components that provide information in terms of UML-SM model elements at runtime
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Figure 5.1: Model-driven Workflow

Figure 5.2: SPEM diagram of the RESCO methodology
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and allow adapting their behaviour dynamically when an unexpected situation or error

is detected.

5.3.1 RESCO Framework Architecture

The solution presented in this work, is based on the RESCO-SMs and first, in this

section we are going to show its architecture in order to provide a global vision of the

approach.

The architecture is based on two main parts: one in charge of the infrastructure

needed during the software component’s design and development phase and the other

plays its role at runtime.

At design time, the State Machine (the solution’s part that defines the behaviour of

software components by states, transitions, conditions and events) and Executor (part

of the solution that has the actions to be performed by the State Machine in specific

situations) are designed and the behaviour of the software controller is implemented.

In the next subsection they will be shown with more details.

As for runtime, the main module is the Dispatcher (part of the solution that

manages the transitions’ triggering when an event/signal arrives). This module follows

the UML-SM formalism but in this specific solution, this module adds the introspection

and reflection ability. Once an event reaches the dispatcher, it analyzes the current

state of the software component and provides the ability to check and decide to execute

or not the suggested transition. In figure 5.3 we can see the overall architecture and

the interaction between these main modules of the solution.

Thanks to the architecture and design of the solution, we can clearly separate two

parts: on the one hand, we have the behaviour and the logic of the software controllers

(State Machine and Executor) and on the other hand the part that adds reflection,

introspection and adaptation abilities (Dispatcher). These two parts are independent

from each other and this is one of the highlighted characteristic of the solution.

5.3.2 RESCO Metamodel

REflective State-Machines based observable software COmponents (RESCO) meta-

model is the central artifact of the approach. The goal of the RESCO metamodel

is to model components with state machine models@run.time capabilities. When

performing the literature review of reflective state machines, we saw that there are

certain design patterns which provide the artifacts we need to reach our objective.

After considering the different options, we defined two parts to describe the state

machines of our solution considering that they will need to be reflective and provide

introspection ability at runtime: on the one hand, the part that is responsible for the
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Figure 5.3: Overall Architecture of RESCO framework

actions to be performed (Executor) when the system is in execution and on the other

hand, the part that defines the state machine (State Machine).

Let us consider the state machine of figure 5.4 as a guiding example. This

state machine is divided in the two parts aforementioned. Design time modules

are represented by means of a RESCO model in figure 5.5. Each of the states

(s0,s1,s2,s11,s12) of the state machine are represented by hierarchical objects that

compounds a tree-like structure (this is the State Machine object). The father state,

s0 in this case, is on the top of the structure and the nested states hang directly or

indirectly from this one creating a tree-like structure. This tree-like composite object-

structure reflects the state structure of the model and each state has the specification

of the behavior attached to its different elements. The actions to be performed in each

state are defined by means of links to the executor part. Thus, each object has defined

their reactions when a specific event is triggered. As an example, we can see that

when an EvA is triggered, and the software component is in s2, if condition method02

(n%2==0) is fulfilled it performs the action method03 (n++) and performs a transition

to s12 which is defined as target state.

As we can see, having the solution organized in this way makes that, a change in

the object structure of the state machine means model modification and vice-versa.

All these things considered, the RESCO metamodel that have been designed in this

thesis is composed of two packages: (1) a design package that is used for modeling the

application specific part and brings together the two parts (state machine and executor)
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Figure 5.4: State Machine, guiding example

Figure 5.5: Guiding Example: SM transformed into a RESCO model (Design Package
part)

defined above and (2) a runtime package that enables a UML-SM based software

component to reflect the model it comes from (models@runtime approach).

The application specific part of the model is modeled using the design package and

it includes the StateMachine and Executor concepts defined earlier. The StateMachine

describes an hierarchical state machine along with a description of the Reactions

defined in each of the States. The Executor has the implementation of the Actions

that need to be triggered and the Conditions that need to be evaluated. The Reactions

have the references to them. The StateMachine and the Executor are generated

automatically from the UML-SM model defined by the designer.

The runtime part, that is generic for all the components and applications, is mo-

delled using the runtime package. It includes generic elements used for providing

models@run.time observation capabilities: the Dispatcher, the Observer and the Even-

tReceiver. The runtime elements are used for implementing the execution semantics

of state machines. This is explained in the execution model of RESCO in Section

5.3.3.
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Figure 5.6: RESCO Design Package Metamodel

Using this two packages, an object structure that reflects the model is generated.

Thus, it will be possible to adapt the model without recompiling the solution. As

aforementioned, this is possible thanks to the architecture and design of the solution.

The logical part and the one that provides the introspection, reflection and adaptation

abilities are independent.

RESCO Design Package

Figure 5.6 shows the metamodel of the RESCO Design Package.

From a structural point of view, each StateMachine will have several States. Each

State of the StateMachine could be implemented by XorState or AndState classes and

the latter could have different Regions. Each State will also contain other States and,

as particular characteristic of this solution, each State has the attribute of Observable.
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This attribute has a special meaning in the solution. We use this attribute in order to

define if a state will be observed at runtime or not. Thus, when it is Observable, the

Dispatcher will provide its runtime status information to an external runtime verifier

with the aim to check its correctness at runtime.

Each state may also have Reactions that can be triggered when a particular event

is received. These Reactions can involve a transition to other States. Reactions

have information about the next state to be reached, the actions to be performed

and conditions that must be met to trigger them. When the control has to perform

a transition, different steps are carried out. One of these is to identify the prepared

reactions and calculate the path from the source state to the target state following the

same semantic as the one defined in the Precise Semantic of UML State Machines

(PSSM) [OMG17].

As mentioned before, the StateMachine has links to the Executor. The Executor

has the implementation of the Conditions that must be evaluated at some point in time

when responding to an Event. It also has the implementation of Actions attached to

different Reactions. Thus, this structure reflects the software component’s model at

runtime.

Having implemented the solution following the tree-like structure that reflects the

model of the software component and having linked the action to be preformed to an

independent executor, makes it possible to (1) provide internal status information of

the software components in model elements terms at runtime and (2) adapt the model

of software components at runtime.

RESCO Runtime Package

RESCO Runtime Package represents the infrastructure that enables the solution to

have the elements of the model at runtime. This part is generic and does not depend

on the behaviour of the software component. Figure 5.7 shows the metamodel of the

RESCO Runtime Package.

We can say that the heart of the RESCO’s Runtime Package is the Dispatcher.

The Dispatcher upon the reception of an Event at runtime, asks about the active States

the component is in, which transitions can be triggered, checks if the Conditions are

met, and finally triggers the list of Actions related to a particular transition. This

collaboration is illustrated in figure 5.8.

In this way, the Dispatcher is able to know which States are active, which tran-

sitions need to be triggered, and the target state the component is transiting to. The

States that are defined as Observable could be monitored at runtime by an Observer.

This Observer is in charge of delivering the information that is known by the Dis-
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Figure 5.7: RESCO Runtime Package Metamodel

Figure 5.8: RESCO Sequence Diagram

patcher to external monitors and runtime checkers in order to check the correctness of

the behaviour of the software component.

The Dispatcher, will start its work when a new Event is received. The component

in charge of the reception of the Events is the EventReceiver. It has an Event queue

and notifies the Dispatcher each time an Event is received.

5.3.3 RESCO Execution model: Algorithms to process events &
basis for software component runtime observation

The execution model of RESCO defines the algorithms to process the events. These

algorithms are part of the Dispatcher, which offers us the ability to interrogate

the sofware components at runtime. These execution algorithms are application-

independent.
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As explained before, the first element receiving the notification of an Event is the

Dispatcher. Next, this determines the Actions to be executed once it has evaluated

the Conditions. Finally, the relevant Reactions are triggered. In the event that the

Dispatcher is in charge of passing arguments to the methods in charge of executing

Actions or evaluating Conditions, we will be mixing the general semantic of the state

machine execution with the particular details of specific applications and our aim is

to provide a generic framework to be used by any application. As a conclusion, we

defined as a design rule not to pass arguments to the methods.

Considering the last statement, these are the main characteristics of the execution

algorithms:

� The Events are processed following the run-to-completion paradigm and they are

stored temporarily in a global repository. The methods that need this additional

information provided by Events can access this repository.

� The methods in charge of executing Actions or evaluating Conditions do not have

any arguments. This way, there is no need for argument passing and this character-

istic makes it possible to implement a generic Dispatcher.

If we consider the example shown in figure 5.9, using the RESCO framework

we do not need to instrument the code in order to have the internal status of the

software component at runtime. We only have to annotate which of the states have to

be observed at runtime. Then, the Dispatcher will be in charge of interrogating the

states that are annotated as observable at runtime.

As we can conclude, the developed Dispatcher solution has not dependencies with

the logic final use case, it is a generic solution that will be used in all the cases. Thus,

we can add that the logic and the reflection, introspection and adaptation ability of the

solution are independent.

How to determine the "current" transitions

State machine formalism defines a transition as a family of transitions that is repre-

sented as one graphic element. Once the execution is ongoing, the specific transition is

determined at runtime. The transition that is triggered at runtime is called the "current"

transition.

Consider the state machine of figure 5.9 and the transition triggered by event B

(from s21 to s1). When this Reaction is triggered, the system has to exit from one of

the substates of s21 and from one of the states of region r2. This could only be solved

at runtime.
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Figure 5.9: State Machine example.

Considering the same transition, we do not know the exact final destination. We

only know that the target state will be a substate of s1. If we are using the History or

Deep History pseudostates, the situation becomes worse because we do not know the

target of a transition before runtime.

Using the same example we showed in figure 5.9, consider event A that starts in

the state s212 and goes to the pseudostate H of s1. The destination of this transition

depends on the last active substate of s1. We can not know the destination until

runtime.

Once the source and target of a transition are determined, and before the transition

is triggered, we need to calculate the output path of states in order to execute the

corresponding exit actions and an entry path to go to the target substates.

Finally, before triggering any transition we also have to consider the circumstance

where an event has different reaction possibilities. The best option is when the state

machine execution-semantic helps to perform this discrimination by selecting only one

transition. For example, s2 state has different defined reactions for the A event. The

ones that have to prevail are the ones that are defined in the nested states in relation to

the superstates that contain them. Nonetheless, there will be more nested cases with

contradictory definitions and we can only detect them at runtime. The latter is a bad

design characteristic.

In the code fragment of listing 5.1 , we present the defined algorithm to avoid and

solve these difficulties.
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1 Wait for a message (event)

2 Ask the active states if they have reactions to be triggered

3 { 1. Ask about transitions to the event to be processed.

4 This involves questioning the superstates

5 2. If a reaction is found

6 {2.1 Check if its conditions permit triggering of the

7 reaction

8 2.2 In affirmative case, add this reaction to the set of

9 reactions to be triggered}

10 Trigger all the reactions (the order should not influence)}

Listing 5.1: Event process algorithm

Transition Triggering Algorithm

The transition triggering algorithm, following the PSSM [Gro17] execution semantic

for transition activation, involves executing the exit actions starting from the source

state and finishing in a common ancestor of the target state. Additionally, the associated

actions have to be executed and, finally, starting from the common ancestor, we have

to execute the entry actions up to the target states. In order to trigger a transition, we

have to solve the following issues:

� Determine the common ancestor of the source and target states.

� Determine the path of the states that we have to enter up to the target state.

Considering the same example of figure 5.9, we will focus on event C defined in

s1 whose target state is s212. Figure 5.10 shows, within the structure that reflects the

state machine, the sequence of exit and entry actions to be performed. Following the

curved line, it denotes exit actions when going upwards and entry actions when going

downwards.

5.3.4 Generating automatically software components using
RESCO

This section presents the detailed steps to follow in the generation of the software

components using RESCO framework. The overall process was shown by an SPEM

process in figure 5.2.
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Figure 5.10: Objects that reflect the example state machine’s structure.

1st step: Behaviour design of the software component

The first step is to model the behaviour of software components by UML-SM models

using Papyrus [Pap19] modeling tool. In the presented solution, runtime adaptation is

one of the contributions and for that, in this first step the safety engineer has to design

also the alternative safe-mode behaviour(s) of the software component. All these

models will be transformed by the RESCO M2M transformation rules. In addition,

the safety engineer has to define for each unsafe detected modes the initial state in the

safe-mode model to be adapted.

Different types of systems and operation-modes require different monitoring

needs. Although it is possible to obtain information about all the states, events and

transitions, due to reduced processing resources, it may be desirable to monitor only

a subset of available monitoring information that will be verified. We have defined

an observability profile that provides an «Observable» stereotype to select at design

level those parts of the controllers which need to be observed. The designer, as a

substep in this initial step, annotates which of the states of the UML-SM models will

be «Observable».

2nd step: Automatic generation of the RESCO Model

Once the designer finishes the first step, RESCO framework continues with the work.

First, it takes the annotated UML-SMs and performs a M2M transformation. As a

result, it generates an instrumented model for each of the designed UML-SM. For

doing this, we defined some platform-independent transformation rules.
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Our approach is based on a platform-independent model instrumentation process.

As in [BHD17], our approach uses M2M transformation techniques for creating an

instrumented version of the user-defined model supporting introspection, checking

and adapting activities at runtime. This support is added by adding reflection and

adaptation capability to the model by the execution algorithms in the (2) runtime

package and the Dispatcher of the same package. Thus, without having to instrument

the code, we are able to generate applications providing advanced capabilities such as

component introspection by themselves.

To formalize our approach, we considered only the computations that occur in

actions and conditions attached to transitions.

Figure 5.11 shows how a transition chain between two states is instrumented

in order to provide debugging and observation ability at runtime. The left side of

the figure shows what happens when, being the software component in S1, EvA

arrives. The right side shows the equivalent version of the transition after model

instrumentation. The new model introduces a choice point and a composite state that

will get the observed information and share/log it. Certain solutions to instrument

the models follow the approach described in figure 5.11. In our case, we follow this

approach but the composite state is shared by all the transitions. We do not have to

implement different Observer States for each of the transitions, we need not to add

explicitly the instrumented model in each use case’s transitions. Once an state is

annotated as observed state, this behaviour is added by construction and shared in all

the observed transitions.

Summarizing, this is the overall behaviour of RESCO-SMs: when an event is sent

to the state machine based software component, the dispatcher analyzes the current

Figure 5.11: Model Instrumentation: Transformation Rule of the runtime package of
RESCO metamodel. Thanks to the (2) runtime package, the same ObserverState State
object is used in all the transitions.
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Figure 5.12: CRESCO: RESCO State Machine M2T Transformation to C++ code

status and calculates if a transition has to be performed. If the transition is going to

be performed, and the current, next or parent state is annotated as Observable, the

current state information is observed and sent to the externalized checker. Having this

observed information at runtime, we can localize bugs analyzing execution traces in

model terms.

3rd step: C++ reflective UML-SM based software components
generation (CRESCO)

In this section we will present the concrete implementation of RESCO approach

for C++: CRESCO framework. As we have mentioned, the RESCO metamodel is

platform independent.

In order to generate an application with Observable software components in terms

of model elements at runtime, CRESCO framework includes: (1) M2T transformations

of the elements of the design package part of the RESCO metamodel into C++ code by

the Acceleo [A16] tool, and (2) an implementation in C++ of the runtime infrastructure.

In figure 5.12 an excerpt of the result of the State Machine M2T transformation is

shown.

Regarding the executor part, in figure 5.13 an example of the result of the M2T

transformation is shown. The Executor has the implementation of the conditions that

must be evaluated at some point in time when responding to an event and also the

implementation of actions attached to different reactions.
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Figure 5.13: CRESCO Executor M2T Transformation

This specific solution addresses embedded and resource limited systems. In this

vein, for CRESCO, we performed a M2T transformation to C++ code and we did not

use dynamic memory allocation.

Regarding the generic part (runtime infrastructure), listing 5.2 shows a fragment

of code of both the Dispatcher and Observer modules which manage the CRESCO

software components’ states’ observability.

1 void State::enter()

2 { ...

3 if(this.context->getWorkingState()->observable)

4 this->context->dispatcher->fillInformation();

5 ...

6 }

7 void Dispatcher::fillInformation()

8 { ...

9 observer->log.sname=sm->workingState->sname;

10 observer->log.nsname=sm->workingState->nsname;

11 observer->log.fsname=sm->workingState->fsname;

12 observer->log.exeventId=sm->workingEvent.getId();

13 observer->putLog();

14 }

Listing 5.2: Fragment of code managing the CRESCO software compo-

nent’s state’s observability
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Following this solution, table 5.1 provides the information available from the

RESCO software components at runtime. The Runtime Monitoring Verification

and Adaptation (RMVA) and Runtime Safe Properties Checker (RSPC) that will be

presented in Chapters 6 and 7 receive this information at runtime from the states

annotated as observable in order to check the correctness of the Safe Properties or

Correct Transitions defined for each use case.

The messages that are sent from the RESCO software components to both checkers

(RMVA and RSPC) are generated by this information and the format/notation of these

messages is defined as:

EVId number; CurrentState number; NextState number; FatherState number;

5.4 Evaluation

This section evaluates the proposed approach for generating runtime observable and

adaptable UML-SM based software components. We provide two case studies and

check that the generated software components are able to provide internal information

in model terms at runtime. Later, we compare the difference of generating software

components employing our tool against other commercial tools. Finally, the obtained

results are discussed and some threats to validity of the performed evaluation are

highlighted.

5.4.1 Case Studies

The case studies we employed for the evaluation of our approach are the ones presented

in Section 4.4.

One of the selected case used for evaluation is an industrial software component

that controls a micro-generation device: the Burner controller of the Whispergen

commercial device [Pra16]. It covers electrical generation, heat generation as well

as micro CHP (Combined Heat and Power). Additionally, we generated 6 synthetic

controllers to evaluate the effects on performance and time when we have UML-SMs

Table 5.1: RESCO Observed Data

Data Description
Component Name Identification of the current component

Current State Identification of the current state
Next State Identification of the next/target state

Father State Identification of the father state
Event Id Identification of the current event
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Figure 5.14: Burner’s normal behaviour UML State Machine model (SMB1)

with different size and complexity levels. We defined the 6 synthetic cases based

on the original Burner’s controller UML-SM. We also designed and developed one

safe-mode UML-SM to be used in the event of detecting an error at runtime. Thus,

the solution performs an adaptation process to the safe mode UML-SM.

For evaluation purposes, the RESCO framework was compared with two com-

mercial tools: SinelaboreRT version 3.7.2.2 [Mue18] tool (specific tool for real time

systems) and the Sparx Systems Enterprise Architecture (EA) version 11 tool [Sys15]

(generic tool). We selected SinelaboreRT because it is used for developing real-time

resource limited systems and Sparx Systems Enterprise Architecture for the reason

that it is a generic tool used in a huge number and different domains. The Burner

controller shown in figure 5.14 was implemented using both tools and thus, RESCO’s

performance was compared with tools used in different environments in order to obtain

more meaningful results.

The selected Burner controller’s normal-mode UML-SM had 13 simple states, 2

composite states, 13 transitions and 13 events. The safe-mode UML-SM had 7 simple

states, 2 composite states, 9 transitions and 9 events.

The other case we studied was the Train Control and Monitoring System (TCMS)

software system. The TCMS is a complex distributed system that controls many

subsystems such as the door control, traction system, air conditioning, etc. The

case study concerns a real industrial system where some simplifications were made.
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Figure 5.15: UML-SM Diagrams of a) DoorController (ST1) b) ObstacleDetector
(ST3) and c) Traction (ST2)

Specifically, the interaction with other components of the TCMS, the dependencies

with other subcomponents and their communication were omitted. We only considered

3 subsystems that are the ones shown in Fig. 5.15: DoorController, ObstacleDetector

and Traction. In this case, we decided not to compare the performance of RESCO

components with software components generated by the other two tools because these

controllers are very simple and the expected results were not be meaningful.

Research Questions

One of the objectives of the experiments was to show how it is possible to observe the

information of the running system in model terms at runtime (RQ1). Another objective

was to demonstrate that the logic of the controllers and the reflection/observation ability

of the controllers generated by the C++ REflective State-Machines based observable

software COmponents (CRESCO) framework are independent (RQ2). Finally, the

overhead of the solution was measured (RQ3 and RQ4). We have defined the following

research questions:

RQ1. Is it possible to obtain the model of the software component by analyzing

observed information at runtime?

RQ2. Are the logic and the reflection/observation ability of the controllers

generated by CRESCO independent?
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RQ3. Is the performance of SW components generated by CRESCO frame-

work as good as the SW components generated by other existing tools (EA v11

and SinelaboreRT v3.7.2.2)?

RQ4. How it affects the observability level in the performance of the RESCO

framework?

Experimental Setup

All the experiments were executed as a standalone application over a Linux virtual

machine configured with a 1 Core processor, 2196MB of RAM, 20GB SSD, and

running 64-Bit Ubuntu 16.4 LTS. We have used Eclipse IDE for C/C++ Developers

version Oxygen.1a Release (4.7.1a) for generating the executable state machines using

the code generated by both CRESCO framework, SinelaboreRT (v3.7.2.2) and EA

tool (v11).

To analyse RQ1, RQ2, RQ3 and RQ4, we defined 18 experiments. In order to

have more reliable results, each experiment was repeated 1000 times. Table 5.2 shows

the characteristics of each of the experiments.

The SMTx state machines are the three controllers that form the TCMS case study:

� SMT1: Door Controller’s UML-SM

� SMT2: Traction Controller’s UML-SM

� SMT3: Obstacle Detector Controller’s UML-SM

The UML-SM SMB1 is the original Burner Controller. SMB2 to SMB7 are the

synthetic state machines created for testing purposes to perform experiments with

different size and complexity level state machines. To that purpose, we added different

number of states to the original one (SMB1): some of them in a flat way (adding new

states at the same level) and others hierarchically (adding nested composite states).

For example, SMB2 was generated linking two SMB1 original state machines in a

flat way; in SMB3 we added a third SMB1, but in this case we added it as a nested

composite state in one of the states of the original SMB1; the rest of the state machines

were generated following a similar process: addition of SMB1 state machine in the

same level (flat way) or adding nested composite states of other SMBx. Thus, we

performed the experiments with state machines that have different size and complexity

levels.

Considering the works in [Bel13] and [GMP03], to measure the size and complex-

ity of state machines, we used the next metrics: Number of Simple States (NSS- Size
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Table 5.2: Experiments Setup

State Machine Applied to RQ Observ. % NSS NCS McCabe
SMT1 RQ1,RQ2 100 4 0 4
SMT1 RQ2 50 4 0 4
SMT1 RQ2 0 4 0 4
SMT2 RQ1,RQ2 100 2 0 2
SMT2 RQ2 50 2 0 2
SMT2 RQ2 0 2 0 2
SMT3 RQ1,RQ2 100 3 0 4
SMT3 RQ2 50 3 0 4
SMT3 RQ2 0 3 0 4
SMB1 RQ1,RQ2,RQ4 100 10 2 3
SMB1 RQ2,RQ4 50 10 2 3
SMB1 RQ2,RQ3,RQ4 0 10 2 3
SMB2 RQ3 0 25 4 3
SMB3 RQ3 0 49 4 5
SMB4 RQ3 0 113 9 6
SMB5 RQ3 0 25 5 3
SMB6 RQ3 0 49 11 5
SMB7 RQ3 0 113 26 6

metric), Number of Composite States (NCS- Size metric) and Cyclomatic Number of

McCabe (Structural Complexity metric) adapted to state machines.

5.4.2 Results

RQ1 and RQ2 Results

To answer RQ1, first we initialized the original UML-SMs (SMT1, SMT2, SMT3 and

SMB1), sent to them 10.000 random events and the externalized monitoring system

received and stored the internal status information in model terms of these software

components at runtime. Analyzing the runtime observed information, the externalized

system was able to represent the structure and transitions of the Software Components

Under Study (SCUS). In this experiment, all the states were annotated as observable.

Listing 5.3 shows a fragment of the logged information at runtime of the SMB1

software component. In the figure 5.14 (original state machine) we can see the

interpretation of the received information (numbers) that represent the name of states

and events.
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1 EvId 4; CurrentState 2;NextState 4; FatherState 1;

2 EvId 6; CurrentState 5;NextState 6; FatherState 4;

3 EvId 7; CurrentState 6;NextState 7; FatherState 4;

4 EvId 8; CurrentState 7;NextState 11;FatherState 4;

Listing 5.3: Fragment of the logged information at runtime

Regarding the RQ2, first of all, we have to say that this question could be answered

by showing how the RESCO framework is designed. We explained in section 5.3

that the framework was made up of two packages: design package and runtime

package. The design package is responsible for the logic and behaviour of the

software controllers. As for the runtime package, it is in charge of adding the required

infrastructure to have introspection ability at runtime. The latter, which is reused in all

the different software components, is always the same. Thus, the RQ2 is answered.

Anyway, in order to answer RQ2 by an experiment, we considered the same

experiment as in RQ1. We initialized all the UML-SM based software components,

and configured all the states as non-observable. We sent 3333 random events and, as

there were no observed states, the externalized runtime monitoring system did not

receive internal status information of the software component at runtime.

After that, as the solution enables us to change the observed states at runtime, we

changed the configuration of the states and configured 50% of the states as observable.

Then, we sent the same initial 3333 random events. In this case the externalized

runtime monitoring system received internal status information from the observed

states. In the listing 5.3 we can see the logged information of the SMB1. States 2

(waitForFanStopped), 5 (InitialState), 6 (startFan) and 7 (waitForGasValvePoweredUp)

were configured as observable.

Lastly, we performed the last change at runtime. In this case, we decided to

configure all the states as observable. In this last step, we sent the same 3333 random

events to all the software components and the information from all the states was

received by the externalized runtime monitoring system.

The same experiments were performed to the SMT1, SMT2 and SMT3. After

studying the logs obtained at runtime we were able to extract the model of the three

state machines.

RQ3 and RQ4 Results

In RQ3, performance was evaluated in terms of execution time (milliseconds) and

percentage of CPU usage. To measure the execution time, we used the gettimeofday
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instruction. This instruction obtains the current time, expressed as seconds and

microseconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970.

This instruction was launched at the beginning and the end of the execution.

For this research question, we considered the Burner’s controller UML-SM

(SMB1) and the six synthetic state machines (SMB2-SMB7). As the TCMS’s state

machines were very simple, we did not consider them in this study.

In these experiments we used 1.000 input events and the observability level of

the states in RESCO was 0%. We used this observability level in order to make

the comparison in the same conditions for the different tools. SinelaboreRT and

Sparx Systems Enterprise Architecture tools do not offer the possibility to generate

software components with introspection ability at runtime. RESCO, offers the runtime

introspection/observation capability. However, when this capability is activated,

additional infrastructure is used and more computational and communication resources

are needed. In order to avoid the interference of this infrastructure, we configured the

observability level at 0% in the RESCO solution.

Figures 5.16 and 5.17 illustrate the results for RQ3. In terms of time response,

SinelaboreRT is the tool (specific for real time systems) that achieves the best results.

However, CRESCO’s results are similar or even better when the state machines’ com-

plexity is low. Concerning the CPU usage percentage, all the results are similar. One

reason for that is that the different experiments were performed in very similar situa-

tions and in addition, the complexity level of the experimented software components

was the same in all the cases. So, the time was the parameter that was affected by

the different experiments scenarios. If we consider the synthetic UML-SM (SMB2

to SMB7) for CRESCO and EA tools, when the size and complexity of the state

machine increase, the performance of the tools is affected negatively and it decreases:

the execution time increases although the percentage of the CPU resource used is

only slightly affected. As for SinelaboreRT, when the complexity and size of the

state machines is increased, the execution time also increases but to a lesser extent.

We have to add that the SinelaboreRT tool is specific for designing and developing

real-time systems and Enterprise Architecture tool is a generic tool for different types

of systems.

Regarding RQ4, we also launched the original state machine (SMB1) generated by

CRESCO when 50% and 100% of the states were observed. When the observability

level was 50%, the time response in milliseconds was 272, and when all the states

were observed the result was 411. In all the experiments we used 1.000 input events.
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Figure 5.16: RQ3 results: CPU usage % results for SinelaboreRT, EA and CRESCO
tools (when observability level 0%).

Figure 5.17: RQ3 results: Timing results for SinelaboreRT, EA and CRESCO tools
(when observability level 0%).
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5.4.3 Discussion

This section discusses the obtained results (Section 5.4.2). The results of the RQ1

show that the solution that we are presenting is able to provide the internal status

information in model terms. This runtime information can be employed for various

purposes, e.g., fault detection and localization, runtime adaptation/reconfiguration,

runtime enforcement and observation of software runtime behavior.

Regarding RQ2, the general objective was to demonstrate that the logic and the

reflection ability of the software components generated by CRESCO are independent.

Moreover, we wanted to demonstrate that we can change the observability level of

the states of the component at runtime. To that end, we initialized the component

with all states as non-observable and verified that the externalized runtime monitoring

system was not receiving any input from the software controller. After 3333 events,

we changed the configuration file at runtime and configured 50% of the states as obser-

vable. The externalized runtime monitoring system received information related to the

states configured as observable. Finally, we configured all the states as observable at

runtime (with no need to change the code) and we received the internal information

from all the states at runtime. In this way, we validated that there is no need to change

the source code nor to recompile it to change the observability level of the software

components; and also that the (1) logic of the software component and the (2) runtime

reflection/observation abilities are independent and orthogonal.

One of the strong points of the presented approach is that, in this case, the

developer does not need to be bothered about these issues. The behaviour, adaptation

and the introspection ability are added orthogonally. The developer only has to focus

the efforts on the behaviour of the SCUS, and there is no need to instrument code

manually, thereby avoiding new points of introduction of faults.

The general objective of RQ3 was to evaluate the CRESCO framework’s per-

formance compared with commercial tools. We compared the performance of the

CRESCO framework (0% observability level) with the SinelaboreRT v3.7.2.2 and

EA v11 tool results. We considered seven different state machines of different size

and complexity. The results show that SinelaboreRT was the tool with best time

response results but CRESCO was the next best. We have to consider that we are

adding some more infrastructure and logic to enable the solution to have introspection

and adaptation ability at runtime. This is one of the main reasons for achieving worse

results than SinelaboreRT.

With regard to RQ4, the results with different observability level show that the

performance of software components generated by the RESCO framework decreases

when increasing the percentage of states observed at runtime. Thus, taking into account
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the safe requirements, safety engineer will have to consider a trade-off between the

system’s performance and its safe behaviour level.

5.4.4 Threats to Validity

This section summarizes the main threats that can invalidate our evaluation:

External validity: An external validity threat that usually affects most studies is the

number of case studies employed. We used two industrial use cases and in one of

them, Burner controller’s use case, we configured different state machines for the

different experiments. However, some of them (SMB2 to SMB7) were based on the

initial Burner’s controller UML-SM. Different state machine controllers might lead to

different results. Nevertheless, this first experiment was valid to check the correctness

of the design and development of the solution since the main objectives were: (1) to

show how the software components generated by CRESCO framework were able to

provide internal status information in model terms at runtime; (2) to show that the

logic and the reflection ability of the generated software components by CRESCO are

independent; (3) to measure the CRESCO software components’ performance; (4) and

to measure the overhead added by the observability level. The experiment employs

10 different state machines and 3 different observability levels, which takes us to 18

different experiments.

Conclusion validity: A conclusion validity threat involves the way the execution

time and percentage of the CPU usage was measured. To mitigate this threat, each

execution is repeated 1000 times.

5.5 Conclusion

The section presents a model-driven approach to automatically generate software

components based on UML-SMs with the ability to provide their internal status in

terms of model elements at runtime. We defined a platform independent metamodel

called RESCO to represent the model of these software components based on UML-

SM models annotated by the observability profile. Finally, the CRESCO framework, a

concrete implementation of the RESCO approach for embedded and resource limited

systems in C++ code, was presented.

In order to demonstrate the characteristics of the presented work, we performed

an empirical evaluation of how a software component generated by CRESCO was

able to represent the software components’ UML-SM model elements at runtime. In

this empirical evaluation we used two different use cases: Burner Controller of the
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Whispergen device and Train Control and Monitoring System. We checked the effects

of having different observation levels, too.

We empirically evaluated the performance of the framework (in terms of execu-

tion time and percentage of CPU usage) using state machines of different size and

complexity. Some experiments were also implemented using different commercial

tools (EAv11 and SinelaboreRT) in order to compare their results with those of the

CRESCO framework.

The experiments showed that the software components generated by CRESCO

framework (RESCO framework instantiation for resource-limited systems) were able

to provide their internal status information in model elements terms at runtime. Thus,

this characteristic enables us to perform runtime verification in model terms.

In addition, the independence between the logic/behaviour and the reflection,

introspection and adaptation capabilities was verified.

Finally, we also concluded that the performance of the software components

generated by CRESCO framework is similar to others generated by commercial tools

used for resource-limited systems. Nonetheless, this performance is decreased when

the observability level of the CRESCO software components is increased. In contrast,

the safe behaviour level is increased. Thus, a trade-off between the safe behaviour

level and performance has to be made for each specific use case.
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6.1 Introduction

One of the challenges for complex software systems is to increase their safe behaviour.

In this way, a Model-Driven Engineering (MDE) approach helps in the design and

development phase of these systems and Runtime Verification (RV) techniques help

to enhance safe behaviour. Both techniques are complementary.

In order to observe and check the status of the software components, most of the

software runtime checking solutions instrument the final source code. In this process,

most of the analyzed runtime checking solutions do not use the models used at design

time and these are no longer kept at runtime.

Our runtime verification and adaptation solution is based on REflective State-

Machines based observable software COmponents (RESCO) framework presented

in Chapter 5. Thus, the solution takes advantage of the runtime introspection and

reflection ability that offers the software components generated by this framework. The

runtime information of the software components observed at runtime could be used

for checking their status in model terms at runtime. As a result, failures are avoided

because we are detecting errors, based on this runtime in model terms information,

before they become failures. The solution presented in this chapter, addresses software

component level runtime verification and adaptation.

The Runtime Monitoring Verification and Adaptation (RMVA) has the benefit

of checking the internal status of the software components and not only their output

signals. Consequently, the faults are detected before any transition is performed and

output signals are changed, thereby avoiding system failures. This is demonstrated in

the evaluation presented in the Section 6.3 and discussed in subsection 6.3.3.

In this chapter we are presenting a runtime verification system able to (1) verify

automatically the consistency and correctness of the behaviour of software components

at runtime and (2) manage safe-adaptation operations when errors or unanticipated

situations are detected.

The software components that will be checked will be modelled by UML-SMs and

they are going to provide their own internal information whenever they have to react

to an event that may provoke a state transition. At this moment, the runtime verifier

will check if the transition is defined as a correct one. The correct behaviour of these

software components is inherent to the UML-SM formalism and the checker verifies

the runtime information in model terms that provides each software component when

is going to perform a transition (current state, current event, next state,. . . ).

The solution addresses software components (e.g. for embedded and resource-

limited systems or other type of systems) modelled by Unified Modeling Language -
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State Machine (UML-SM) and the faults that can be detected by the solution are:

� random hardware faults such as bit inversions or changing errors,

� random software faults such as heisenbugs [GT05],

� residual faults not detected when testing,

� unanticipated faults that were not considered in the design and development phase.

An evaluation of the approach has been carried out using an industrial Burner

controller of the electric micro generator Whispergen commercial device [Pra16]. In

addition, 3 academic use cases have been implemented. Results indicate that the usage

of this framework can accelerate error detection, thus enhancing safe behaviour of the

software components at runtime. In this document, we are only showing the results

obtained in the industrial use case.

The rest of the chapter is structured as follows: Section 6.2 presents the Runtime

Monitoring Verification and Adaptation (RMVA) module. The solution is evaluated

in Section 6.3, where an empirical evaluation is performed. Finally, conclusions and

future work are summarized in Section 6.4.

6.2 Runtime Monitoring, Verification and Adaptation

This section presents the generation process of the Runtime Monitoring Verification

and Adaptation (RMVA) system and its overall architecture and solution which is

based on RESCO SW components’ introspection and reflection abilities.

First, we present the generation process and then we will continue with the

description of the overall architecture of the solution.

6.2.1 Process for defining Safe Adaptation processes and
generating the RMVA

The process to generate the RMVA is embedded in a typical design process for

developing dependable systems. After designing the software component by means

of state machines (UML-SM diagrams), the process for defining safe adaptation

processes starts.

Before showing the process and in order to next explanations to be more clear, we

are going to define the "List of Correct Transitions" term:
� List of Correct Transitions: All the transitions modelled in the UML-SM. This list

is automatically generated from the UML-SM. The format of each correct transition

is as follows:
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Figure 6.1: Process for generating the RMVA

EVId number; CurrentState number; NextState number; FatherState number;

This process has two steps (see figure 6.1):

1. Step1: Define safeAdapt processes to be launched in the event that a transition

not defined in the List of Correct Transitions is sent to the RMVA at runtime .

2. Step2: Generate the checker: Runtime Monitoring Verification and Adaptation

Generator (RMVAGen) tool transforms the Correct Transition List to RMVA Code

(checker, in C++) automatically. RMVAGen uses a generic checker as a basis and

adds the specific transition list to the RMVA Checker module and safe adaptation

processes to the Runtime Safe Adaptation Manager module.

6.2.2 Runtime Monitoring Verification and Adaptation
Architecture based on RESCO software components

Figure 6.2 shows the overall architecture of the Runtime Verification solution.

In this architecture, on the one hand, we have a RESCO software component

which is compound by a software controller designed by UML-SM models (defined

in Chapter 5). On the other hand, we have another execution environment which

acts as a safety bag called Runtime Monitoring Verification and Adaptation (RMVA)

module. The main aim of the solution is to take advantage of the runtime introspection

and reflectivity ability of the RESCO software components to perform Runtime

Verification and Adaptation when needed.

The aim of the Runtime Monitoring Verification and Adaptation (RMVA) module

is to receive the internal status of software components to be checked in terms of
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Figure 6.2: Overall architecture of the Runtime Monitoring, Verification and Adapta-
tion (RMVA) scenario

UML-SM model elements and validate this information. For doing this work, the

RMVA has two main modules: the Runtime Monitor and Verifier module and the

Runtime Safe Adaptation Manager module. First, the information is analyzed by the

Runtime Monitor and Verifier module and it decides if the software component is in

an unsafe scenario.

The development of the RMVA module was inspired by the solution defined in

[AGR14] (the Conformance Monitoring by Abstract State Machines (CoMA) runtime

monitor). This module compares the real current system’s logged information at

runtime with the correct information of the software component under study based

on their Abstract State Machines model elements but this solution is implemented

in Java. In addition, their solution needs to modify the original Java code of the

software components that are going to be checked. Our solution is not using Abstract

State Machines model elements but in our case, correct transitions are inherent to the

SM’s design and a list of correct transitions is generated. Additionally, the software

components generated by RESCO do not have to be modified (instrumented) to send

their internal information in model terms at runtime.

The RMVA is composed of three blocks:
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� ObserverReceiver: this block is in charge of receiving the internal status of RESCO

software components. As we are checking only one software component, we do

not have to provide a synchronization mechanism to ensure that the information

received is a consistent snapshot of the software component. However, the informa-

tion received by this module provides a timestamp to ensure that it arrives in the

same order in which it was produced. It is imperative that the messages verified at

runtime are causally ordered so that a correct interpretation of the behavior of the

software component is carried out.

� Runtime Monitor and Verifier: this block receives the inputs from the Observer-

Receiver and compares them with the expected/safe transitions (event, current state,

next state) of the software component to decide if the component is working safely

and therefore whether the control is as expected. When generating this checker, a

list of correct transitions is provided to this module.

� Runtime Safe Adaptation Manager: this block acts when the software component is

not working as expected. Its main functionality is to send a safeModeProcess

event to the unsafe/uncertain software component’s Dispatcher. Thus, the software

component performs an adaptation to the predefined ’safe-mode’ and therefore,

we avoid hazardous situations. This mode of operation (’safe-mode’) will be

application-specific and defined by the safety engineer.

RMVA Behaviour: The events to be processed (messages, changes in sensors,. . . )

go to the EventReceiver which sends them to the Dispatcher to start the execution

algorithm and process the reception of the event at runtime. The Dispatcher analyzes

the current status of the software component and calculates if a transition to a new

state has to be performed. If a transition has to be performed and the involved states

in the transition (at least one of them) is annotated as observable, the current internal

information (event, source state, target state, . . . ) of the software component is

sent to the Runtime Monitoring Verification and Adaptation (RMVA) module. The

ObserverReceiver element of the RMVA receives this information and sends it to the

Runtime Monitor and Verifier in order to check the correctness of the transition.

The RMVA, after checking this information, in the event that the transition is

defined as a correct one it sends an acknowledgment event to the Dispatcher as en event

to be processed. After the reception of this acknowledgment event in the software

component, the corresponding transition and, when needed, updates in the output

signals are performed. The system continues working in a ’normal-mode’.

As regards to the RMVA, when the status of the software components is safe, its

status information is updated and the RMVA waits for new transition events.
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In the event that the RMVA detects that the information of the transition is wrong

and not defined in the list of the correct transitions, the Runtime Safe Adaptation

Manager starts the adaptation process in order to change the software component to

a ’safe-mode’ operation model. For doing that, this Adaptation Manager sends the

corresponding adaptation event to the Dispatcher of the software component. As a

consequence, the software component updates its behaviour to a ’safe-mode’ and

follows the indications defined for the corresponding adaptation. Thus, we can say

that we are performing runtime adaptation for runtime enforcement. This last process

is application-specific and has to be defined by the safety engineer.

Once the adaptation in the software controller is performed, the RVMA has also

to be updated. As the software component is working now with the safe-mode UML-

SM, the Runtime Monitor and Verifier has to consider safe-mode state based correct

transition list. After that, the software component will be waiting for new events to

process and the RVMA module will wait for new transition traces.

Additionally, the RMVA has the ability to know the internal status of the observed

software component when the unsafe/uncertain situation is detected. This information

may help in locating the fault that has generated this unsafe/uncertain scenario. We

define as uncertain situation or scenario as a circumstance where the current state of

knowledge is such that (1) the order or nature of things is unknown, (2) the conse-

quences, extent, or magnitude of circumstances, conditions, or events is unpredictable,

and (3) credible probabilities to possible outcomes cannot be assigned.

The next code fragment (listing 6.1) shows the runtime adaptation infrastructure

added to the automatically generated code.

1 void Dispatcher::processEventinError(Event ev)

2 { ...

3 cresc::State *activeState;

4 ...

5 this->context->getOwnerSm()->setActive(0);

6 this->context->getOwnerSm()->reinit();

7 this->context->getOwnerSm()->id=1;

8 activeState=this->context->getWorkingState();

9 ...

10 this->context->getOwnerSm()->setActive(1);

11 ...}

Listing 6.1: Fragment of code managing the RESCO software component’s

adaptation ability
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6.2.3 Internal status information of the monitored software
components

For runtime checking, some decisions must be taken about what to observe. Table

6.1 provides the information available from the RESCO software components at

runtime. The RMVA receives this information at runtime from the states annotated as

observable of the software components that compounds the system.

6.2.4 Safe Adaptation Process definition

When the RMVA detects that the transition to be performed is not in the correct

transition list, it sends this information to the Runtime Safe Adaptation Manager

module. This manager has a table that was created in Step 1 of the RMVA generation

process. The information of the table is organized as presented in Table 6.2.

6.2.5 RMVA’s Automatic Generation and Dependencies

The final RMVA, is composed of three modules and each of these modules will have

specific dependencies. Nevertheless, the code that depends on specific use cases

characteristics is generated automatically. In the following list, the dependencies of

each of the modules and the way that they are automatically generated is explained:

1. ObserverReceiver: this module is a generic one so it does not need any specific

information to generate automatically. This part of the solution is always the same:

Table 6.1: RESCO Observed Data

Data Description
Component Name Identification of the current component

Current State Identification of the current state
Next State Identification of the next/target state

Father State Identification of the father state
Event Id Identification of the current event

Table 6.2: Safe Adaptation Process Information at Software Component Level

Current State Id of the Current State
Wrong Next State Id of the Next State

Safe Mode State Machines Id of the SM(s) to be updated (safe mode
UML-SM Id)

Initial State Id of the initial state of the safe UML-SM
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to receive internal information in model terms from the software components. The

messages that this module receives follows the previously defined notation/format:

EVId number; CurrentState number; NextState number; FatherState number;

2. Runtime Monitor and Verifier: part of this module is specific for each software

component. The state-based Correct Transitions list is added in the final code as a

"if-else" checking structure. The conversion process is automatic and this specific

part is generated from the information generated during the process.

3. Runtime Safe Adaptation Manager: This module is in charge of generating me-

ssages (safeModeProcess event messages) to be sent to the RESCO software

component when an adaptation is needed. The generation of these messages is

specific for each software component and it also depends on the specific incorrect

transition that has been detected. This part of the code, the creation of these messa-

ges, is automatically generated based on the information collected in the tables that

define the safe adaptation process.

6.3 Evaluation

This section evaluates the proposed approach for checking at runtime the software

components’ behaviour in model terms and the adaptation ability when an error or

an unanticipated situation is detected. In order to demonstrate our solution’s benefits,

we have carried out some examples with academic examples (such as simple elevator

controls or artificial/synthetic use cases) but in this work we are going to present

one industrial case study. Finally, the obtained results will be discussed and some

identified threats to validity of the performed evaluation will be highlighted.

6.3.1 Case Study

In this case, the selected case used for evaluation is an industrial software component

that controls a micro-generation device: the Burner controller of the Whispergen

commercial device [Pra16] already presented in the section 4.4.1. It covers electrical

generation, heat generation as well as micro CHP (Combined Heat and Power). For

evaluation purposes, two state machines of the Burner controller shown in figures 6.3

and 6.4 were implemented in the RESCO framework: normal-mode Burner controller

and the safe-mode Burner Controller.

To check the correctness of the behaviour of each software component, traces of

correct transitions are defined using the relation between the events and the states of

the controllers (format/notation mentioned before). Each event may have associated a
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Figure 6.3: The Burner’s SM

Figure 6.4: The Safe-Mode Burner’s SM
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reaction that may be a transition and this information is used to define the correct and

safe behaviour traces. Then, at runtime, this will be the information to be checked.

As an example, some correct traces of the Burner’s controller are listed in 6.2. These

traces could be automatically obtained from the software components of the system at

runtime.

1 EvId 4; SourceState 2;TargesState 4; FatherState 1;

2 EvId 6; SourceState 5;TargesState 6; FatherState 4;

3 EvId 7; SourceState 6;TargesState 7; FatherState 4;

4 ...

Listing 6.2: Correct and safe traces to be checked at runtime

Before starting with the experiments, the correctness of the implementation was

checked at model level by verifying the model (model checking by Papyrus [Pap19]).

In addition, as the code of the software components was generated automatically by

RESCO, the code structure makes several implementation faults unfeasible. Therefore,

we did not inject certain implementation faults (C++ class related faults, such as the

ones defined in MuCPP [DPMBPL+17])

Research Questions

The main objective of the experiments is to evaluate how safe behaviour of software

components is enhanced by the Runtime Monitoring, Verification and Adaptation

module presented in this chapter. As a second objective, we defined to check the rela-

tion between the observability level and the performance of the solution. Additionally,

as a third objective, the runtime adaptation ability of the solution is demonstrated.

RQ1. Is the presented Runtime Monitoring, Verification and Adaptation

solution based on RESCO software components an effective tool for failsafe

operation at software components level?

RQ2. How is the relation between the observability level, failsafe detection

accuracy and time response?

RQ3. Can this runtime information be employed for runtime adaptation?

Failsafe detection was evaluated by performing fault injection campaigns and

measuring the detected number of faults and the time needed. We also measured the

response time in the RMVA varying the observability level of the software components

in order to know its effect.

107



6. SOFTWARE COMPONENTS LEVEL RUNTIME VERIFICATION AND ADAPTATION

Metrics

Failsafe detection was evaluated by performing fault injection campaigns and mea-

suring how many errors were detected by the RMVA checker. Performance was

evaluated in terms of CPU resource usage percentage and execution time (millisec-

onds). To measure the CPU resource usage percentage, we used the output of the

command /proc/stat in Linux. Regarding the execution time, we used the gettimeofday

instruction at the beginning and the end of the execution.

Experimental Setup

All the experiments were executed as a standalone application over a Linux virtual

machine configured with a 1 Core processor, 2196MB of RAM, 20GB SSD, and

running 64-Bit Ubuntu 16.4 LTS. We used Eclipse IDE for C/C++ Developers version

Oxygen.1 Release (4.7.1a) for generating the executable state-machines using the

code generated by RESCO framework.

To analyse RQ1, RQ2 and RQ3 we defined 5 experiments. Table 6.3 shows the

characteristics of each of the experiments. All the experiments are based on the original

correct software component. In order to address the first two research questions, we

used the last four experiments. The main aim for RQ1 was to demonstrate that the

solution is able to detect faults at runtime. Regarding RQ2, we also needed to measure

the impact of observability level and the solutions’ failsafe detection accuracy. In both

cases, we needed faulty scenarios therefore we inserted different number and types of

faults to the original controller (Burner Controller Normal Mode State Machine - SM1).

The third research question aimed to demonstrate the runtime adaptability ability of

the solution. In this case, we made experiments with all the different configurations in

order to show how the adaptation process was started when an hazardous situation

was detected at runtime.

In our case, after analyzing the different fault injection techniques summarized

in [HTI97], we decided to use a software fault injection approach and we performed

fault injection campaigns to test the RMVA module.

6.3.2 Results

In order to answer all research questions, we used the externalized Runtime Monitoring

Verification and Adaptation (RMVA) system and to evaluate the failsafe operation of

this system (RQ1), we injected artificial faults by modifying the source code using

libfiu tool [Lib]. Libfiu is a library that can be used to inject faults to your code. It
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Table 6.3: Experiments Setup

Experiment Applied to
RQ

Number of
Unconditional

Faults

Number of
Random Faults &

Probability
Burner Controller

Normal Mode State
Machine (SM1)

RQ3 0 0

SM1-Fault Injection 1 RQ1,RQ2,RQ3 0 2 (%50)
SM1-Fault Injection 2 RQ1,RQ2,RQ3 2 2 (%50)
SM1-Fault Injection 3 RQ1,RQ2,RQ3 2 2 (%50) + 2 (%75)
SM1-Fault Injection 4 RQ1,RQ2,RQ3 4 2 (%50) + 2 (%75)

aims to be user-friendly by means of a simple API, with minimal code impact and

little runtime overhead when enabled.

In order to emulate the random hardware, software (heisenbugs) and unanticipated

environmental faults, we injected them by using the fiu_enable_random(probability)

(Random) option of the libfiu library. This option enables the point of failure in a

non-deterministic way, which will fail with the given probability.

Regarding the remaining software faults, we emulated them by using the fiu_enable()

(Unconditional) option of the libfiu library. This option enables the point of failure in

an unconditional way, so it always fails.

We used the last four experiments defined in table 6.3 to demonstrate RQ1 and

RQ2. Table 6.4 illustrates the results for both RQ1 and RQ2. Runtime Monitoring,

Verification and Adaptation module caught 100% of error activation when all the

states were observed and this percentage decreased when fewer states were observed:

86.96% errors detected when 75% observability level, 56.06% when 50%, and 49.5%

errors detected when 25% of the states were observed. As to the time response (RQ2),

as can be expected, the fewer the observable states, the shorter the time response.

Regarding the RQ3 experiment, we used the same scenario as for RQ1 and RQ2

but in this case we activated the adaptation process. Once the system was correctly

configured, we started injecting the same faults as in the first experiments but in this

case, when the first error was detected, the original state machine was deactivated and

the alternative safe-mode state machine was activated. Therefore, the behaviour of

the controller was changed automatically at runtime. RMVA continued logging and

analyzing the runtime information. Once the experiment was finished we analyzed the

logged information and concluded that after the runtime error detection the safe-mode

state machine started working.

Listing 6.3 shows the logs of the safe-mode state machine. Comparing with the
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Table 6.4: RQ1 and RQ2 results: Injected runtime faults and the Runtime Verification
Module failsafe detection results.

Experiment
Unconditional

faults
Random

Faults
(Probability)

Observed
States
(%)

Detected
Errors

(%)

Time
(ms)

SM1-FaultInjection 1 0 2 (50%) 100% 100% 225
SM1-FaultInjection 1 0 2 (50%) 75% 82.35% 207
SM1-FaultInjection 1 0 2 (50%) 50% 22.54% 116
SM1-FaultInjection 1 0 2 (50%) 25% 14.7% 70
SM1-FaultInjection 1 0 2 (50%) 0% 0% 9,499
SM1-FaultInjection 2 2 2 (50%) 100% 100% 462
SM1-FaultInjection 2 2 2 (50%) 75% 98.7% 470
SM1-FaultInjection 2 2 2 (50%) 50% 82.3% 332
SM1-FaultInjection 2 2 2 (50%) 25% 75.9% 320
SM1-FaultInjection 2 2 2 (50%) 0% 0% 8,495
SM1-FaultInjection 3 2 2 (50%) + 2 (75%) 100% 100% 409
SM1-FaultInjection 3 2 2 (50%) + 2 (75%) 75% 85.6% 483
SM1-FaultInjection 3 2 2 (50%) + 2 (75%) 50% 84.8% 352
SM1-FaultInjection 3 2 2 (50%) + 2 (75%) 25% 77.3% 254
SM1-FaultInjection 3 2 2 (50%) + 2 (75%) 0% 0% 8,148
SM1-FaultInjection 4 4 2 (50%) + 2 (75%) 100% 100% 414
SM1-FaultInjection 4 4 2 (50%) + 2 (75%) 75% 81.2% 413
SM1-FaultInjection 4 4 2 (50%) + 2 (75%) 50% 33.8% 247
SM1-FaultInjection 4 4 2 (50%) + 2 (75%) 25% 30% 256
SM1-FaultInjection 4 4 2 (50%) + 2 (75%) 0% 0% 7,583

state machine of the figure 6.4 we can conclude that its behaviour was correct and

system failure was avoided.

1 EvId 3; CurrentState 2;NextState 3; FatherState 1;

2 EvId 7; CurrentState 6;NextState 11; FatherState 4;

Listing 6.3: Fragment of the logged information at runtime

6.3.3 Discussion

The main objective of RQ1 was to evaluate if the Runtime Monitoring Verification

and Adaptation (RMVA) module was an effective tool for failsafe operation or not

for detecting software component level errors or unanticipated situations simulated
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by fault injection techniques. We injected unconditional and random faults into the

controllers to check whether they were detected by the RVMA externalized module.

The results presented in table 6.4 show that all the faults that affect the observed

states were detected by the RMVA. Furthermore, the results show that, as the internal

status of the components are observed by the RMVA, those faults that can not be

detected immediately by looking at the output signals are detected earlier by the

RMVA.

As an example, we are going to consider the one of the wrong transition mu-

tation that was performed by injecting a fault: being the burner controller in the

waitForGasValvePoweredUp state, the timer after_1111_1 event was generat-

ing a wrong transition to the waitForGasValvePoweredUpAndNoFlameFault

state instead of a transition to the checkGasValvePoweredUp state. There are not

changes in the output signals until entering in the checkGasValveFlameFault

state and other SW monitors are not going to detect the fault until reaching this state.

Our solution was able to detect this error before perform the transition to the wrong

state (checkGasValveFlameFault).

Thanks to having the internal status information of the software components,

the RMVA module can prevent faulty scenarios earlier. Furthermore, we can not

detect the root cause of the fault by checking only the output signals. Using the

RVMA we can have a more accurate insight to detect possible root causes of the

fault. Taking these first results into account, we can conclude that the safe behaviour

of the system is enhanced by using the RMVA externalized module which starts a

safeModeProcess operation mode when an error is detected.

As for RQ2, we measured the overhead and time response of the solution having

considered different levels of observability in the software components. When the

observability level is higher, more states are observed at runtime and, as a consequence,

the system is safer. If we check the time response, we can see that, when we have

more observed states, the time response increases and the overhead of the software

component is also increased. This is because time response is directly linked to the

number of observed states. The observed states have to send information to the RVMA

and this communication is what increases the time response. It is not a matter of

performance but response time. Analyzing the results, we observe that in some of the

experiments, the observed percentage of the states and the detected errors do not have

a linear relation. This is because some of the injected faults were random and in some

cases the states that were configured as observed were the more affected ones by the

injected faults. In other cases, we were in the opposite situation: most of the errors

were in the non-observed states. The results presented in table 6.4 are the mean values

111



6. SOFTWARE COMPONENTS LEVEL RUNTIME VERIFICATION AND ADAPTATION

of the 10 repetitions for each of the experiments.

We may conclude that the safety engineer and the software engineer have to decide

on the best initial system configuration by considering these different aspects. A good

trade-off between the overhead and the safe behaviour enhancing of the system has

to be found. Anyway, in the evaluation scenario, events were sent one after the other

in a matter of milliseconds. In real scenarios, this is not a usual way to work and we

normally have more time between different events. Thus, the effect of the overload

measured in this experiment does not have such an importance.

The results of RQ3 were also positive and the solution was able to indicate in

which state and transition of the Software Components Under Study (SCUS) the fault

happened. In addition, in case that the adaptation process was activated the system

adapted automatically to the predefined safe-mode state machine at runtime. When

the observability level of the states of UML-SMs of the SCUS was 100%, the RMVA

detected the faults and started the adaptation process before the next state transition

was performed. Moreover, the solution allows the runtime externalized RMVA module

to ask the SCUS about its internal status at any time. Thus, the robustness of the

system is increased.

6.3.4 Threats to Validity

This section identifies threats that could invalidate the performed evaluation. An

external validity threat could arise due to considering only one industrial use case.

However, other academic examples were performed to avoid this threat. The expe-

rimental evaluation presented in this work is a simple industrial use case which was

composed of a simple state-machine. Nevertheless, the main objective was to measure

the externalized RMVA module’s fault detection ability at software component level,

its performance and the runtime adaptation ability. The experiment employs 1 correct

software component and 4 different faulty scenarios. A conclusion validity threat

could possibly arise due to the way the fault detection ability, the execution time and

percentage of the CPU usage were measured. To mitigate this threat each experiment

is repeated 10 times and results are statistically tested.

6.4 Conclusion

This chapter presents an externalized Runtime Monitoring Verification and Adaptation

(RMVA) module that monitors and checks software component level correct transitions

defined in model element terms to be verified at runtime.
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We evaluated if the RMVA is an effective tool for failsafe operation at runtime.

Some experiments were implemented by injecting transient random faults and uncon-

ditional faults into the controllers. Furthermore, we empirically evaluated the response

time and the detection ability when the observability level of the software components

was changed. In addition, the ability to start the adaptation process and how the

software components generated by RESCO framework performed the adaptation was

evaluated.

The main conclusion is that the RMVA detects all the faults that affect the observed

states at runtime, thereby enhancing the safe behaviour of the software components. As

it uses components’ internal information, it has the ability to prevent faulty scenarios

before the system output signals changing significantly. This represents an advantage

over software monitors that can only check the output signals.

Another conclusion is that the time response is affected by the number of the

observed states and its relation with the error detection rate is inversely proportional.

Thus, a trade-off between the time response and safe behaviour have to be considered

when designing the software components. Nevertheless, in real scenarios, as the time

between events is more relaxed than the ones used in these experiments, this time

response will not have a very big effect.

Finally, we have demonstrated that the automatically generated software com-

ponents by RESCO have the ability to adapt their behaviour when the externalized

RMVA module detects an error or an unanticipated scenario.
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7.1 Introduction

This chapter presents a Runtime Safe Properties Checker (RSPC). The solution

addresses software system level runtime verfication and adaptation. RSPC checks a

component-based software system’s compositional safe properties defined at design

phase. As an example, let us consider a system compounded of the following software

components:

� a software component that monitors the temperature (O1),

� a software component that controls an engine (O2),

� a software component that activates or deactivates the air system (O3).

The compositional safe properties of this system are defined as (using natural lan-

guage):

1. If temperature (O1 status) is higher than 30 oC the engine has to be stopped (O2

status).

2. If temperature (O1 status) is between 20-30 oC the air system has to be on (O3

status).

3. If temperature (O1 status) is lower than 5 oC the engine has to be stopped (O2

status).

The main aim of the solution presented in this Chapter 7 is to detect that these

compositional safe properties are fulfilled. We address CPSs that are composed

of software components that are designed by Unified Modeling Language - State

Machine (UML-SM). Those software components are able to provide their internal

information and this information is observable in terms of model elements at runtime.

As presented in Section 5.3, REflective State-Machines based observable software

COmponents (RESCO) framework generates software components that provide this

observability ability at runtime. The RSPC uses software components’ internal status

information to check the correct composition by checking the states where each of the

software component is at runtime. System level safe properties are defined based on

the possible states in which each of the software components can coexist at runtime.

The checker detects when a system safe property is violated and starts a safe adaptation

process to prevent the hazardous scenario.

The approach has been validated in the case study of a Train Control and Monitor-

ing System (TCMS) studied in [GMRE+16] and presented in Section 4.4.2 showing

promising results. Main contributions of RSPC are:
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� check system level safe properties by monitoring internal status of the system’s

software components,

� avoid incorrect change of output signals preventing system failures by not perfor-

ming wrong transitions in the software components,

� development of system’s software components and its own (RSPC) is independent:

the development of both parts (system and RSPC) does not interfere with each

other.

The RSPC solution can be used independently of software components generated

by RESCO framework. In any case, the software components we are addressing have

to fulfill the following conditions: (1) they have to be designed by UML-SMs and (2)

they have to provide the internal status of their observed states at runtime.

RSPC also requires consistent snapshots of the system and, to this end, the

observed system’s messages must be causally ordered.

The Chapter is structured as follows. Section 7.2 presents the Runtime Safe

Properties Checker (RSPC). The experimental evaluation performed to evaluate the

approach is presented in Section 7.3. Finally, Section 7.4 summarizes the conclusions

of our study and future work.

7.2 Runtime Safe Properties Checker (RSPC)

Component-based software systems are composed of various software components

that interact to provide a given system functionality. The aim of the present work

is to generate a checker to avoid failures and hazardous scenarios of component-

based software systems at runtime due to unsafe interactions of components. To this

end, system level runtime safe properties, based on internal status information of the

software components, are defined.

These safe properties define the interactions between software components defin-

ing the states in which each of the software components can coexist at runtime. In

order to check these safe properties, a specific checker, Runtime Safe Properties

Checker (RSPC), is generated automatically by a tool that we have developed for that

aim: the RSPCGen tool. This tool, takes as an input documents with the definition

of the safe properties and the specific safe adaptation processes for the particular use

case. Adding the generic part of the checker to this specific information the RSPCGen

generates the use case’s particular application specific final checker. The generated

specific checker (RSPC), will verify the global state of the system based on the states

of each software component at runtime.
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Figure 7.1: Process for generating state-based safe properties chekcer

This Section presents the process of generating the Runtime Safe Properties

Checker (RSPC) (subsection 7.2.1), the architecture of the safe properties checker

system (subsection 7.2.2), the internal status information to be checked by the RSPC

(subsection 7.2.3), how the runtime state-based safe properties are specified (subsection

7.2.4), the safe adaptation process (subsection 7.2.5) and finally how the automatic

generation of the checker is performed and its dependencies (subsection 7.2.6).

7.2.1 Process for defining Safe Properties and generating the
RSPC

The process to generate the RSPC is embedded in a typical design process for de-

veloping dependable systems. After performing software system design phase and

obtaining the system architecture with the decomposition of software components,

together with a first design of the software components including their behaviour

(UML-SM diagrams), the process for defining state-based safe properties starts.

Before showing the process and in order to be more clear the next explanations,

we are going to define some terms:

� Safe Requirement (SR) will be allocated to the system and it may be satisfied by a

safe property or a set of safe properties.

� A State Based Safe Property (SP) is a specification of correct compound state of

the system. System level safe properties are defined based on the possible states in

which each of the software components of the system can coexist at runtime.

This process has four steps (see figure 7.1):
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1. Step1: Select Safe Requirements (SR) to be used at runtime verification. Not all

safe requirements are verifiable in terms of internal states of system’s components;

those that can be verified in this way have to be selected. The result is a list of safe

requirements (SRi).

2. Step2: Define state-based Safe Properties (SP) based on selected SR. The informa-

tion of the States involved in the SPs could be used to automatically annotated the

states that must be observed.

3. Step3: Define safeAdapt processes to be launched in case safe properties are not

fulfilled at runtime (a process for each safe property).

4. Step4: Generate the checker: Runtime Safe Properties Checker Generator (RSPCGen)

tool transforms the safe properties to RSPC Code (checker, in C++) automatically.

RSPCGen uses a generic checker as a basis and adds the specific state-based

safe properties to the RSPC Checker module and safe adaptation processes to the

Runtime Safe Adaptation Manager module.

7.2.2 RSPC Architecture

In fig. 7.2, the overview of component-based software system’s safe property checking

architecture is shown.

The software components of the system are modelled by UML-SM and the RSPC

has three main components: the Observer Receiver, the RSCP checker and the Runtime

Safe Adaptation Manager.

These three components are very similar to the ones described in subsection 6.2.2.

The main difference is that in this case, the RSCP checker is checking system level

safe properties and not the correctness of the transitions to be performed by specific

software components.

RSPC behaviour at runtime: The RSPC starts after getting an initial consistent

snapshot of the component-based software system. Next, the checker waits until it

receives an update from any of the system’s software components. The observer of

these software components sends their internal status information before performing a

state transition. The RSPC checker compares this information with the system level

safe properties. If system safe properties are fulfilled, the system status information is

updated and the RSPC waits for new updates.
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Figure 7.2: General Architecture of the Safe Properties Checking System

7.2.3 Internal status information of the monitored software
components

In this case, the information sent by the monitored software components is the same as

the information defined in subsection 6.2.3. In both solutions, the monitored software

components are generated by the RESCO framework.

7.2.4 Specification using Safe Properties

We need to prove that the composite implementation of the system guarantees system

level properties at runtime. In our case, a safe property specifies system properties

related to the internal behavior of the software components that are part of the system

in terms of their UML-SM model. That is what we call a state-based safe property.

In our approach a system (Sys) may be composed of subsystems (that could be

further decomposed) and primitive components (C) that can not be further decom-

posed. Furthermore, the primitive components have a behavior specified using a state

machine. A system (Sys) is composed of at least one primitive Component (C), i.e.,

Sys = {C1, C2, ...Cnc} where nc is the total number of primitive components (Cs)

in the system (Sys). Accordingly, a C in our context is state-based. Each of these

Components has a set of states (S), i.e., Ci = {S1, S2, ...SnsCi} where nsCi is the
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number of states that comprise the i-th C.

Let us denote the active state of a component (C) at a discrete time point as Ci.Sj ,

the state Sj being any of the states the C component (Sj ∈ Ci) may have.

A safe property will be related to the states of the components involved in the

property. A grammar with regular expressions is used to specify what to check. The

relevant syntax of this grammar has been specified in the following listing:

safe property := constraint | timedConstraint;

constraint := condition implies condition;

condition := activeState | not condition | (condition) |

condition or condition |

condition and condition;

timedConstraint := constraint in timeUnits;

activeState := ComponentName.StateName;

With this grammar, it is possible to specify properties regarding the active states

of components of the system. For instance, we can specify that the active state of the

CDoor must be SClosed when the active state of the CTraction is SOn.

CTraction.SOn implies CDoor.SClosed

We can also use logical operators as well as parentheses to build more complex

conditions. For example, when CDoor is in the SClosed and CTraction is in the SOn,

then the CObstacle must be in SNoObst.

CDoor.SClosed and CTraction.SOn implies CObstacle.SNoObst

In the previous examples, we referred to the active states of the components in

the current time point. We can also specify constraints regarding future states of

components using timedConstraints. A timedConstraint specifies a constraint that

must become true in the interval between the current time and the current time plus

timeUnits. For example, when the active state of the CObstacle is SObst then the active

state of the CDoor must be SOpening and not any other state of the CDoor component

in less than 2000 milliseconds time.

CObstacle.SObst implies CDoor.SOpening in 2000
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Table 7.1: Safe Adaptation Process Information

Safe Property Id of the not fulfilled SP
Involved SW component Id of the SW component(s) to be updated

Safe Mode State Machines Id of the SM(s) to be updated (safe mode
UML-SM Id)

Initial State Id of the initial state of the safe UML-SM

7.2.5 Safe Adaptation Process definition

When the RSPC Checker module detects that one of the safe properties is not being

fulfilled, it sends this information to the Runtime Safe Adaptation Manager module.

This manager has a table that was created in Step 3 of the RSCP generation process.

The information of the table is organized as presented in Table 7.1.

7.2.6 RSPC’s Automatic Generation and Dependencies

The RSPC’s automatic generation process follows the same steps that we defined for

the RMVA. The main difference between both solutions is that the RSPC is checking

Safe Properties and the RMVA Correct Transitions.

The final RSPC, is also composed of three modules and each of these modules

have specific dependencies. In the following list, the dependencies of each of the

modules and the way that they are automatically generated is explained:

1. ObserverReceiver: this module is a generic one so it does not need any specific

information to generate automatically. This part of the solution is always the same:

code in charge of receiving internal information in model terms from the software

components. The messages that this module receives follows the previously defined

notation/format:

EVId number; CurrentState number; NextState number; FatherState number;

2. RSCP Checker: part of this module is specific for each use case. The defined

state-based System Level Safe Properties are added in the final code as a "if-else"

checking structure. The conversion process is automatic and this specific part is

generated from the information generated during the process.

3. Runtime Safe Adaptation Manager: This module is in charge of generating me-

ssages (safeModeProcess event messages) to be sent to the RESCO software

components when an adaptation is needed. The generation of these messages is

specific for each use case and it also depends on the specific safe property that is

not fulfilling. This part of the code, the creation of these messages, is automatically
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Figure 7.3: UML-SM Diagrams of a) DoorController b) ObstacleDetector and c)
Traction

generated based on the information collected in the tables that define the safe

adaptation process.

7.3 Evaluation

7.3.1 Case Study

In this Chapter, a Train Control and Monitoring System (TCMS) was considered. As

presented in Section 4.4.2, the TCMS is a complex distributed system that controls

many subsystems such as the door control, traction system, air conditioning, etc.

Fig. 7.3 shows the UML-SM of the DoorController, ObstacleDetector and Traction.

The system level requirements concerning the operation of opening and closing of

doors are satisfied by the following components:

� TCMS component decides whether to enable or disable the doors considering the

driver’s requests and the train movement. Thus, doors must be enabled before they

can be opened;

� Door component controls and commands the opening and closing of a door;

� Traction component controls and commands the train movement;

� Obstacle Detection component manages the obstacle detection in the door.
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The case study concerns a real industrial system where some simplifications

were made. Specifically, the interaction with other components of the TCMS, the

dependencies with other subcomponents and their communication were omitted.

At software system level, to check the correct behaviour of the system, the safety

engineer has to define system level Safe Requirements (SR). Then, some of these

SRs are transformed to Safe Properties (SP). Each SP will be defined using the state

information of the different software components that conform the software system.

Then, at runtime, this will be the information to be checked.

The following safe requirements are defined in the context of this case study:

(Section 7.2.1: Process step 1)

1. SR1. When door is open or opening or closing, the traction is off.

2. SR2. When an obstacle is detected and the door is closing, it starts to open within

2 seconds.

3. SR3. When traction is on, the door must remain closed.

4. SR4. When traction is on, there must not be obstacles detected.

5. SR5. The door shall not be in opening state more than 15 seconds.

The next step is to express these safe requirements as state-based safe properties

(Section 7.2.1: Process step 2), and the result is shown in the listing 7.1. Each system

level rule in this listing corresponds to each one of the aforementioned requirements.

1 SP1:CDoor.Sopen or CDoor.Sopening or CDoor.Sclosing

2 implies CTraction.Soff

3 SP2:SP2:CObst.Sobst and CDoor.Sclosing implies

4 CDoor.Sopening in 2000 and not CDoor.isOpen

5 and not CDoor.isClosed and not CDoor.Sopening

6 SP3:CTraction.Son implies CDoor.Sclosed

7 SP4:CTraction.Son implies CObst.Sno_obst

8 SP5:CDoor.Sopening implies CDoor.Sclosed

9 or CDoor.Sclosing or CDoor.Sopened in 15000

10 and not CDoor.Sopening

Listing 7.1: Safe Requirements expresed as Safe Properties

At this point, safe adaptation processes are defined for each of the safe properties

(Section 7.2.1: Process step 3). In this case, when designing the adaptation process we

analyzed different possibilities. One of them was to design safe mode UML-SMs for
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each subsystem and adapt all of them but as a more simple solution we finally decided

to stop the train as a safe solution. For doing that, the safe adaptation process is in

charge of sending a tranctionOff event to the Traction software component. Thus,

the EventReceiver of this software component receives this event and after that, the

Dispatcher performs a transition to the OFF state and once the outputs signals are

activated the train stops.

Research Questions

The objective of the experiments is to evaluate the error detection ability and the

overhead of the RSPC tool. We have defined the following research questions (RQs):

RQ1. Is the RSPC an effective tool for failsafe operation for component based

systems? This RQ is defined to measure the ability of RSPC to detect different

types of system level errors. To address this RQ, we performed fault injection

campaigns.

RQ2. Can the RSPC detect errors before the system output signals are

changed? RQ2 aims to demonstrate that RSPC is able to detect errors be-

fore propagating them to system’s outputs. To tackle this RQ, we measured the

time the RSPC needs to detect violations of safe properties and compared with

the time it would take to detect the same error by checking the output signals.

RQ3. How is the RSPC’s overhead in terms of resource usage and timing

affected by the number of system safe properties? RQ3 measures the perfor-

mance and overhead of RSPC with different number of safe properties. Thus,

the scalability of the solution will be tested. To address this RQ, new safe

properties were defined and the experiments were performed with different

numbers of safe properties. The percentage use of CPU and time response

were measured in all the experiments.

Metrics

Failsafe detection was evaluated by performing fault injection campaigns and measu-

ring how many errors were detected by the RSPC checker. Performance was evaluated

in terms of CPU resource usage percentage and execution time (milliseconds). To mea-

sure the CPU resource usage percentage, we used the output of the command /proc/stat

in Linux. Regarding the execution time, we used the gettimeofday instruction at the

beginning and the end of the execution.
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Experimental Setup

To analyse RQ1, RQ2 and RQ3 we defined 6 experiments. In order to have more

reliable results, each experiment was repeated 100 times. In addition, as we had 3

different UML-SMs, we wanted to experiment different combinations between them

randomly. RSPC relies on a previous successful verification of the design by model

checking, thus design faults are outside the scope of this analysis. As the code of

the software components was generated automatically by RESCO, the code structure

makes several implementation faults unfeasible. Therefore, we did not inject certain

implementation faults (some of them defined in MuCPP [DPMBPL+17]).

As for the RMVA solution presented in Chapter 6, the faults that the presented

solution is designed to provide a failsafe against are: (1) random faults (hardware and

software (heisenbugs)), (2) remaining implementation faults (inserted by the diverse

implementation of the actions or the non-detected ones in complex systems) and

(3) uncertain and unanticipated environmental faults. Taking as a basis the different

components of the Train Controller, we performed fault injection campaigns to test

the RSCP.

As there are different types of fault injection techniques, as for the RMVA pre-

sented in Chapter 6, after analyzing the different techniques summarized in [HTI97],

we decided to use the software fault injection techniques.

To evaluate RSPC’s failsafe ability, we injected artificial faults by modifying the

source code using libfiu tool [Lib]. We decided to use this method because it was one

way to simulate faulty scenarios, with faults that our solution addresses, that enabled

us to measure the failsafe ability of the RSPC solution. The characteristics of this tool

were presented already in subection 6.3.1

Table 7.2 shows the characteristics of each of the experiments. The first experiment

was performed using a correct system without implementation faults. In this case, we

inserted 5 random faults with a probability of 50% by the fiu_enable_random(0.5)

(Random) function of the libfiu library in 5 different points of the solution. We checked

the 5 system level safe properties we defined (see listing 7.1).

In the next three experiments, we injected 1, 2 and 3 faults respectively using

the libfiu’s Unconditional function (fiu_enable()). Specifically wrong transitions

were inserted. One of the wrong transitions were inserted in a non observed state

(EnduringObstacle: the noObstacle event’s target state was changed to the Obstacle

state). The other two wrong transitions were performed in observed states (in the

closing state, the obstacle event was generating a self transition and in the opening

state, the openLimitReached event was generating a self transition ).

Thus, we emulated the effect of random hardware and software faults (such as
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Table 7.2: Experiments Setup.

Experiment Applied
to RQ

Number of
Random Faults &

Probability

Number of
Unconditional

Faults

Number of
Safe

Properties
FaultInjection1 RQ1,RQ3 5 (50%) 0 5
FaultInjection2 RQ1,RQ2 5 (50%) 1 5
FaultInjection3 RQ1 5 (50%) 2 5
FaultInjection4 RQ1,RQ2 5 (50%) 3 5
SafeProperties1 RQ3 5 (50%) 0 10
SafeProperties2 RQ3 5 (50%) 0 20

heisenbugs) in all the FaultInjection experiments and unanticipated environmental and

implementation faults (such as systematic faults) in the FaultInjection 2, 3 and 4.

In order to answer the third research question we added some system level artificial

safe properties. We performed two more experiments in the same conditions as in the

first experiment but in this case, the number of safe properties to be checked by the

RSPC was bigger (+5 and +15) in both cases. The artificial safe properties we added

did not have real physical sense but we defined new artificial relations between the

different states in which each of the software components can coexist at runtime. In

all the experiments we used 1000 input events.

All the experiments were executed as a standalone application over a Linux virtual

machine configured with a 1 Core processor, 2196MB of RAM, 20GB SSD, and

running 64-Bit Ubuntu 16.4 LTS.

7.3.2 Results

In this section we analyze the results of the empirical evaluation. Table 7.3 illustrates

the results for RQ1.

As we performed each experiment 100 times, the results presented are the average

values of the measured outcomes. RSPC catches 93% of fault activations and 100%

of fault activations that result in safe properties’ violations. RSPC does not catch all

fault activation because some of the faults occurred in non-observed states. Therefore,

these states are not providing information at runtime and consequently the RSPC can

not detect those errors.

Regarding RQ2, RSPC not only detects the faulty scenarios but it detects errors be-

fore output signals are changed. We measured the time response of the FaultInjection2

and FaultInjection4 scenarios. In the event that we look at the output signals for error

detection, we would detect the error once the output signal changed (after 2 and 15

seconds in the experimented scenarios). The experimental results are shown in table
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7.4. Our results say that our solution was able to detect these erroneous situations in

less than 70 milliseconds.

RSPC checks system level safe properties based on internal status of the various

individual software components of the system. To our knowledge, no other software

checkers have this ability. RSPC observes the components’ internal status information

and therefore detects critical errors earlier than other software checkers.

As an example, we are going to consider the first experiment of table 7.4. In

this case, a wrong transition was injected as a fault: the door controller being in the

closing state, the obstacle event was generating a self transition instead of a transition

to the opening state. There are no changes in the output signals and, as the safe

property says that the system has to be in the opening state before 2 seconds, other

software monitors would not detect it until the timer expires. What is more, they might

not detect the root cause of the fault. RSPC detected the faulty scenario in less than

70 milliseconds because the SP2 was not fulfilled and the transition suggested by the

software component is not a correct one.

Concerning RQ3, a correct system with different number of safe properties was

used and the overhead of the RSPC was measured. Fig. 7.4 shows the results when

the number of system level safe properties is changed between 5, 10 and 20.

Both execution time and CPU usage percentage are increased when the number of

safe properties are increased. The impact on the execution time is not significant (less

than 1% of the time when the safe properties’ increment is 400%). As for the CPU

usage, in this case the impact is greater (from 49.4% to 58%).

Table 7.3: RQ1 results: Injected runtime faults and RSPC failsafe detection results.
IT:Incorrect Transition;OS:Observed State

Experiment
Injected

Implementation
Faults

Number
of

Random
Faults &
Probabil-

ity

Number
of Safety

Violations

Detected
Faults
(%)

Detected
Safety

Violations
(%)

FaultInjection1 0 5 (50%) 76 100% 100%
FaultInjection2 1 IT(in OS) 5 (50%) 87 100% 100%
FaultInjection3 2 IT(1 in NOT

OS, 1 in OS)
5 (50%) 85 87% 100%

FaultInjection4 3 IT(1 in NOT
OS, 2 in OS)

5 (50%) 105 84% 100%

Total 6 IT, 2 NOT OS 5 (50%) 353 93% 100%
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7.3.3 Discussion

We summarize the results of the empirical evaluation and what they tell us about the

research questions.

The general objective of RQ1 was to evaluate if the RSPC was an effective tool

for failsafe operation or not. We injected random conditional and unconditional faults

in addition to implementation (wrong transitions) faults in the software components

to be checked. We used the libfiu library to inject these faults and we checked if the

RSPC checker was able to detect them. The results presented in table 7.3 show that

all the safety critical faults were detected by the RSPC. The faults that violate the

safe properties were detected because the states that are part of the safe properties are

configured automatically as observable. It does not make sense not to configure as

observable because the checker needs the information of these states at runtime to

check fulfillment of the safe properties.

Table 7.4: RQ2 results: Error detection time for different approaches.

Experiment Error Description Detection
Time RSPC

Detection
Time by
Output
Signals

FaultInjection2 Door Component:closing state when obstacle
detection event:

self transition to closing state

70 msec. 2 sec.

FaultInjection4 Door Component:opening state when
openLimitReached event:

self transition to opening state

70 msec. 15 sec.

Figure 7.4: RQ3 results: When the number of safe properties is increased, a) the CPU
usage is increased b) the response time hardly increases.
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As for RQ2, the results show that, as the internal status of the components are

observed by the RSPC, those errors that can not be detected immediately by looking

at the output signals are detected sooner by the RSPC. Thanks to this, the RSPC

checker can prevent faulty scenarios earlier. Additionally, using the RSPC, we can

detect the root cause of the observed error. Taking these first results into account, we

can conclude that the safe behaviour of the system is enhanced by using the RSPC

checker.

Finally, the results of RQ3 show that when the number of safe properties is

increased, the performance of the RSPC is decreased. The time response is hardly

affected and, although the CPU usage is affected, it does not have a very big impact.

We conclude that the RSPC can manage easily a considerable number of system level

safe properties (more than 20). There will be other additional requirements to be

checked in the system but in this research we were focusing only on the system level

safe requirements.

The internal states of the software components generated by RESCO can be

configured as observable or not at runtime. In previous experiments (see subsection

5.4.2, RQ4 results), the overhead of having different levels of observability of those

states was measured. The conclusion was that having more observable states, the

overhead of the software components was increased. Observing only the states that

are part of the system level safe properties is a good trade-off between the overhead

and the safe behaviour assurance of the system.

The RSPC is generated automatically without extra effort for the developers by

the RSPCGen tool presented in section 7.2. Additionally, software components of

the system have no interferences from the RSPC, except when detecting an error, in

which, it starts a safeStop process.

7.3.4 Threats to Validity

An external validity threat could arise due to considering only one industrial use case.

The system was composed of 3 simple state-machines. However, as the main objective

was to measure the RSPC checker’s error detection ability and performance, this first

experiment was valid to check the correctness of the design and development of the

checker.

The experiment employs 3 different safe property levels (5, 10 and 20), 1000 input

events, 3 incorrect transitions in observed states, 1 incorrect transition in non-observed

state and 5 random faults with a 50% probability of occurrence. A conclusion validity

threat could possibly arise due to the way the error detection ability, the execution
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time and percentage of the CPU usage was measured. To mitigate this threat, each

experiment is repeated 100 times.

7.4 Conclusion

This chapter proposes a RSPC that is automatically generated and which considers

system level specific safe properties to be verified at runtime.

We empirically evaluated the performance of the checker (in terms of execution

time and percentage of CPU usage) using a different number of system level safe

properties to be checked. We also evaluated if the checker is an effective tool for

failsafe operation at runtime. Some experiments were carried out by injecting random

and unconditional faults into the software components.

The main conclusions are that the checker is able to detect all errors that impact on

the safe properties at runtime, thereby ensuring the safe behaviour of the system. As it

uses components’ internal information, it has the ability to prevent faulty scenarios

before having changed the system output signals. This is a benefit compared with

software monitors that can only check the output signals.

Another conclusion is that the number of safe properties used at system level

affects the performance of the RSPC but its impact is not very significant. The RSPC

can manage a considerable number of safe properties (more than 20).

Our last conclusion is that the process to implement and generate the RSPC is cost-

effective as the system level RSPC is generated automatically. The safety engineer

simply has to define the safe properties (following the defined grammar to this end)

and the safe adaptation processes. The rest of the process is automatic. The software

developer of the software components only considers the functional aspects of the

system.
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8. CONCLUSION

This chapter concludes the thesis. Specifically, Section 8.1 summarizes the contri-

butions, discusses the validation of the hypotheses and highlights the main limitations

of the proposed solutions. Section 8.2 discusses a set of lessons learned we extracted

from the thesis. Finally, short and mid-term future work are exposed in Section 8.3.

8.1 Summary of the Contributions

Safe requirements of Cyber-Physical Systems (CPSs), as system that interact with

humans or/and affect the environment, have increased in the last decade. These

systems have to be robust and dependable under any circumstances. Taking into

account these issues, runtime enforcement of CPSs’ safe behaviour is a big deal and

challenge we have identified.

In order to reach runtime enforcement safe behaviour we need to know the status

of those CPSs at runtime. One way to have information of the internal status of these

systems at runtime is to instrument their code. Instrumenting the generated code of the

modelled software component is a expensive and non-optimal solution: faults could be

inserted during the instrumentation process, and as a result, having automatically the

software components’ information in model terms at runtime has been envisioned as

an efficient means for runtime verification [CK13]. In this dissertation, a methodology

and a framework were proposed to automatically generate software components that

provide internal status in UML-SM model terms at runtime. In addition, runtime

verification and adaptation modules were generated in order to enhance the safe

behaviour of software components and systems at runtime.

As we stated at the beginning of the document, the main four contributions of this

work are:

1. A methodology supported by a framework, REflective State-Machines based obser-

vable software COmponents (RESCO), that is able to generate software compo-

nents modeled by Unified Modeling Language - State Machine (UML-SM) that

provide their internal status information in model elements terms at runtime.

2. RESCO framework: Automatic generation of software components with internal

status information observation ability in UML-SM model terms (current state,

event, next state,. . . ). The software engineer focuses on the design of the functional

behaviour of the software component, whereas the internal observability ability

in model terms is added automatically. The software engineer is not involved in

changing the model or source code to provide this information at runtime and thus,

can focus exclusively on modelling the behaviour of the software components by
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UML-SMs. Additional infrastructure for having internal status information and

adaptation ability at runtime is automatically added by the framework. As a result,

this information could be used to increase the safe behaviour of the CPSs without

increasing the complexity of the development process. Software components

generated by this framework especially address resource-limited systems.

3. Runtime Verification. An external monitor and verification system is used to check

the internal status of the UML-SM based software components in model terms

before a transition in their state, and therefore a change in the output signal, is

performed. This allows us to detect faults before the failure happens, increasing the

resilience against faults. Different types of monitor and verification systems have

been considered: (1) systems that check the correct behaviour of each software

component and (2) systems able to check the rules governing the relations between

different software components in component based systems based on component

level model based information. In the latter, system-wide rules or safe properties,

based on software components’ internal state status information in model terms,

are defined by the safety engineer.

4. Runtime Adapter. An externalized runtime adaptation module has been developed.

This module, has been based on a previous work [GS02]. In the solution, the

adaptation is triggered by unexpected events or when a fault is detected at runtime.

This allows to protect the system against unsafe situations and scenarios ensuring

that the software component performs safe actions.

The first two contributions of the dissertation corresponds to a tool supported

methodology that automatically generates reflective UML-SM based software com-

ponents and the REflective State-Machines based observable software COmponents

(RESCO) framework.

The RESCO methodology follows a process that uses existing tools and languages

as Papyrus [ecl18], ATL [ATL18] and Acceleo [A16] for Model To Model (M2M)

and Model To Text (M2T) transformations. The framework allows for a systematic

generation of each software component in an automated manner starting with the

design of the behaviour of the controller by UML-SM models. Furthermore, as the

process is automatic, it reduces the error proneness. Once the UML-SMs are generated,

an investment of time must be employed by safety engineers to decide which of the

states of the controllers are critical and which of them have to be observed at runtime.

These decisions will be based on the safe properties defined at software system level

and the critical states of the controller. Having all this information, RESCO-SMs are

generated automatically.
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The methodology and tooling developed address software components that are

designed by UML-SMs but in the last step they perform a Model To Text (M2T)

transformation to the specific programming language. In the current solution we have

developed this transformation only for resource-limited systems. It transforms the

models to C++ code (by CRESCO) and the generated software components address

resource-limited systems.

The third contribution corresponds to a runtime monitor and verifier which checks

the correctness of the behaviour at component and system level. We have developed

a process and tooling for generating automatically these checkers. For system level

runtime checker we have defined a language for defining safe properties and once they

are defined the checker is generated automatically.

To further enhance the safe behaviour of software components and the systems

compound by them, the fourth contribution consists of a runtime adapter based on the

decisions made by the runtime verifier. Once an error or an unanticipated scenario is

detected, the runtime adapter starts its process. As the solution is based on reflective

UML-SMs, they enables to adapt their behaviour at runtime. Thus, once the runtime

adapter is notified, it detects which is/are the involved software component and decides

which is the safe UML-SM model for each one to start the adaptation in a safe mode.

Overall, this thesis proposes methods to systematically and automatically generate

reflective UML-SM based software components and runtime checkers for runtime

monitoring, verification and adaptation. We believe that the proposed methods advance

the current practice to generate robust software components and systems and enhance

their safe behaviour at component and at system level.

8.1.1 Hypotheses Validation

We stated three research hypotheses in Section 4.2. This section analyses each of the

contributions and argues whether the stated hypotheses have been validated.

First hypothesis

The first hypothesis is stated as follows:

“The use of Unified Modeling Language (UML) State Machine based software

components with introspection and reflection ability in model terms helps the

early detection of errors in software systems”.

We proposed a methodology supported by a tool, named RESCO. Specifically, as

controllers’ behaviour modeling notation we employed Unified Modeling Language
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- State Machine (UML-SM) modelled using the Papyrus [ecl18] tool, which were

later processed by the Model To Model (M2M) transformation in ATL [ATL18] to

generate RESCO-State Machines. An observability profile is used in order to define

the states of the UML-SM that are going to be observable at runtime. Finally, using

Model To Text (M2T) transformations written in Acceleo [A16], C++ REflective State-

Machines based observable software COmponents (CRESCO) software components

were generated. These software components have the introspection and reflection

ability in model terms at runtime.

We evaluated the method and the tool employing the case studies presented

in Section 4.4, the controller of a Burner and a Train Control and Monitoring Sys-

tem (TCMS). We demonstrated (1) that the software components generated by RESCO

had the introspection and reflection ability at runtime and in addition, (2) that the

logic of the controllers (use case dependent) and the runtime reflection and intro-

spection abilities (generic for all the cases) are independent. We also measured and

compared the performance of the software components generated by the CRESCO

framework with software components generated using other commercial tools such as

SinelaboreRT and Enterprise Architecture.

The main drawback of employing our proposed method involves that when the

percentage of the observed states increases, the performance decreases considerably.

The main reason could be due to the communication infrastructure we are using to

send the internal information between the different modules of the solution. We are

using Internet Communications Engine (ICE) technology, but we have to consider

other solutions in order to improve the results.

When the observability level of the states is 0, the performance results are good

enough and better than a commercial tool (Enterprise Architecture of Sparx Systems

[Sys15]) we used as generic automatic code generator. The commercial tool that is

focused on generating software components for Real Time (RT) systems (Sinelabor-

eRT [Mue18]) has better results. However, the difference is not big and the software

components generated by that tool has not introspection and reflection ability at

runtime.

Once the software components were generated, they were used in the use cases

with the aim of clarify if we can detect errors and unexpected behaviours at runtime.

All the empirical evaluations demonstrated that when the observability level of

the software components was the highest, all the errors and unexpected situations

were detected before the output signals of the software components and systems were

affected by the misbehaviour. Considering this, it can be assumed that the stated first

hypothesis has been validated.
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Second hypothesis

The second hypothesis is stated as follows:

“The use of runtime monitoring and verification modules based on internal

information in model terms of software components permits to enhance the

safe behaviour of each of the software components in addition to the overall

system composed by software components”.

To test this hypothesis, we proposed two runtime monitoring and verification

checkers that use internal information of the software components in model terms

(UML-SM models’ information). The first one is able to check the correctness of each

software component at runtime and the second verifies system level safe properties at

runtime.

The evaluation was performed with both use cases presented in Chapter 4.4: the

Burner’s use case was used to demonstrate the software level runtime monitoring and

verification ability and the Train Control and Monitoring System (TCMS)’s use case

was employed as a demonstrator at system level.

At software component level, the correct behaviour of the software component is

inherent to the UML-SM formalism and the checker verifies the runtime information

in model terms that provides each software component when it is going to perform a

transition (current state, current event, next state,. . . ). When developing the system

level runtime monitoring and verification checker, we defined a specific language

to define safe properties based on model term information provided by the software

components that compound the system at runtime. The runtime monitoring and

verification module was able to check the correctness of the system based on these

safe properties defined by the safety engineer.

Both runtime modules (system level and software component level runtime mon-

itoring and verification modules) were able to detect all the errors and unspecified

situations when they were having information from all the states (100 % observability

level).

In software component level, when decreasing the percentage of the observed level,

the error detection ratio was also decreased. Specifically, on average, the percentage

of the detected errors at software components level was 86.96% when 75% of the

states were observed, 55.86% when 50% states were observed and 49.48% when 25%

states were observed.

In case of the system level runtime monitoring and verification module, it was able

to detect all the safety violations. In this case, we only observed the states that were

involved in the safe properties. Thus, the observability level of the safety involved
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states was 100%. Considering the performed empirical evaluation, we can conclude

that the stated second hypothesis has been validated.

Third hypothesis

The third hypothesis is stated as follows:

“The use of a runtime adaptation module permits to increase the availability

and to enhance the safe behaviour level of software systems”.

To test this hypothesis, we performed an evaluation with the use case presented in

Chapter 4.4.1: the Burner’s use case was used to demonstrate the runtime adaptation.

Once the runtime monitoring and verification module detects an error or unexpected

situation, it sends this information to the runtime safe adaptation manager. This

manager, has the information about (1) the software component that need to perform

the adaptation to its predefined safe-mode UML-SM and, depending on the last state

of the software component, (2) which will be its initial state.

Once the experiment was performed, we confirmed that the software component

was adapted to the predefined safe-mode UML-SM as expected. For doing that, we

analyzed the information that the software component was providing at runtime to the

runtime monitoring and verification system once the adaptation was performed. Thus,

in case that an error or an unexpected situation was detected, the system continued

working in a degraded safe mode and we did not have to stop the software component

to restart it.

We can conclude that the availability and the safe behaviour level of the software

components were enhanced. Considering the performed evaluation, we believe that

the third hypothesis has been validated.

8.1.2 Limitations of the Proposed Solutions and the specific
Implementation

This section discusses some of the limitations that the proposed solutions might have

when applying them in practice.

One such limitation can be the selected software components’ behaviour modeling

notation. In our case, we selected Unified Modeling Language - State Machine

(UML-SM) modeling due to its wide use in industry and as a tool, specifically we

employed Papyrus [ecl18], since it is an open source, highly intuitive and quite

powerful UML-SM modeling tool. In this design process, we add the information

about the states to be observed at runtime using the Observability Profile we defined
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for that. Nevertheless, some researchers have found limitations in Papyrus because it

is not a tool that is broadly used in the industry for modeling software components

behaviour by UML-SMs but as stated in [BB15] they are doing a considerable effort

to be used as an industrial tool. Anyway, other industrial standard tools such as IBM

Raphsody [Cen19] for modeling controllers by UML-SM notation will be considered

as future line works.

It is important to highlight that all the RESCO methodology has been automatized

using open source tools. However, we have to take into account the limitations of

these tools and be ready to evolve our tools (Papyrus, the others are transparent for the

users) to be able to handle new industrial-oriented tooling proposals.

In addition, we selected the C++ language as a basic language of our solution. The

runtime monitoring, verification and adaptation modules have been implemented in

C++ programming language and the communication between the software components

and the runtime modules have been performed by the Internet Communications

Engine (ICE) technology.

This decision was made due to, although the RESCO methodology is a platform

independent one, when implementing the RESCO framework, we have developed

the last step (Model To Text (M2T)) for resource limited and embedded systems.

However, the software components that are checked by the runtime module could be

developed with any other programming language. The only condition is that their

internal information has to have a defined structure and in the current solution it has to

be sent using the Internet Communications Engine (ICE) interface.

Other intercommunication interfaces could be used. IoT oriented solutions are also

being employed to monitor remotely the controllers. In fact, in Mondragon University,

in the context of the Productive 4.0 [eErp19] research project, we are conceptualizing

the Safety Manager for the Arrowhead IoT platform. In this case, the idea is to use

Arrowhead-compliant intercommunication between the monitored controlled and the

Safety Manager.

We use a Model To Model (M2M) transformation language, ATL [ATL18] to

transform the initial UML-SM model to a RESCO metamodel compliant model.

Once the RESCO compliant state machine is generated automatically, the last step

that transforms the RESCO state machine model to code is performed by the Acceleo

language by defining M2T rules. In this case, our specific implementation is focused

on resource-limited systems and this last transformation is performed to C++ code.

Another limitation of the solution is related to the adaptation process. In the

presented solution, the adaptations to be performed were previously designed as

safe-mode UML-SMs. Notice that the designer have to design various adaptation
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behaviour and the proposed solution is able to decide which of them select in the

event of an error detection. Anyway, the safe adaptation process is not able to evolve

or adapt to a design/behaviour decided at runtime. To overcome this problem, there

are solutions, such as Process Mining based tools [MIn19], that evolve controllers

behaviour extracting knowledge from event logs [VDAADM+11]. This working area

has been detected as a future research line.

Lastly, we can add that the presented solution addresses the safe behaviour of

CPSs but the generated framework and tools used during the defined methodology are

not certified to be used in safety critical projects. As conclusion, we have to add that

at this moment the development of safety critical systems (high SIL level systems) is

beyond the scope of our solution.

8.2 Lessons Learned & Conclusions

This section summarizes lessons learned from the research carried out during this

Ph.D. thesis. These lessons can be employed as a guidelines either, by researchers or

industrial practitioners.

� Reflective Unified Modeling Language - State Machine (UML-SM) based software

components (RESCO) are appropriate to Runtime monitoring, verification and

adaptation: Advantages of software components generated by RESCO include (1)

the logical/behaviour part of the controller and safe related part are orthogonal, (2)

the provided runtime information in model terms helps on the Runtime Verification

(RV) process and (3) the introspection and reflection ability they provide enables

runtime adaptation. This is because the code generated for runtime introspection

and observation work is independent to the behaviour and the states to be observed

at runtime could be reconfigured at runtime. In addition, the runtime verification

in models terms and runtime adaptation are possible because of the reflective

characteristic of the solution. Moreover, the solution enables updating the observed

states at runtime without having to recompile the software components code.

� Having the behaviour of the software components in Unified Modeling Language

- State Machine (UML-SM) model elements terms at runtime eases the runtime

monitoring, verification and adaptation process: In the last years, several research

publications have shown the increasing trend of models@run.time approach for run-

time adaptation in industry, especially in the autonomous system domain [CEG+14].

Highly reputed researchers have envisioned the use of models@run.times approach

for runtime verification and adaptation [SZ16]. In this thesis we have focused on
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the automatic generation of software components that follow the models@run.time

approach. In this case, the use of internal status information of the software

components in model element terms is highly important, especially because this

characteristic enables the solution to detect errors before generating failures in the

output signals.

� The Safe Properties (SP) defined by software components’ level model elements are

effective notation at checking system level safe properties: One of the conclusions

of this thesis is that RV methods based on model elements terms are effective

for enhancing the safe behaviour level of them. In fact, we used one case study

and measured the use of these safe properties to detect errors and unexpected

situations at runtime. The evaluation demonstrated that the generation of the

runtime verification modules using these safe properties could be automatized and

once generated, their effectiveness in detecting errors were very satisfactory.

� The runtime adaptation is effective to increase the availability of them once the

error or an unexpected situation is deteted: We adapted the behaviour Unified

Modeling Language - State Machine (UML-SM) model at runtime in case an error

or undefined situation was detected at runtime. We have shown that runtime adapta-

tion is not only good at increasing the operation availability software components

but also at the safe behaviour level of software systems.

8.3 Perspectives and Future Work

In this section we summarize the short and medium term objectives to complement

this work from three perspectives (i.e., industry transfer, application of the proposed

methods in specific domains and further research).

8.3.1 Industry Transfer

The research performed by the Engineering School of Mondragon is industry oriented.

We are currently contacting several industrial companies to present the results of

the proposed methods in this thesis. Some presentation has been done to different

industrial companies such as CAF Sginalling, and manufacturing related research

centers (Ideko S.Coop) and industries (Danobat S.Coop). We plan to transfer them

our methods during the Productive 4.0 project1 to perform the automatic generation

of software controllers based on reflective UML-SMs. Furthermore, in the scope of

the Productive 4.0 project, we will continue developing our solution to provide it as
1https://productive40.eu/
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Safety Manager service within the Arrowhead Framework. In addition, for doing the

first examples and demonstrators of this last work, the Signify company, located in the

Netherlands is interested and they have provided an initial use case.

8.3.2 Application of the Proposed Methods in Specific Domains

The proposed methods in this dissertation are generic for any system composed by

software components such as CPSs or resource-limited embedded systems. However,

it is worth mentioning that each system has its own particularities. For instance, if

we take into account the runtime reflection and adaptation ability they provide, we

may say that Autonomous System fits extremely well for the proposed methods in

this dissertation. Nevertheless, we did not perform any experiment with these type of

systems but we have pointed this topic as a future line.

8.3.3 Further Research

Further research as well as new developments can be performed to complement this

work and we would like to expand the empirical evaluations using other real industrial

cases and projects.

Performance of the RESCO framework and Communication interfaces

As for short-term future work, more measurements on the performance of the RESCO

framework will be done. We will compare our solution with more commercial tools.

Regarding the second contribution of this thesis, we concluded that when the

percentage of the observed states increases, the performance of the automatically

generated software components decreases. The main reason of this is the use of the

middleware Internet Communications Engine (ICE) to communicate the software

components and the runtime monitoring, verification and adaptation module. In the

future, we would like to adapt the communication middleware for other middleware

(e.g., zeroMQ [Zer19]) as well as evolve the concept to be used in IoT oriented

environments. In fact, in the context of the Productive 4.0 [eErp19] research project,

we are planning to evolve the current communication interface to an Arrowhead

compliant intercommunication.

Use of industrial standard tools

As highlighted in the limitations sections, despite Unified Modeling Language - State

Machine (UML-SM) and the tooling used in the defined method do not pose important

problems in our case for modeling software components that compounds the CPSs
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and embedded systems, it is true that the modeling tools we used in the solution are

not the ones that are standardized in the industry. As a mid-term future work, we

plan to develop the solution considering other industrial standard tools such as IBM

Raphsody [Cen19].

Adaptation: Dynamic adaptation

The current solution is only able to perform predefined runtime adaptations to known

safe-mode UML-SMs. There is a further research opportunity in the area of runtime

"dynamic" adaptation. This "dynamic" approach addresses the generation of new

models at runtime in an autonomic way by techniques such as Machine Learning.

Having this topic solved, the solution might be used in autonomous systems and

uncertain environments.

To overcome this problem, inspired by the work in [MWPB16] we detected

solutions, such as Process Mining (PM) based tools [MIn19], that evolve controllers

behaviour extracting knowledge from event logs [VDAADM+11]. This working

area has been detected as a future research line. Furthermore, with the derived

techniques we would like to expand on the empirical evaluation by incorporating

dynamic adaptations at runtime.
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