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Abstract

The safety assessment of mixed-criticality systems (MCS) is a challenging activity due to
system heterogeneity, design constraints and increasing complexity. The foundation for
MCSs is the integrated architecture paradigm, where a compact hardware comprises multiple
execution platforms and communication interfaces to implement concurrent functions with
different safety requirements. Besides a computing platform providing adequate isolation
and fault tolerance mechanism, the development of an MCS application shall also comply
with the guidelines defined by the safety standards. A way to lower the overall MCS
certification cost is to adopt a platform-based design (PBD) development approach. PBD
is a model-based development (MBD) approach, where separate models of logic, hardware
and deployment support the analysis of the resulting system properties and behaviour. The
PBD development of MCSs benefits from a composition of modular safety properties (e.g.
modular safety cases), which support the derivation of mixed-criticality product lines.

The validation and verification (V&V) activities claim a substantial effort during the
development of programmable electronics for safety-critical applications. As for the MCS
dependability assessment, the purpose of the V&V is to provide evidences supporting the
safety claims. The model-based development of MCSs adds more V&V tasks, because
additional analysis (e.g., simulations) need to be carried out during the design phase. During
the MCS integration phase, typically hardware-in-the-loop (HiL) plant simulators support the
V&V campaigns, where test automation and fault-injection are the key to test repeatability
and thorough exercise of the safety mechanisms.

This dissertation proposes several V&V artefacts re-use strategies to perform an early
verification at system level for a distributed MCS, artefacts that later would be reused up to
the final stages in the development process: a test code re-use to verify the fault-tolerance
mechanisms on a functional model of the system combined with a non-intrusive software
fault-injection, a model to X-in-the-loop (XiL) and code-to-XiL re-use to provide models
of the plant and distributed embedded nodes suited to the HiL simulator, and finally, an
argumentation framework to support the automated composition and staged completion
of modular safety-cases for dependability assessment, in the context of the platform-based
development of mixed-criticality systems relying on the DREAMS harmonized platform.






Resumen

La dificultad para evaluar la seguridad de los sistemas de criticidad mixta (SCM) aumenta
con la heterogeneidad del sistema, las restricciones de disefio y una complejidad creciente.
Los SCM adoptan el paradigma de arquitectura integrada, donde un hardware embebido
compacto comprende miultiples plataformas de ejecucién e interfaces de comunicacién para
implementar funciones concurrentes y con diferentes requisitos de seguridad. Ademas de
una plataforma de computaciéon que provea un aislamiento y mecanismos de tolerancia a
fallos adecuados, el desarrollo de una aplicacién SCM ademas debe cumplir con las directrices
definidas por las normas de seguridad. Una forma de reducir el coste global de la certificacién
de un SCM es adoptar un enfoque de desarrollo basado en plataforma (DBP). DBP es un
enfoque de desarrollo basado en modelos (DBM), en el que modelos separados de légica,
hardware y despliegue soportan el andlisis de las propiedades y el comportamiento emergente
del sistema disefiado. El desarrollo DBP de SCMs se beneficia de una composicién modular
de propiedades de seguridad (por ejemplo, casos de seguridad modulares), que facilitan la
definicién de lineas de productos de criticidad mixta.

Las actividades de verificacion y validacién (V&V) representan un esfuerzo sustancial
durante el desarrollo de aplicaciones basadas en electrénica confiable. En la evaluacién de
la seguridad de un SCM el propédsito de las actividades de V&V es obtener las evidencias
que apoyen las aseveraciones de seguridad. El desarrollo basado en modelos de un SCM
incrementa las tareas de V&V, porque permite realizar anélisis adicionales (por ejemplo,
simulaciones) durante la fase de disefio. En las campafias de pruebas de integracién de un
SCM habitualmente se emplean simuladores de planta hardware-in-the-loop (HiL), en donde
la automatizacién de pruebas y la inyeccidon de faltas son la clave para la repetitividad de
las pruebas y para ejercitar completamente los mecanismos de tolerancia a fallos.

Esta tesis propone diversas estrategias de reutilizacion de artefactos de V&V para la
verificacién temprana de un MCS distribuido, artefactos que se empleardn en ulteriores fases
del desarrollo: la reutilizacién de cédigo de prueba para verificar los mecanismos de tolerancia
a fallos sobre un modelo funcional del sistema combinado con una inyeccién de fallos de
software no intrusiva, la reutilizacién de modelo a X-in-the-loop (XiL) y cédigo a XiL para
obtener modelos de planta y nodos distribuidos aptos para el simulador HiL y, finalmente,
un marco de argumentacién para la composiciéon automatizada y la complecién escalonada
de casos de seguridad modulares, en el contexto del desarrollo basado en plataformas de
sistemas de criticidad mixta empleando la plataforma armonizada DREAMS.
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Laburpena

Kritikotasun nahastuko sistemen segurtasun ebaluazioa jarduera neketsua da beraien
heterogeneotasuna dela eta. Sistema hauen oinarria arkitektura integratuen paradigman
datza, non hardware konpaktu batek exekuzio plataforma eta komunikazio interfaze
ugari integratu ahal dituen segurtasun baldintza desberdineko funtzio konkurrenteak
inplementatzeko. Konputazio plataformek isolamendu eta akatsen aurkako mekanismo
egokiak emateaz gain, segurtasun arauek definituriko jarraibideak jarraitu behar dituzte
kritikotasun mistodun aplikazioen garapenean. Sistema hauen zertifikazio prozesuaren
kostua murrizteko aukera bat plataformetan oinarritutako garapenean (PBD) datza. Garapen
planteamendu hau modeloetan oinarrituriko garapena da (MBD) non modeloaren logika,
hardware eta garapen desberdinak sistemaren propietateen eta portaeraren aurka aztertzen
diren. Kritikotasun mistodun sistemen PBD garapenak etekina ateratzen dio moduluetan
oinarrituriko segurtasun propietateei, adibidez: segurtasun kasu modularrak (MSC). Modulu
hauek kritikotasun mistodun produktu-lerroak ere hartzen dituzte kontutan.

Berifikazio eta balioztatze (V&V) jarduerek esfortzu kontsideragarria eskatzen dute
segurtasun-kiritikoetarako elektronika programagarrien garapenean. Kritikotasun mistodun
sistemen konfiantzaren ebaluazioaren eta V&V jardueren helburua segurtasun eskariak
jasotzen dituzten frogak proportzionatzea da. Kritikotasun mistodun sistemen modelo
bidezko garapenek zeregin gehigarriak atxikitzen dizkio V&V jarduerari, fase honetan analisi
gehigarriak (hots, simulazioak) zehazten direlako. Bestalde, kritikotasun mistodun sistemen
integrazio fasean, hardware-in-the-loop (Hil) simulazio plantek V&V iniziatibak sostengatzen
dituzte non testen automatizazioan eta akatsen txertaketan funtsezko jarduerak diren.
Jarduera hauek frogen errepikapena eta segurtasun mekanismoak egiaztzea ahalbidetzen
dute.

Tesi honek V&V artefaktuen berrerabilpenerako estrategiak proposatzen ditu,
kritikotasun mistodun sistemen egiaztatze azkarrerako sistema mailan eta garapen prozesuko
azken faseetaraino erabili daitezkeenak. Esate baterako, test kodearen berrabilpena akats
aurkako mekanismoak egiaztatzeko, modelotik X-in-the-loop (XilL)-ra eta kodetik XiL-rako
konbertsioa HiL simulaziorako eta argumentazio egitura bat DREAMS Europear proiektuan
definituriko arkitektura estiloan oinarrituriko segurtasun kasu modularrak automatikoki eta
gradualki sortzeko.
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Preface

During my professional career | teamed in several projects related to industrial computing.
After graduating, | initially dealt with computer-based applications, then at some point,
| turned to the challenge of developing embedded devices: programming processors with
limited resources, constrained budgets, almost always increasing functional requirements,
scarce prototypes, while racing against the clock (learning the meaning of time-to-market)
and, at the same time, trying to achieve the quality objectives, was not a task for the
heart-fainted. | soon realized the usefulness of model-based approaches and virtualizations
to alleviate some of the development shortcomings, and thus | began to use it routinely.

The motivation for this research raised when | joined a project team to develop an
embedded over-speed governor with a simple safety function: to brake an elevator car in case
of unintended movements. This device was amenable to safety-certification, and the project
manager -who shortly afterwards would become my boss- assigned me to the verification,
validation and test activities. He asked me three direct questions: what infrastructure
would | request, how much budget had he to allocate, and how much time should be
devoted to complete the tasks. | felt in dismay: the preliminary specifications were far from
complete, contained many ambiguous statements, and some validation criteria stated that
the system should work in a context of continuous ranges for operational parameters. To
make matters worse, there was no indication as how the system would be de-composed, and
only partial interface specifications and rough overall system analysis were available. Even if
| had conceived a validation plan that included some test specifications, it would have been
impossible for me to define a sensible integration test, let alone estimate the cost of VVT
in terms of time, as well as material and human resources. | was unable to answer any of
the questions, yet | reflected about the obstacles shading the answers.

This work pretends to bring some light to the crucial task of assessing a safety embedded
device in a cost-effective way, by means of a re-use strategy involving an interchangeable
set of artefacts. Let's hope the reader finds it useful.
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Introduction

Embedded systems are programmable devices that integrate processors and dedicated
hardware to implement control functions that interact with real-life environments [TLMP93,
Zan08]. The improvement of semiconductor technology sustained a progressive reduction of
the size of electronics, leading to increasingly powerful computing platforms with a higher
density of components per silicon area. Nowadays many embedded systems integrate several
execution platforms and communication interfaces to implement concurrent functionality —
e.g., heterogeneous embedded processors integrating multiple cores and programmable logic.
These embedded platforms foster the transition from federated to integrated architectures,
seeking to lower the overall cost [Obe04, Ham03, NS10], but also prompting a complexity
growth. As a consequence, testing modern embedded systems becomes a challenging activity
due to system heterogeneity, design constraints and the increasing architectural complexity.
At the same time, manufactures ask for a reduction of the time-to-market for the product
development process. Therefore, current industrial practice brings forward the verification
activities to earlier stages in the development of embedded systems, aiming at the contention
of design-and-verify iterations.

Dependable embedded systems (DES) are embedded systems that could lead to loss of
life, significant property damages or damages to the environment in case of failure. Such
safety-critical systems must exhibit a degree of fault-tolerance as required by the safety
standards for the identified potential risks. The development of a DES shall comply with
the recommendations from safety standards for the specification, design and implementation
of safety-critical applications, following state-of-the-art standardized procedures to ease the
review and verification activities. Safety standards demand a predictable behaviour of the
safety system under all foreseeable scenarios. Although formal reasoning could provide a
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mathematical foundation for the correctness of a safety function, the applicability of formal
methods is limited to cases where simplification assumptions hold. Whenever a rigorous
proof of correctness is infeasible, simplified safety assessment activities still rely on simulation
and testing [NS10]. As a consequence, the verification, validation and testing activities for
dependable embedded systems claim a substantial preparation and realization effort.

Certification is a third-party attestation related to products, processes, systems or
persons [ISO04]. An attestation is the issue of a statement, based on a decision following
reviews, where the fulfilment of specified requirements has been demonstrated. Safety
certification is an attestation where an authorized organization or a certification body
assesses the fulfilment of the safety-related requirements of a system regarding specified
safety requirements or a safety standard. In the scope of the IEC 61508 safety standard and
its derivatives, safety is a systemic property, resulting from the composition of the properties
of constituents, their integration and the interaction of the system with its environment.
Thus, the IEC 61508 standard requires the certification of the system as a whole, where a
change of a single aspect of the system may require the re-certification of the entire system.

With the introduction of the newest dependable computing platforms for safety
applications the complexity of safety systems also increased correspondingly, bringing with
it a growing number of potential defects [EJ09]. System engineers pursue the integration
of multiple functions with different safety-, security- and real-time requirements on the
same embedded computing platform, i.e., a mixed-criticality system [Baull]. Multi-core
Processors (MCPs) enable reductions in the cost, size and weight of the hardware, while
improving the system scalability. However, MCPs pose certification challenges (such as the
assessment of the temporal independence) which may potentially increase the engineering
and certification cost to unacceptable levels [DAN+13, RGG+12].

The challenge of certifying a mixed-criticality system (MCS) may be alleviated by
following a platform-based design (PBD) paradigm, tailoring a pre-built safety solution that
would be eventually certified, e.g., the DREAMS harmonized platform [Larl7]. Typically
PBD adopts the Y-chart development process [BCG+97, KDV+97], refining separately a
platform model and a functional model of the system, then combining both by means of a
mapping model to obtain a model of the complete system. Combined use of Model-Based
Development (MBD) and Model-Based Testing (MBT) provide a methodology to tackle
the complexity of an MCS, enabling concurrent engineering at both the system design and
its verification. Interleaved MBD/MBT enables early validation in a platform-based design,
but generates analysis predictions that yet shall be contrasted with experiments on the
real system. MBT provides test vectors for: (i) the stimuli of the implementation under
test (IUT), and (ii) the expected outputs from the IUT. For complex system environments
a reactive MBT approach is more convenient, i.e., the stimuli fed to the IUT are computed
from previous IUT output values using a mathematical representation of the environment.
Improving the re-usability of artefacts from modelling to testing would enhance the test
repeatability and recovers the investment from previous MBT tasks. In MBT models for
platform hardware (HW), sensors and custom instrumentation would be developed. These



models become valuable assets for reproducing the test scenarios in a hardware-in-the-
loop (HiL) test configuration to exercise the real system.

The platform-based design of Mixed-Criticality Systems (MCSs) also supports the
development of whole product families. A Mixed-Criticality Product Line (MCPL) is a
set of MCSs that share a number of HW/SW components, while differing in the features,
functionality, and possibly in the safety requirements. In a MCPL each specific product
configuration is referred to as a “product sample”. Model-Based Development (MBD)
helps at optimizing an MCPL: variant modelling supports an automated Design Space
Exploration of possible configurations for the Dependable Embedded Systems. In the context
of the IEC 61508 standard, safety is an emergent property of the system, and thus a safety
assessment could be required for each feasible product sample in order to certify the MCPL.
This per-product safety assessment would also require a specific safety argument, but it
could yet re-use the proof artefacts common to other product configurations in the MCPL.

The certification approval ultimately depends on the collection of analysis results,
verification evidences and a sensible rationale supporting the safety claims. Several safety
standards also accept a structured modular approach to demonstrate the validity of the
safety claims: the Safety Cases. A Safety Case (SC) is a documented body of evidences
that provides convincing and valid arguments that a system is adequately safe for a given
application in a given environment. The scope of a Safety Case can be the whole system, a
subsystem, or a component. Also an SC may depend on other SCs. A benefit of applying
platform-based design to the development of Mixed-Criticality Systems is that the safety
properties of the components in the base platform can be described by a number of Modular
Safety Cases (MSCs). MSCs support a modular certification process that parallels the
compositional approach in platform-based design.

A way to improve the re-usability of safety arguments to develop Safety Cases for Mixed-
Criticality Product Lines is to provide a framework for the semi-automated composition of
the safety arguments, starting from the MSCs: the process of assembling the safety argument
for a given product sample would begin at the Design Space Exploration (DSE) phase, when
each composition of product features requires an instantiation of the related MSCs . Such
a framework for composing safety arguments would also enable a staged completion of the
arguments: as development progresses, evidences gathered from verification and testing
phases can be linked to the argument chain. Once there are no pending evidences, the
proposed safety argument is ready to be reported —and eventually reviewed and challenged.
To this end, the re-usable MCSs should be arranged as to ease the composition at the DSE,
enable a phased completion as verification, validation and testing progresses, and support
automated reporting according to a documentation structure. All in all this provides the
logical framework to interrelate all the results from a safety-system development process.

! A Modular Safety Case (MSC) may contain alternate argument paths to support different safety claims,
i.e., the higher the Safety Integrity Level (SIL) level, the more comprehensive the argument. The instantiation
of an MSC consists of selecting a chain of arguments to the demonstrable safety property, although the links
may end in evidences to be provided in later development phases.
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1.1 Motivation

Current industrial practice relies primarily on testing for hardware and software verification.
A key point is that testing always presumes some model of the system behaviour, although
this model could be implicit (i.e., a mental model) or explicit (i.e., a formal model). Testing is
a methodology to obtain better systems, therefore it is widely used in systems development.
But typically, it is ad hoc, error prone, and costly.

We focus on testing methods for embedded systems, that constitute a form of reactive
systems. A reactive system denotes software and hardware systems with a (usually) non-
terminating behaviour that interact with a physical environment through observable events.
As embedded systems became widespread in many application fields, research sought for
more formal verification methodologies that also would scale-up to cope the rising complexity
of the systems under test.

Test case generation can be considered the heart of testing. Research on this topic has
provided a variety of successful test case design methodologies. But improving the testing
process as a whole is more complicated. The test cases have to executed on the system
under test. In several application domains, test suites are used to show conformance to a
standard. For this, test cases have to be interchangeable among developers. Furthermore,
testing should be included in the overall development process.

Analogously to the evolution of design methodologies, testing has embraced the so-
called model-based approach to tackle complexity. The model-based approach assumes the
existence of a precise formal model of the system being developed. Design engineers can use
this model to study the system to build. Test engineers can use this model either to generate
complete test suites to show conformance of the model and the actual implementation, or,
just to design purpose-specific test cases to check the developed system. In a model-based
development approach the testing shall start at the system modelling phase. For testing
reactive systems we usually also have to model the application domain. This environment
model is the core of hardware-in-the-loop (HiL) testing techniques.

Embedded systems for safety critical applications (also known as dependable systems)
implement safety-related functionality in a predefined environment. The environment for
dependable systems usually presents some kind of risk of occurrence of hazardous events.
Legal regulations require a product approval for the deployment of dependable systems,
requiring that the whole life-cycle for safety critical products must comply with generic
safety standards as IEC 61508, or domain specific standards like DO-178B, amongst others.

Safety standards impose different risk reduction measures depending on the foreseeable
faults, the hazard originating from this fault and the severity of the possible damage. The
IEC 61508 standard defines the risk as a probabilistic measure of fault events, and quantifies
the required resilience of a system by its Safety Integrity Level (SIL). The operation of a
dependable system must be as predictable as possible, in order to ascertain the required
safety envelop. The compliance is checked by strict certification. Verification, validation and
testing (VVT) are key activities that either assess the compliance of the development with
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Figure 1.1: Juran’s quality cost models for safety-critical and non-safety products

regard to the standards or detect deviations. The verification, validation and testing (VVT)
activities impose a significant cost on the realization and certification of dependable systems,
as the objective quality metric is usually much higher than that for non-safety programmable
devices. Figure 1.1 informally depicts the total quality cost for both kinds of product
developments, where total quality cost results from adding the cost of VVT activities and
the cost of failures. For safety-critical products the cost of failures raises as a consequence
of legal liability and the damage caused to the people or the environment.

Model-based development and the related testing methodologies have been in use for
years in application domains like automotive, railway or aerospace. This long-run of model-
based development in industrial practice provides a long enough time scope to review the
actual achievements with regard to the efficiency of model-based process development,
and also to detect the needs for improvement. A retrospective study [KZ10, BKZ+11]
on the economical impact of model-based development reported significant potential for
cost reductions in product development for the car industry. But a successful model-
based development (including testing) requires a clear and structured process. Otherwise a
development cost overrun can occur.

A related field of research is the modelling language itself. In Software Engineering
the continuous development of abstraction mechanisms allows software developers to tackle
the ever-increasing complexity. However, the commonly used description languages for
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hardware design lag behind their software counterparts in terms of structural abstraction,
encapsulation and even behavioural semantics [Nik11]. This motivates the need to define
an adequate meta-model to describe the system structure and behaviour. To fill this gap,
researchers have come up with languages like Giotto [HHKO3], Architecture Analysis and
Design Language (AADL) [AS5506A], BIP [BIP], DOL [DOL] or SysML [SysML] amongst
others. A common driving force at defining these modelling languages is the quest for a
concise underlying meta-model with precise semantics. AADL or SysML offer the advantage
of being also embodied in Unified Modelling Language (UML) [UML] (an UML mapping to
AADL is included as part of the MARTE profile [MARTE]), that is a semi-formal modelling
language for Software Engineering. This enables the scaling-up of the architectural models
to fine-grained software design using a common semantics. Although this embodiment in
a more expressive language seems appealing, considerable research needs to be devoted to
fixing the issues arising when combining the multiple underlying meta-models.

Some authors [Broll, BKS+10a] hypothesize that in order to achieve a cost-effective
model-based development we shall improve the seamlessness of the development tools,
enabling model use throughout the whole development process. Currently available tools
and methodologies limit model re-usability, nor is there an automated transformation into
adequate models. This lack has a deep impact on the development cost of dependable
systems, where the developer has to provide a complete tracing from requirements to the
resulting system and safety standards impose a thorough conformance verification. Thereby
an integrated model-based development process with tool support ranging from requirements
analysis through code generation to validation would be tremendously beneficial.

The availability of models eases the examination of the system. In model-based
verification we obtain a number of valuable test artefacts (e.g., abstract test suites) that have
undergone a validation process. An optimized model-based testing process should pay-off
for the effort invested in building such testing infrastructure. The improvement of the re-
usability of testing artefacts could be a means to achieve this return-of-investment. On-going
research from pioneering adopters (automotive) of model-based testing focuses on improving
the the model-based testing process to enable re-usability [MK10a, MK10b, MK10c¢].

Another important issue is that verification (testing) by simulation is decreasingly
practical as the system complexity rises. For mixed-criticality dependable systems the
hardware is complex due to redundancy and may run heavy software loads such as full-
featured operating systems and applications. Verification involves simulating all of these
together, and it is not unusual for software simulations to run for days or weeks. In a
model-based approach we can reconsider the classical question about when to stop testing,
and re-state it as when to stop testing on software simulators. Some researchers suggest
using hardware accelerators to support simulators for testing. The advantages of testing
with hardware assisted simulations are multi-fold. A clear benefit is an increased simulation
speed, that yields a reduction in overall testing time. But this technique also enhances test
re-usability if we design a modular test architecture, as the test infrastructure subsumes or
resembles the hardware-in-the-loop components needed for the verification of the real system
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prototypes. Taken to the extreme, a whole test architecture and an executable simulator
of the system under test would be deployed on synthetic hardware (FPGA) for accelerated
simulations.

Whenever an application requires a high confidence level (i.e., a high SIL) and the
selected implementation is based on programmable electronics (PE), the adoption of
redundant structures necessarily involves the adoption of distributed architectures. For
distributed embedded systems micro-kernels (namely hypervisors) and software architectural
standards like AUTOSAR or ARINC-653 alleviate the complexity problem by decoupling the
application software from the execution platform. The separation is achieved by abstracting
the hardware as a virtual machine.

But still the problem of verifying distributed architectures remains, because the system
behaviour becomes an emergent property that is only observable after assembling the
components. This raises the question of how we can perform an early verification at system
level for distributed real-time systems that could be reused up to the final stage in the
development process. Regarding verification, virtualization eases the instrumentation of the
software components in a cross-platform development. A key point is that the virtualization
constitutes an enabling technology for an interleaved refinement of both the design and the
test suite. This interleaved refinement requires a structured testing approach, by abstracting
unneeded details in a given design phase. This could ease the maintainability of the testing
framework.

Summing up, test re-use in a model-based development process is a hot topic for research
due to its economical significance in product development. In the field of safety-critical
applications, model-based testing is recommended as a suitable technique for the validation
and verification of dependable systems, but standards usually do not provide complete
guidelines for this. It is desirable to rely on a concise modelling language to describe
the system and the test architectures, but rooted in a more expressive standard that would
scale-up for more detailed design models while keeping the backwards compatibility with the
initially sketched architectural and behavioural models. From the viewpoint of validation,
testing has to deal with the examination of emergent behaviour. To perform the examination
one needs to have the ability to build some dynamic artefacts (i.e., simulators). For that we
need a tool-set of transformation tools and computational support for a variety of models-of-
computation. The integration of open-source hardware simulation platforms like SystemC
with other specialized modelling environments showed the feasibility of hardware-software
co-simulation. Besides that, hardware defined by software FPGAs is blurring the gap between
testing on simulators and testing the actual prototypes in real-time.

The research topic for this PhD is the improvement of the testing re-usability
in a model-driven development of real-time distributed embedded systems for safety-
critical applications, comprising virtual processing platforms and mixed-criticality software
components. The topic interest is the cost-effectiveness achieved in a model based
development by means of test automation and test reuse. This research looks for a reduction
of the verification effort of mixed criticality dependable systems.



Chapter 1. Introduction

1.2 Contribution

This dissertation contributes with three complementary approaches to re-use tests and
artefacts for the cost-effective development and certification of Mixed-Criticality Systems:

(i) an integrated system/tester co-simulation framework to assess the fault-tolerance
mechanisms in redundant system architectures —like those found in Dependable
Embedded Systems—, through simulated fault injection and supporting the re-use of
test specifications for real system testing;

(i) an MBT methodology to model sensors, instruments, as well as multiple nodes
in distributed Dependable Embedded Systems (DESs), that are initially validated
in Commercial-Off-The-Shelf (COTS) simulation environments and later re-used in
heterogeneous COTS hardware-in-the-loop (Hil) platforms for real-time testing.

(iii) a framework to model re-usable safety arguments for platform-based design (PBD)
of Mixed-Criticality Product Lines (MCPLs) that enables a staged semi-automated
composition of Safety Cases (SCs), supporting the integration of compliance evidences
yielded either by analysis or testing activities at each phase in the MCPL development.

The scientific interest lies on the structured model based testing approach that
mimic the abstraction boundaries into the testing framework, which promote the re-use of
validated components to be deployed in diverse simulation environments: Commercial-Off-
The-Shelf (COTS) and custom open-source simulators (either in model-in-the-loop (MilL)
or software-in-the-loop (SiL) configurations), and heterogeneous execution contexts mixing
Programmable Electronics (PE) or Programmable Logic (PL) (in a HiL configuration).

The proposed main innovation consists of a verification methodology for dependable
real-time embedded systems that enables the re-usability of system tests across different
refinement phases of the design, from model to executable virtual prototypes.

Each contribution is illustrated by its application to a case study on a demonstrator:

CS1 Train odometry system: The train odometry system case study focuses on the re-
use of test specifications (e.g., test sequences, test configuration) generated during
the safety analysis of a redundant DES. The train odometry system model is
derived from a certifiable product concept for a SIL4 safety requirement in the
sense of EN50128 standard [CEN11]. This case study assumes a Triple Modular
Redundancy functional structure, the set of random (HW) faults considered in the
product Failure Mode and Effects Analysis for the given structure, and the source code
implementation of the safety functions. Based on this, we use a modelling framework
to obtain an executable Platform-Specific Time-Triggered Model (PS-TTM) model.
The synchronous Automatic Test Executor (ATE) integrated in the PS-TTM simulator
enables the automation of test campaigns, while a non-intrusive simulated fault-
injection library [Ayelb] stresses the system fault-tolerance. The train odometry
system case study illustrates contribution (i).
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CS2

CS3

Hardware-in-the-Loop Elevator Simulator (HiLES): The HIiLES case study focuses on
the model-to-HiL and code-to-HilL re-use of artefacts to enhance a real-time hardware-
in-the-loop (HiL) simulator used for the functional verification of elevator controllers.
This comprises two tasks: (i) developing a library of models for position sensors
and custom instruments in a COTS modelling environment, and later transformed
and deployed in a heterogeneous COTS computing platform. (ii) developing a para-
virtualization framework to re-use the validated functionality of remote 1/O nodes,
recovering the VVT effort invested in building the real products when assembling the
HiLES system. The HiLES case study demonstrates contribution (ii).

Mixed-criticality wind turbine controllers based on the DREAMS harmonized platform:
The DREAMS wind turbine case study focuses on the re-use of arguments for safety
certification in a platform-based design (PBD) of Mixed-Criticality Product Lines
(MCPLs). The PBD is supported by: (a) a harmonized heterogeneous computing
platform for MCPL applications, the DREAMS harmonized platform, (b) a DSE
tool-set to refine the design of the MCPL by using integrated analysis tools, and
(c) a set of generic Modular Safety Cases (MSCs) for the safety components in
the harmonized platform. The re-usable argument modelling framework provides a
repository for MSCs, where modular Goal Structuring Notation extensions provide
customizable place holders to complete the certification argument according to the
safety claims, the MCS configuration and the supporting evidences. This case study
shows contribution (iii).

1.2.1 Technical Contributions

This dissertation provides the following technical contributions:

TC1

TC2

TC3

TC4

Adaptation of a Python-based Automatic Test Executor (ATE) engine for co-
simulating fault-injection tests on Platform-Specific Time-Triggered Model of
Dependable Embedded Systems.

A library of synthesizable Simulink models for position sensor and custom instruments
that improve the time coherency of outputs fed to a System Under Test (SUT) in a
HiL test environment.

A lightweight para-virtualization approach to simulate the HW and firmware of
networked Input/Output (I/O) nodes in diverse test execution contexts (including
SiL or COTS HiL), easing the re-configuration of the test architecture (by replacing
devices with virtual replicas) while preserving the functionality of the devices.

A Goal Structuring Notation meta-modelling extension and a DBMS-hosting of
argument models and evidences to support the semi-automated composition of Safety
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Cases for MCS by the Safety Compliance Constraints & Rules Checker (SCCRC)
component integrated in the DREAMS Design Space Exploration tool.

1.2.2 Collaborations

The validation of the concepts developed in this thesis was done concurrently and in
collaboration with other researchers, namely:

PhD thesis by I. Ayestaran [Ayel5] |. Ayestaran contributed the HW models for
simulated fault injection, developed the modelling tools using the Eclipse modelling
framework, and worked on the the SystemC implementation of the Platform
Independent Time-Triggered Model (PI-TTM)/PS-TTM Model of Computation
(MoC) as well as the implementation of the simulated fault injectors (SFls). The
concept of PI-TTM and PS-TTM models was developed in collaboration with C.-
F. Nicolas. C.-F. Nicolas contributed to the integration of the ATE in the SFI
simulation framework to provide test repeatability and portability to real-time test
environments.

PhD thesis by A. Larrucea [Larl7] A. Larrucea developed the Modular Safety Cases
(MSCs) for the DREAMS platform. C.-F. Nicolas contributed the extended meta-
model for modular Goal Structuring Notation (GSN) and DBMS infrastructure to
deploy the MSC repository. The description of the MSCs as re-usable modular GSN
models was developed in collaboration.

1.2.3 Publications

The contributions from this thesis were published in the bibliography listed below:

° Larrucea, A., Martinez, ., Nicolas, Carlos-F., Perez, J., and Obermaisser, R. (2017) Modular
Development and Certification of Dependable Mixed-Criticality Systems In: Digital
System Design (DSD), 2017 20th Euromicro Conference on, Vienna, Austria. 30 Aug.-1
Sept., 2017. [ACCEPTED PAPER]

° Nicolas, C.-F., Eizaguirre, F., Larrucea, A., Barner, S., Chauvel, F., Sagardui, G. and Perez,
J. (2017). GSN Support of Mixed-Criticality Systems Certification In: “Dependable
Smart Embedded Cyber-physical Systems and Systems-of-Systems” at SAFECOMP 2017
(DECSoS '17), 17th ERCIM/EWICS/ARTEMIS Workshop on, Trento, Italy. Sept. 12, 2017,
[ACCEPTED PAPER]

. Nicolas, C.-F., Ayestaran, |., Poggi, T., Sagardui, G. and Martin, J.-M. (2017). A CAN
Restbus HiL Elevator Simulator based on Code Reuse and Device Para-virtualization.
In:  Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), 2017
IEEE 20th International Symposium on, Toronto, Canada. May 16-18, 2017. Proceedings,
pp. 117-124. |IEEE. DOI: 10.1109/ISORC.2017.2

10


http://dx.doi.org/10.1109/ISORC.2017.2

1.2. Contribution

Sagardui, G., Agirre, J., Markiegi, U., Arrieta, A., Nicolas, C.-F. and Martin, J.-M. (2017).
Multiplex: A Co-Simulation Architecture for Elevators Validation In: Electronics,
Control, Measurement, Signals and their application to Mechatronics (ECMSM), 2017 IEEE
International Workshop of, Donostia, Spain. May 24-26, 2017. Proceedings, pp. 1-6. IEEE.
DOI: 10.1109/ECMSM.2017.7945883

Nicolas, C. F., Ayestaran, |., Martinez, |. and Franco, P. (2016). Model-Based Development
of an FPGA Encoder Simulator for Real-Time Testing of Elevator Controllers. In:
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), 2016 IEEE
19th International Symposium on, York, UK, 17-20 May 2016. Proceedings, pp. 53-60. IEEE.
DOI: 10.1109/ISORC.2016.17

Larrucea, A., Perez, J., Nicolas, C. F., Ahmadian, H. and Obermaisser, R. (2016). A
Realistic Approach to a Network-on-Chip Cross-domain Pattern. In: Digital System
Design (DSD), 2016 19th Euromicro Conference on, Limassol, Cyprus, 31 Aug.-2 Sept. 2016.
Proceedings, pp. 396-403. IEEE. DOI: 10.1109/DSD.2016.66

Larrucea, A., Agirre, ., Nicolas, C.-F., Perez, J., Azkarate-Askasua, M. and Trapman, T.
(2015) Temporal Independence Validation of an IEC 61508 compliant Mixed-Criticality
System based on Multi-core Partitioning. In: Specification and Design Languages
(FDL), 2015 Forum on, Barcelona, Spain. 14-16 Sept. 2015. Proceedings, pp. 1-8. IEEE.
DOI: 10.1109/FDL.2015.7306359

Ayestaran, |., Nicolas, C.-F., Perez, J., Larrucea, A. and Puschner, P. (2014) A novel
modeling framework for time-triggered safety-critical embedded systems. |In:
Specification, Design Languages (FDL), 2014 Forum on, Munich, Germany. Proceedings,
vol. 978, pp. 1-8. IEEE. DOI: 10.1109/FDL.2014.7119343

Ayestaran, |., Nicolas, C.-F., Perez, J., Larrucea, A. and Puschner, P. (2014). Modeling
and Simulated Fault Injection for Time-Triggered Safety-Critical Embedded Systems.
In:  Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), 2014
IEEE 17th International Symposium on, Reno, NV, USA. Proceedings, pp. 180-187. IEEE.
DOI: 10.1109/ISORC.2014.9

Ayestaran, |., Nicolas, C.-F., Perez, J. and Puschner, P. (2014) Modeling Logical Execution
Time based Safety-critical Embedded Systems in SystemC, In: 2014 3rd Mediterranean
Conference on Embedded Computing (MECO). Budva, Montenegro. Proceedings, pp. 77-80.
IEEE. DOI: 10.1109/MECO.2014.6862662

Ayestaran, |., Nicolas, C.-F., Perez, J., Larrucea, A. and Puschner, P. (2014) A Simulated
Fault Injection Framework for Time-Triggered Safety-Critical Embedded Systems.
In: Bondavalli A., Di Giandomenico F. (eds) Computer Safety, Reliability and Security
(SAFECOMP), 33rd International Conference on, Florence (Italy). September 10-12, 2014.
Lecture Notes in Computer Science (LNCS), vol. 8666, pp. 1-16. Springer. DOI: 10.1007/978-
3-319-10506-2_1

Perez, J., Gonzalez, D., Nicolas, C.-F., Trapman, T. and Garate, J. M. (2014). A Safety
Certification Strategy for IEC-61508 Compliant Industrial Mixed-Criticality Systems
Based on Multicore Partitioning. In: Digital System Design (DSD), 2014 17th Euromicro
Conference on, pp. 394-400. IEEE. DOI: 10.1109/DSD.2014.38
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. Perez, J., Nicolas, C.-F., Obermaisser, R. and El Salloum, C. (2010). Modeling Time-
Triggered Architecture Based Real-Time Systems Using SystemC In: Kazmierski T.,
Morawiec A. (eds) Specification and Design Languages (FDL), 2010 Forum on. Lecture Notes
in Electrical Engineering (LNEE), vol. 106, pp. 123-141. Springer. DOI: 10.1007/978-1-4614-
1427-8_8

1.3 Outline

This thesis is structured as described below (see Fig. 1.2):
Chapter 2 presents the underlying concepts on which this thesis is founded.

Chapter 3 analyses the state-of-the-art on model-based testing processes, its re-usability
in test automation environments, its application to verify and validate dependable
electronics, and the structured argumentation of safety properties and its relationship
with the test evidences.

Chapter 1:
Introduction

Chapter 2:
Background

Chapter 3:
State of the Art

Part I: State of the Art

Part IIl: Contribution
Chapter 4:

Theoretical Framework

Chapter 5: Chapter 6: Chapter 7:

Test Specifications Re-use Re-use of Models and Code Argumentation Re-use
(simulation & test automation) (COTS models to COTS HiL) (modeling safety rationale)

Part Ill: Validation
Chapter 8:

Case Studies

Part IV: Conclusion
Chapter 9:

Conclusion

Figure 1.2: Structure of the thesis
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Chapter 4 presents the theoretical aspects of this dissertation: research methodology,
hypotheses, goals and case studies used to validate the implemented solutions.

Chapter 5 presents the adaptation of the Python interpreter to implement a sequential
Automatic Test Executor (ATE) environment that enables both the model-to-system
and system-to-model re-use of test scripts, to the Commercial-Off-The-Shelf Model-
Based Development MATLAB/Simulink, as well as a novel Eclipse-based modelling
and simulation tool for Time-Triggered Architectures, relying on a Time-Triggered
extension of SystemC .

Chapter 6 presents the methodology to re-use model artefacts in test components for real-
time test architectures to implement parallel stimulation and observation architectures
in hardware-in-the-loop (HiL) simulators. It covers the code re-use strategy to
integrate proven-in-use functionality in an X-in-the-loop sub-system of the test-bench,
i.e., available for model-in-the-loop, software-in-the-loop or HiL configurations.

Chapter 7 presents the DREAMS modular certification approach, based on a framework
to re-use certification arguments linked to test evidences, as to support the platform-
based design of mixed-criticality product lines.

Chapter 8 describes three different case studies used to evaluate the approach and discusses
the results: (a) application of the ATE integration to the validation of the fault-
tolerance of a safety over-speed protection for trains, (b) application of the model
and code reuse to build elevator simulators to verify the positioning controller, and
(c) application of the argumentation re-use framework to a the platform-based design
of a wind turbine controller product line, integrating safety protection functions and
deployed on the heterogeneous DREAMS platform.

Chapter 9 sums up the conclusions and suggests possible future research work.

1.4 Support

This research has been partially funded by the programs listed below:

= The Spanish INNPACTO project VALidacién avanzada y MODular de sistemas criticos
en transporte ferroviario (VALMOD), under grant No. IPT-2011-1149-370000.

= The Spanish RETOS project Sistemas embebidos robustos para el ascensor/Robust
Elevator Embedded Systems (SECE), under grant No. RTC-2016-5390-4, and

= The European FP7 project Distributed Real-time Architecture for Mixed-criticality
Systems (DREAMS), under grant No. 610640.
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Background

This chapter introduces terms and topics used throughout this dissertation.

2.1 The Time-Triggered Architecture (TTA)

The Time-Triggered Architecture (TTA) [Kop98, KB03, Kopll] provides a computing
infrastructure for the design and implementation of dependable and safety-critical embedded
systems. The TTA decomposes systems into nearly autonomous clusters and nodes that
share a fault-tolerant global time base of known precision. The existence of this global
time in all the components of the system enables to abstract the communication interfaces,
guarantees the timeliness of real-time applications, and eases prompt error detection in
communications. Therefore, the TTA is based on the time-triggered MoC [Kop98b], which
relies on the sparse-time model of time. The TTA infrastructure guarantees the agreement
between the time stamps at each node.

The interfaces and the predictable Time-Triggered Protocol (TTP) decouple the
processing functions from communications among the distributed subsystems, thus
simplifying the design of the internal application software of the nodes. In the TTA,
systems are composed of one or several clusters, which are composed of one or several nodes
interconnected by a replicated time-triggered network (Figure 2.1). Each node consists of a
time-triggered Communication Controller (CC), a Communication Network Interface (CNI)
and a host processor with memory that executes the operating system and the application
software.

The communication system (composed of the communication network and controllers)
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Figure 2.1: Structure of a TTA cluster with five nodes

executes periodically following an a-priori specified schedule, i.e., it reads a message from
the CNI at the sending node at an a-priori known instant, and delivers it to the rest of the
nodes at an a-priori known instant.

The dynamics of the real-time application are modelled by a set of relevant state
variables, called real-time entities. RT entities have static attributes that do not change
during their lifetime, such as their name, type or unit, and a set of dynamic attributes, such
as their value at a given instant. The observation of an RT entity represents the information
about its state at a particular instant, and can be captured in the following data structure:

Observation = (name, value, tops)

In order to manage complexity, three different types of interfaces were defined in the
very first specifications of the TTA [KS03, KB03]. Later versions specify four different
interfaces [KOS+07, Kop11] (Figure 2.2):

= Linking Interface (LIF): The LIF is the interface that provides the timely information
to the nodes during the operation of the system. This interface is used by the nodes
to communicate among themselves, and it is therefore a time-critical interface that
must meet the temporal specification of the application in all possible scenarios. This
interface is also called Real-time Service (RS) interface in [KBO03].

= Configuration and Planning Interface (CP): The CP is the interface used to
configure the system, i.e., to connect a node to other nodes. It is used during the
integration phase to generate the “glue” between the quasi-autonomous nodes. Hence,
this interface is not time-critical. This interface is also called Technology Independent
Interface (TIl) in [Kopll].
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Figure 2.2: The four interfaces of a TTA component

= Diagnostic and Maintenance Interface (DM): The DM is the interface that enables
maintenance engineers to observe the internal state of the nodes and set their internal
parameters. This interface does not influence the temporal behaviour of the nodes,
and it is usually not time-critical. This interface is also called Technology Dependent
Interface (TDI) in [Kop11].

= Local Interface: The local interface connects the component to the external world.
This interface is used to link the system with the environment.

The aim of the TTA is to design large real-time systems. Despite the fact that a
large system will support many more functions than a small system, the complexity of each
individual function must not increase with the growth of the system [KB03]. To that end,
the only central element of the TTA is the global notion of time. The TTA supports the
definition of subsystems by the inclusion of gateway nodes in the system. Gateway nodes are
special nodes that contain two CNIs, and they are used to connect different subsystems. A
node can be expanded into a gateway node when its computational limits are reached. This
way, the interface to the original cluster remains unchanged in the value and time domains,
whereas the functionality of the node is now distributed over a second cluster. Gateway
nodes are also useful to integrate legacy systems.

2.2 Modelling Languages

The specification and design of safety-critical systems can be expressed in different modeling
languages. As no single-language can precisely describe all the safety-related aspects of the
system under design, in practice we need some mixture descriptions in multiple languages.
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Research on testing mainly relies on 2 different formalisms:

Unified Modeling Language The Object Management Group released a language
extension for testing modeling with Unified Modelling Language (UML) 2.0 namely the
UML 2.0 Testing Profile, mainly used in the Software Engineering domain [BBL+-05,
BG09,BGL+07,CMKO08,GD06, Gro05, HVF+05, MAM+06, UTP05, ZDS+05, ZSMO06,
ZXS08].

Matlab/Simulink /Stateflow This integrated development environment is widely used in
the automotive domain. Due to its commercial base, there is intensive research and
development for increasing the level of automation of design, coding and testing in
the MathWorks environment. [Con07, MTest, SLDV, SLVV, Win09, Zan08, ZC05, ZC06,
ZC08, ZMS07b]. The capabilities of the Matlab-Simulink-Stateflow for model-based
development and testing can be extended to ESoC prototyping by co-simulation with
SystemC or CatapultC and a FPGA-in-the-loop Simulink add-on. [BTZ05, HONOS].

Other kinds of analysis require complimentary information and suitable modeling
formalisms, i.e., probabilistic information contained in Markov chain models [The03].

2.2.1 Simulink

This subsection defines terms used to describe properties of Simulink model
elements [SLUG].

Virtual blocks / subsystems: Virtual (i.e., non-atomic) blocks / subsystems are treated
as all its internal blocks were at the same level in the model hierarchy as the subsystem
when determining block method execution order. This can cause execution of methods
of blocks in the subsystem to be interleaved with execution of methods of blocks
outside the subsystem.

Virtual subsystems are hierarchical containers used to organize a model graphically.
Simulink ignores virtual subsystem boundaries when determining block update order.
Unconditionally executed subsystems are virtual by default.

Atomic blocks / subsystems: Simulink treats atomic blocks / subsystems as a unit when
determining the execution order of block methods, executing the internal methods in
a strict synchronous data-flow MoC (SDF) Model of Computation (MoC), i.e., all the
inputs to the subsystem shall be updated at the same instant, and all the subsystem
methods to update its outputs are invoked to update the output values at the same
time.

Conditionally executed Simulink subsystems are atomic, e.g., event-triggered or
enabled subsystems, function-calls, or Stateflow blocks (the latter is synchronous data-
flow MoC container to execute a Discrete Events MoC MoC state machine).
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An unconditionally executed subsystem can be designated as atomic to ensure that
it is executed entirely before any other block is executed. This is useful to simulate
certain types of execution, e.g., functions intended for a Time-Triggered (TT) runtime.
However, changing the atomicity property modifies the behaviour of the model.

2.2.2 LabVIEW

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a system-design
platform and development environment for a visual programming language from National
Instruments. The programming language used in LabVIEW, named G, is a dataflow
programming language. Execution is determined by the structure of a graphical block
diagram (the LabVIEW-source code) on which the programmer connects different function-
nodes by drawing wires. These wires propagate variables and any node can execute as soon
as all its input data become available. Since this might be the case for multiple nodes
simultaneously, G can execute inherently in parallel. Multi-processing and multi-threading
hardware is exploited automatically by the built-in scheduler, which multiplexes multiple OS
threads over the nodes ready for execution.

2.2.3 SysML

SysML (Systems Modeling Language) [SysML] is a graphical modeling language for systems
engineers based on a subset of UML2.0 with extensions such as new diagrams (e.g.,
parametric diagram) and modified diagrams (e.g., activity diagram). SysML supports the
specification, analysis, design and validation of systems. It was motivated by the missing
standard notation and semantic of UML. The newly introduced requirements diagram
supports the specification of relationships between requirements using stereotypes (e.g.,
satisfy, derive, verify). The use case diagrams elaborate the interactions between external
users and the system. They are expressed either from the point of view of the users or from
the point of view of the system. Block definition diagrams describe the structure of a system
in a hierarchical, tree-like fashion. In order to describe behaviour, sequence diagrams, state
machines, and activity diagrams can be used. The parametric diagram is a new diagram
that explains relationships between parameters (e.g., dependencies between variables).

The differences of SysML to the solution presented in this paper are similar to the
ones for MARTE. SysML provides a language and does not constrain an implementation
concerning a specific architecture.

2.2.4 Architecture Analysis and Design Language

The Architecture Analysis & Design Language (AADL) is an approved industry standard that
has been developed under the guidance of the Society for Aerospace Engineers (SAE) [8]. Its
core focus is modeling and model-based analysis of real-time embedded systems. Systems are
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modelled in terms of components and their interactions, for which AADL distinguishes two
classes of components: software components and execution platform components. Software
components describe the software structure including the sequence of execution in the final
system using threads, processes, sub-programs, and data.

The hardware of embedded systems is expressed in terms of execution platform
components such as processors (execution of threads), memories (storage of code and
data), buses (access among components), and devices (interaction with the environment).
For specifying interactions between components, AADL provides ports (data, event, and
event data port), which enable the directional exchange of data or events. Moreover,
specialized connectors describing the access to a common shared resource such as a bus
as well as for the interaction between sub-programs are defined in the AADL standard. In
contrast to other modeling languages, e.g., such as UML, AADL specifies semantics for
the standardized types, components and their interactions. This way, different tools have a
common interpretation of AADL models, which eases the comparability of analysis results
of different tools. AADL supports model interchange and tool chaining based on a standard
XML/XMI definition. However, as explained for the MARTE UML profile, AADL provides
the means for modeling and analysis of embedded systems but does not guide the system
engineer in the way to design embedded systems. To our knowledge, AADL provides no
mechanism to define meta-models for AADL that define what a valid model of an execution
platform for a particular type of systems such as DECOS should look like.

2.2.5 Ptolemy

The Ptolemy project studies modeling, simulation, and design of concurrent, real-time,
embedded systems. The focus is on assembly of concurrent components. The key underlying
principle in the project is the use of well-defined models of computation that govern the
interaction between components. A major problem area being addressed is the use of
heterogeneous mixtures of models of computation. A software system called Ptolemy Il is
being constructed in Java. The work is conducted in the Center for Hybrid and Embedded
Software Systems (CHESS) at the Department of Electrical Engineering and Computer
Sciences of the University of California at Berkeley. The project is directed by Prof. Edward
Lee.

The class of systems addressed by the project is sometimes called reactive systems.
Reactive systems are those that interact with their environment at the speed of the
environment. They are often embedded systems, and have been contrasted with interactive
systems, which react with the environment at their own speed, and transformational systems,
which process a body of input data to produce a body of output data. Reactive systems
typically include elements of signal processing, communications, and real-time control. They
are typically implemented with mixed technologies, possibly including embedded software,
custom digital hardware, configurable hardware, analogue circuits, microwave circuits, and
micro-electromechanical systems (MEMS).
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A key principle in the Ptolemy project is the use of multiple models of computation in
a hierarchical heterogeneous design environment.

A premise in this work is that no single general purpose model of computation is likely
to emerge in the near future that will deliver what designers need. Modeling the diverse
implementation technologies and their interaction is not reasonable within a homogeneous
environment.

Ptolemy Project Objectives

The project aims to develop techniques supporting heterogeneous modeling, including both
formal "meta-models” and a software laboratory for experimenting with heterogeneous
modeling. In this context, it has explored methods based on data-flow and process
networks, discrete-event systems, synchronous/reactive languages, finite-state machines,
and communicating sequential processes. It has made contributions ranging from
fundamental semantics to synthesis of embedded software and custom hardware.

The approach of the Ptolemy project at this time includes:

= Use of programming language concepts such as semantics, type theories, reflection,
and concurrency theories in system-level design of electronic systems.

= Focus on domain-specific modeling and design problems so the designer can focus on
the problem, not the tools.

= Emphasis on understanding of systems, which is promoted by visual representations,
executable models, and verification.

= Use of Java, design patterns, UML, and a modern software engineering practice
adapted to the realities of academic research.

Ptolemy software provides the laboratory for the experimental side of the project.

Ptolemy supports the interaction of diverse models of computation by using the object-
oriented principles of polymorphism and information hiding.

For example, using Ptolemy software, a high-level data-flow model of a signal processing
system can be connected to a hardware simulator that in turn may be connected to a
discrete-event model of a communication network.

Since the Ptolemy Project began, numerous advances in semantics, design, simulation,
and code generation have occurred. Results of the Ptolemy Project have included:

= adaptation of modern type theories to block-diagram-level specification of systems.
= timed extensions of communicating sequential processes (CSP) and process networks.

= a modular approach to synchronous/reactive design.
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a mathematical framework for comparing models of computation and studying their
interaction.

= a bounded execution policy for process networks.

= formalization of computational models for data-flow.

= managing regularity in data-flow graphs using higher-order functions.

= automating the design of multidimensional multi-rate systems.

= simulating and scheduling multidimensional multi-rate systems.

= simulating heterogeneous systems.

= modular hierarchical finite state machines with various concurrency models.
= synthesizing embedded software from data-flow graphs.

= parallel scheduling techniques.

= optimizing interprocessor communication in parallel implementations.

= deriving fast algorithms for hardware/software partitioning of data-flow graphs.
= managing tool invocations and data dependencies in design processes.

= integrated heterogeneous design visualization.

The Ptolemy software environment has been wused for a broad range of
applications including signal processing, telecommunications, parallel processing, wireless
communications, network design, investment management, modeling of optical
communication systems, real-time systems, and hardware / software co-design.

Ptolemy software has also been used as a laboratory for signal processing and
communications courses. Currently, Ptolemy software has hundreds of active users at various
sites worldwide in industry, academia and government.

2.2.6 SystemC

SystemC [IEEE1666-2011], IEEE Std. 1666 is an ANSI standard C++ class library for system
and hardware design, developed by the Accellera Systems Initiative [Accellera]. SystemC
supports electronic system level design, by simulating of hardware-software systems.
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Transaction level (TL)

TL denotes the abstraction level at which communication between concurrent processes is
abstracted away from pin wiggling to transactions. This term does not imply any particular
level of granularity with respect to the abstraction of time, structure, or behaviour.

Transaction level model (TLM):

TLM represents a model at the transaction level. Transaction level models typically
communicate using function calls, as opposed to the style of setting events on individual
pins or nets as used by RTL models.

This standard defines SystemC®! with Transaction Level Modeling (TLM) as an ANSI
standard C++ class library for system and hardware design. The general purpose of this
standard is to provide a C++-based standard for designers and architects who need to
address complex systems that are a hybrid between hardware and software. The specific
purpose of this standard is to provide a precise and complete definition of the SystemC class
library including a TLM library so that a SystemC implementation can be developed with
reference to this standard alone. This standard is not intended to serve as a user's guide or
to provide an introduction to SystemC, but it contains useful information for end users.

SystemC models are hierarchical and executable. The models are composed of modules
(called SC_MODULE) consisting of input/output ports, internal signals, concurrently running
imperative processes and instances of other blocks. The execution of models is governed by
the discrete-event (DE) driven simulation engine provided by SystemC.

In order to perform simulations, SystemC relies on the discrete notion of time with a
configurable time granularity (from femtoseconds to seconds). This time might be used
to provide a global notion of time among the components of SystemC models. Events are
instantaneous in SystemC, and simulation time of processes is zero. Therefore, the processes
triggered by a given event are executed sequentially, based on the concept of the ‘delta-
cycle’. The delta-cycle is basically an infinitesimal physical duration that does not advance
simulation time, which is typically used to perform a sequential simulation of simultaneous
tasks in zero simulation time, giving the illusion of a concurrent simulation of simultaneous
processes.

One of the main strengths of SystemC is that hardware and software components can
be described in a common language. What is more, both HW and SW components can
be indistinguishable at the beginning of the design, since they are assigned to abstract
modules that are only later do refined as HW or SW components. Due to its capability to
describe both HW and SW components in a unique language, and its ability to simulate
concurrent processes, SystemC has nowadays become the de-facto standard in HW/SW
system development.

1SystemC is a registered trademark of the Accellera Systems Initiative.
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Each module of SystemC can express a set of processes, via the SC_METHOD(),
SC_THREAD() and SC_CTHREAD() commands. These processes are distinguished as
explained in the following:

= SC_METHOD: Every time the simulation calls one of these processes, they run from
the beginning to the end and they return. They are not allowed to suspend or to be
interrupted, so they are considered as atomic functions.

= SC_THREAD: Processes of this type are started only once by the simulator. Once the
thread starts to execute, it controls the simulation until a wait () statement is found,
which suspends the simulation and gives the control back to the simulator. Hence,
SC_THREAD processes usually contain an infinite loop containing one or more wait ()
statements. It is also possible to terminate the thread by using a return statement.

= SC_CTHREAD: This process type is a variant of the SC_THREAD process, with the
variation that imposes the process to be sensitive to clock edges. In addition to wait ()
statements, SC_CTHREAD processes can use wait_until(), which is equivalent to
repeat wait () functions in a loop until a certain condition holds.

In industry, it is infrequent that all modules within a system are modelled at the same
level of abstraction simultaneously. Instead, commonly, different models of abstraction are
required within a given system during its development, for example:

= A designer may use a very detailed model for a design under test but a very abstract
model for the generation of the stimuli for the system.

= With a very detailed model as a starting point, the designer might create a more
abstract model in order to increase simulation speed when testing another part of the
system.

In order to deal with this issue, SystemC allows modeling systems at diverse levels of
abstraction, and even enables designers to model subsystems of a given system at different
abstraction levels, such as the register transfer level (RTL) or the more abstract transaction-
level model (TLM) [Ghe06]. Hence, SystemC does not impose a top-down or a bottom-up
design flow. Besides abstraction, SystemC also provides the other two model simplification
strategies:

= Abstraction: SystemC enables the designers to define hierarchical modules in order to
hide or show the internal details of each component as desired.

= Partitioning: Communication and computation concerns are strictly decoupled in
SystemC. Furthermore, partitioning may also be applied in the models by defining
independent sub-modules for different aspects of the functionality of systems. The
overall functionality is then achieved by the interaction of such sub-modules.
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Segmentation: SystemC enables simulating the resulting functionality of systems
containing simultaneous sub-modules, by running them sequentially and making use
of the concept of the delta-cycle.

Although the simulation engine of SystemC is natively event-triggered, different
extensions have been made to it in order to support different MoCs. Some of them are
briefly introduced in the following:

SystemC-AMS [IEEE1666.1-2016]: SystemC-AMS (SystemC - Analog Mixed Signal)
is an extension to SystemC that enables the developers to model and simulate analog
and mixed (analog and digital) signals, so that continuous-time models and discrete-
continuous heterogeneous models can be simulated and verified.

SystemC-H [PS04, PS06]: This extension to the SystemC language focuses on the
design of heterogeneous models. It provides a simulation kernel that is capable of
modeling and simulating parts of the system based on the concurrent sequential
processes (CPS), finite state machine (FSM) and synchronous data-flow (SDF) MoCs.

HetSC [HSV05, HV06, HV08, HetSC]: HetSC is another approach for the modeling
of heterogeneous systems in SystemC. It is essentially a library of MoC-specific
communication channels that can be introduced in SystemC models to simulate the
behaviour of systems based on different MoCs. Among others, the library includes
communication channels for Kahn process networks, synchronous-reactive models or
synchronous data-flow models.

HetMoC [ZSJ10]: HetMoC is a formal heterogeneous framework for the development
of multi-MoC systems in SystemC developed at the KTH Royal institute of Technology.
This framework enables designers to design a network of heterogeneous processes
that communicate among themselves by the exchange of signals via FIFO channels.
Different domains are integrated by the use of domain-specific interfaces. The
HetMoC framework provides interfaces for SR, DE, continuous and untimed models
of computation.

SystemC-MDVP [FWI+14]:  The SystemC Multi Domain Virtual Prototypes
(SystemC-MDVP) is a language extension to SystemC-AMS, developed in the
CATENE CA701 H-INCEPTION project [HINCEP]. Therefore, analog-mixed signal
simulation will be handled by SystemC-AMS, and other physical domains such as
microfluidic systems will be supported by defining and integrating the necessary MoCs
in the language.

Assertion Verification on SystemC TLM models

Assertion Based Verification (ABV) is a functional verification technique to detect design
bugs, widely used in electronic systems verification [TSP+09]. An assertion is a directive to

27



Chapter 2. Background

check a property on a model of the system. Although ABV is applied on SystemC executable
models at RTL, recently ABV abstraction is being raised to the Transaction Level (TL).

Aim The objective is to reduce the development cost in design flows with team redundancy
from the initial specification (independent design and verification teams).

Method The approach consists of an automated verification framework that integrates
with the SystemC executable model without embedding the verification code into the
design model. The same stimuli inputs are reused across different abstraction levels.

Contribution A TL verification framework supported by a library built on top of SystemC.

Applications Simulation of an elderly people care system (CONFIDENCE). An Impulse-
Radio Ultra-Wide Band (IR-UWB) is modelled in Matlab, the system TL models
are based on the SAYY library, and assertion-based verification is applied on the
executable models. The CONFIDENCE system is modelled hierarchically by means of
nested models of different levels of detail.

Verification by embedding Matlab in SystemC TLM

SystemC is a standard open source class library written in ANSI C4++ language for creating
executable models of electronic systems [TSA+09a]. High abstraction models for the early
system definition are addressed by means of un-timed or approximate-timed transaction level
modeling techniques (TLM). TLM models allow high simulation speed.

Matlab is used for the design of executable specifications of algorithms.

Aim The objective is to reduce the development cost by using a cooperative software
framework for early system architecture exploration by different design teams using
diverse tools.

Method The approach consists of the functional verification of algorithms expressed in the
MATLAB language by co-simulation with SystemC executable models of the system
architecture.

Contribution A C++ abstraction class library (MatlabEngine++) that wraps Matlab's C
API as a singleton for embedding a Matlab Engine in SystemC executable models.

Applications Simulation of an elderly people care system (CONFIDENCE) (see also ABV).

System Behaviour Capture: from UML to SystemC

While SystemC is the standard for creating executable models of electronic systems, Unified
Modeling Language (UML) is widely used for software engineering. For abstract system
conception and definition an UML subset that consists of use case diagrams and state
machine diagrams suffices [PSU+-08].
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Aim The objective is to provide a smooth transition from UML system functional description
to a SystemC executable model.

Method The approach consists of a basic transaction class library compliant to the SystemC
TLM 1.0 standard, implementing a set of architectural patterns for Actors and Entities.

Contribution A SystemC transaction class library SAVY, with a UML description.

Applications Not described.

2.2.7 Languages for Modelling Arguments

A safety case specifies the interpretation and implementation of safety requirements in a
system, including the engineering decisions and rationale to show the safety achievements.
This information is mainly expressed in textual language, which suffices for simple safety
cases. However, for complex safety requirements, pure textual language descriptions often
lead to unclear, unstructured and ambiguous safety cases.

The problem of formalizing arguments was tackled in the philosophy essay from
Toulmin [Tou58]. Toulmin made an analogy between logic and jurisprudence, focusing on
the critical function of the reason, and took as a model the structure and procedures of law-
suits. Toulmin introduced a graphical notation and also provided a generic argument pattern
which supported the construction of hierarchies of arguments. Graphical representations are
important in managing complexity, as these facilitate the transmission of complex ideas
among individuals.

The idea of structuring logical arguments to demonstrate the actual achievement of a
claim suits the intent of safety cases, i.e., the justification through evidences that a system is
acceptably safe for a specific application in a specific operating environment. Following the
Toulmin approach, several other argument notations were developed. There exist several
languages that have been used to model arguments for safety cases, for instance:

1. Argumentation Meta-model (ARM) [ARM], nowadays subsumed in Structured
Assurance Case Meta-model (SACM).

2. Goal Structuring Notation (GSN) [GSN], that found a widespread application in
aerospace safety cases, with a number of software tools supporting GSN.

3. Claim Argument Evidence (CAE) [CAE], already used in DREAMS modular Safety
Cases [DRE511, DRE512, DRE5S13].

4. Structured Assurance Case Meta-model (SACM), where the formal version of SACM
is a combination of Argumentation Meta-model (ARM) and Software Assurance
Evidence Meta-model (SAEM) documents [SACM].
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At this point, we reflected on the best language to describe, store and compose argument
models as intended, bringing these conclusions:

1. ARM is deprecated, and SACM should be used instead of ARM.

2. GSN has been in use for a while, and it has been enhanced and extended to support
the certification arguments in many ways, e.g.:

= Habli and Kelly introduced GSN extensions to support a safety case
approach [HK10];

= Hutchesson and McDermid [HM13] applied GSN for developing trusted product
lines.

= Denney et al. [DPP12] developed AdvoCATE, a tool to automate building
certification arguments.

= Denney et al. [DPH11] extended the GSN with annotations for confidence
measurement, to handle also possible subjective criteria w.r.t. the strength or
credibility of the solutions supporting the argument. This enables the integration
of complimentary information, e.g., the ‘strength’ credited to the evidences by
a reviewer to support an argument (e.g., the position paper CAP 760 [CAP760]
states the supporting strength associated to evidences generated by specific
arrangements of Verification and Validation (VnV) techniques).

» GSN usage is recommended to structure the arguments in the aerospace
domain [CAP760], with SC development guidelines [SCDMO6].

3. CAE is a proprietary language, with limited tool support [ASCE, CERTWARE].

4. SACM provides more expressiveness than GSN or CAE, which eases the automation
and integration of information; on the other hand, it does not define a graphical
depiction of the arguments, where it is a useful feature of GSN or CAE to present the
argument in a reader-friendly format. Another drawback of SACM is the novelty of
the specification, which makes SACM unstable and could bring forward maintainability
issues for the models or tools.

2.3 Safety Systems

This section summarizes safety-related terms used in this document.

2.3.1 Safety Integrity Level (SIL)

The standard IEC-61508:2010 [IEC61508] defines a Safety Integrity Level as “a discrete level
(one out of a possible four), corresponding to a range of safety integrity values, where safety
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integrity level 4 has the highest level of safety integrity and safety integrity level 1 has the
lowest."

Table 2.1: Domain-specific Safety Integrity Levels

Domain Standard Domain-Specific Safety Levels

Generic IEC-61508 - SIL1 SIL2 SIL3 SIL4
Automotive SO 26262 QM ASIL-A  ASIL-B/C  ASIL-D =
Machinery  1SO 13849 PLa PLb/c PLd PLe -
Railway EN 50126,/128/129 — SIL1 SIL2 SIL3 SIL4
Aviation DO-178/254 DAL-E DAL-D DAL-C DAL-B  DAL-A

ASIL: Automotive Safety Integrity Level / DAL: Design Assurance Level / PL: Performance Level /
QM: Quality Management / SIL: Safety Integrity Level

2.3.2 Systematic Capability

The standard IEC-61508:2010 [IEC61508] defines a systematic capability as a “measure
(expressed on a scale of SC 1 to SC 4) of the confidence that the systematic safety integrity
of an element meets the requirements of the specified SIL, in respect of the specified element
safety function, when the element is applied in accordance with the instructions specified in
the compliant item safety manual for the element.”

Architectures for low demand mode of operation

= Jool: This architecture consists of a single channel, where any dangerous failure leads
to a failure of the safety function when a demand arises.

= J00o2: This architecture consists of two channels connected in parallel, such that either
channel can process the safety function (see Figure 2.3a). Thus there would have to
be a dangerous failure in both channels before a safety function fails when demanded.
It is assumed that any diagnostic testing would only report the faults found and would
not change any output states or change the output voting.

» 1002D: This architecture consists of two channels connected in parallel. During
normal operation, both channels need to demand the safety function before it can
be activated. In addition, if the diagnostic tests in either channel detect a fault then
the output voting is adapted so that the overall output state then follows that given by
the other channel. If the diagnostic tests find faults in both channels or a discrepancy
that cannot be allocated to either channel, then the output goes to the safe state. In
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order to detect a discrepancy between the channels, either channel can determine the
state of the other channel via a means independent of the other channel. The channel
comparison / switch over mechanism may not be 100 % correct in its operation
therefore a parameter 'K’ represents the efficiency of this inter-channel comparison
/ switch mechanism, i.e., the output may remain on the 2002 voting even with one
channel detected as faulty.

= 2002: This architecture consists of two channels connected in parallel so that both
channels need to demand the safety function before it can take place (see Figure 2.3b).
It is assumed that any diagnostic testing would only report the faults found and would
not change any output states or change the output voting.

= 2003: This architecture consists of three channels connected in parallel with a majority
voting arrangement for the output signals, such that the output state is not changed if
only one channel gives a different result which disagrees with the other two channels.
It is assumed that any diagnostic testing would only report the faults found and would
not change any output states or change the output voting.

Channd 1

s Vo .
: Diagnostics:

@ — channd2

(c) Block diagram for a 1002D architecture. (d) Block diagram for a 2003 architecture.

Figure 2.3: Safety architectures.
(source: [IEC61508])
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2.3.3 Fail-Safe and Fail-Operational Systems

Safety-critical systems are classified as fail-safe and fail-operational, depending on the system
actions upon failures:

Fail-safe system: A fail-safe system is a dependable system with a set of pre-defined safe-
states that the system should reach when a component fails. Once in the safe state,
the system operation remains disabled to prevent accidents.

Fail-operational system: A fail-operational system is a dependable system that shall
remain operational in the event of failures, although it would provide its services
in a degraded-mode. A typical example of a fail-operational system is an aircraft
flight control: there is no reachable safe-state during flight, therefore the system has
to keep the control of the airplane until landed.

2.4 Virtual Devices

This section introduces commercially used terms to designate virtual embedded devices.

2.4.1 Virtual ECU (V-ECU)

A Virtual ECU (V-ECU) [V-ECUa] is software that emulates a real Electronic Control Unit
(ECU) in a simulation scenario. The V-ECU comprises components from the application
and the basic software, and provides functionalities comparable to those of a real ECU. A
V-ECU usually has the same software components as the finished ECU, representing the
real ECU realistically.

The abstraction level of a V-ECU depends on its application case:

= V-ECU for developing a single ECU function (contains selected parts of the application
software;

» V-ECU at application level (application software components, operating system).

» V-ECU including parts of basic software (application software components, operating
system, hardware-independent basic software such as DEM, NVRAM, ECU state
manager, COM, etc.).

2.4.2 Restbus Simulators

The term Restbus simulator denotes a test component that emulates the messaging
behaviour of a group of devices communicating with a system under test.
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2.5 Motion Sensors

This section describes a kind of sensors commonly used to control moving parts of a system.
The case studies presented in this dissertation consist of systems that shall operate moving
parts in a safely way: a train speed supervision system, an elevator simulator for elevator
control systems, and a wind turbine over-speed protection system. The three considered
applications implement safety functions that rely on measurements of the position or the
speed of the moving part relative to some reference system. Among the diverse position
sensing technologies, encoders are common to the three case studies. Regardless the encoder
is included as a part of the system under study or is considered as an external device, it
shall be also considered for the examination of the overall dependability.

An encoder is an electromechanical device that can measure motion or position. Most
encoders use optical sensors to provide electrical signals in the form of pulse trains, which
can, in turn, be translated into information about motion, direction, or position.

Rotary encoders are used to measure the rotational motion of a shaft. An optical
rotary encoder consists of a light-emitting diode (LED), a disk, and a light detector on the
opposite side of the disk. The disk has patterns of opaque and transparent sectors coded
into the disk. The disk is mounted on the rotating shaft, so that as the disk rotates, the
opaque segments block the light and, where the glass is clear, light is allowed to pass. This
generates square-wave pulses, which can then be interpreted into position or motion.

Linear encoders work under the same principle as rotary encoders but using a stationary
strip instead of the rotary disk. In linear encoders the position-detector assembly is usually
attached to the moving body. Linear encoders can use different measuring technologies:
optical (as optical rotary encoders), magnetic, etc.

As a single set of pulses does not indicate the motion direction, most commonly found
encoders use two code tracks with sectors positioned 90 deg out of phase. These are called
quadrature encoders. Therefore, by monitoring both the number of pulses and the relative
phase of the output signals (usually named ‘A" and ‘B’)from a quadrature encoder, both
the position and direction of rotation can be tracked.

Encoders can be incremental or absolute. An incremental encoder only measures
changes in position (from which you can determine velocity and acceleration), but it is not
possible to determine the absolute position of an object. On the other hand, an absolute
encoder is capable of determining the absolute position of an object. An absolute optical
encoder has alternating opaque and transparent segments like the incremental encoder,
but the absolute encoder uses multiple groups of segments that form concentric circles (in
rotary encoders) or parallel tracks (in linear encoders). Each segment group has a different
number of segments, one segment doubling the number of binary encoding from the prior.
Absolute optical encoders have a separate light source and receiver for every segment group,
so that the readings form a binary counting system. Regardless of the measuring technology,
absolute encoders have to timely transmit a position value by some means.

Incremental encoders have some disadvantages. It is possible that the measurement
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is continuously invalid due to signal glitches, unmeasured impulses or similar problems.
Furthermore, after a loss of the supply voltage it is often necessary to return to a reference
point, to reset the estimated position to a known value. For these reasons absolute encoders
are often used in applications requiring high precision or where it is complicated or impossible
to return to a reference point .

2.5.1 Encoder Interfaces

Incremental encoders are usually connected to a logic counting circuit, that may also decode
the motion direction or even compute the speed of the moving part. Absolute encoders
require parallel interface or a communication bus to transmit the position information.

Incremental Encoder Interfaces

According to the signal interface, incremental encoders can be single-ended, where the A
and B signals are both referenced to ground requiring a single wire per signal, or differential,
where there are two lines per each A (named A and A’) and B signal (respectively called B
and B’). In differential encoders all four lines are always supplying a known voltage (either
0 V of Vcc): when A'is Vee, A’ is 0V, and when A is 0 V, A" is Vcc. In the case of a single-
ended encoder, A is either Vcc or it floats. Differential encoders are often used in electrically
noisy environments because taking differential measurements protects the integrity of the
signal.

Figure 2.4 depicts the pulse trains generated by a quadrature encoder with differential
output interface. The top plot represents the position of the moving part to which the
encoder is attached. The middle plot represent the scaled [A, B] output signals modulated
by the encoder. As shown in the figure, the frequency of the pulses is proportional to the
motion speed. When the direction of the motion reverses, then it also reverses the relative
phase of signals A and B. The plot at the bottom represents signals A’ and B’, that are the
logical negation of signals A and B.

The outputs from the quadrature encoder are connected to an edge counter circuit, which
converts the pulse trains to a position value. For instance, signal A can be connected to the
counter source terminal, making this the signal from which the pulses are counted. Signal
B is then connected to the up/down terminal, to select whether a pulse edge increments
or decrement the counter value. The current count is stored in a digital register that is
instantly available for evaluation.

The process by which edge counts are converted to position depends on the type of
encoding used. There are three basic types of encoding, X1, X2, and X4.

1. X1 Encoding: When channel A leads channel B, the increment occurs on the rising
edge of channel A. When channel B leads channel A, the decrement occurs on the
falling edge of channel A.
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Figure 2.4: Quadrature encoder input (position) and outputs (A, B, A’, B’)

2. X2 Encoding: The same behaviour holds for X2 encoding except the counter
increments or decrements on each edge of channel A, depending on which channel

leads the other. Each cycle results in two increments or decrements.

3. X4 Encoding: The counter increments or decrements similarly on each edge of
channels A and B for X4 encoding. Whether the counter increments or decrements
depends on which channel leads the other. Each cycle results in four increments or

decrements.

Absolute Encoder Interfaces

Absolute encoders read a position code that relates to an absolute numerical value. Thus,
the position value is always directly available, and counters are not necessary. In addition
it is not possible to get continuously invalid values caused by interferences or loss of the
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supply voltage. Movements which are done while the system is turned off are immediately
measured after the system is powered up. The absolute position value can be transmitted
to the control system by different means:

1. Bit parallel interface: All bits of a position are transferred simultaneously using one
line for each bit. This interface is fast and provides a suitable data transmission for
low resolution applications. However, the cabling with bit-parallel interface becomes
problematic for high resolutions, longer cable lengths, or multiple-axis machines. In
those applications other methods of data transmission are more favourable.

2. Synchronous-serial-interface (SSI): The synchronous-serial-interface is based on
the RS 485/RS 422 transmission standards, implementing the data transmission with
one 6-wire cable: one twisted pair line for the data; one twisted pair line for the
clock, and two wires for the power supply of the encoder. The balanced transmission
provides high noise immunity; crosstalk on the line does not effect the signals. The
twisted pair lines are sufficient for the transmission. Extremely high noise immunity
is achieved when shielded twisted pair lines are used. There are also encoders with
other interfaces similar to SSI, e.g., HIPERFACE or EnDat.

3. Fieldbus Interfaces Field buses enable the communication of automation components
among themselves. Bus systems are increasingly used for automation, enabling the
design of system concepts incorporating decentralized solutions, in particular open
field bus systems such as Profibus, Interbus and CAN bus:

= Profibus: A Profibus system consists of one or more masters and one or more
slaves, which are connected by bus cables and bus plugs. The master is usually
realized as a connecting module at the control system. Typical slave devices are
sensors, actuators, transducers or display elements. Thus, an encoder operates
on the Profibus as a slave. There are mandatory encoder profiles, which are called
class 1 and class 2. The selected device class determines the specifications of
the encoder, as well as the length of the input and output data. Absolute class 1
encoders cannot be parametrized, whereas class 2 encoders can be parametrized.
Configuration is done by the means of a GSD file (electronic data sheet), that
determines the address of the device (which identifies the encoder exactly)
and the device class. Encoders can implement additional manufacturer-specific
functions (e.g., velocity output) that can also be selected during the device
configuration. Once the device configuration is set, the appropriate parameters
(e.g., resolution, direction of rotation, software limit switch, etc..) are saved
in a database and transferred to the encoder when starting the system. Data
can be read from the encoder (e.g., position value) or written to the encoder
(e.g., pre-set value) using the input and output addresses determined in the
configuration.
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= Interbus: INTERBUS is an open sensor/actuator bus system with one master
and several slaves, called users. An INTERBUS system conforms to a ring
structure. Beginning at the master (PLC or IPC), the bus system connects
the respective control or computer systems to the peripheral input and output
modules. The individual users are connected by an installation remote bus cable.
The address of the individual users is given by their physical position on the
bus. The absolute encoder is a remote bus user. There are three standardized
INTERBUS encoder profiles: (a) K1 (not programmable; 16-bit process data);
(b) K2 (not programmable; 32-bit process data); and, (c) K3 (programmable;
32-bit process data).

= CAN bus: Controller Area Network (CAN) is a multi-master bus system, i.e., all
users can access the bus at any time as long as it is free. CAN operates with
message identifiers. Access to the bus is performed according to the CSMA/CA
principle (carrier sense multiple access with collision avoidance), i.e., each user
listens if the bus is free, and if so, is allowed to send messages. If two users
attempt to access the bus simultaneously, the one with the highest priority (lowest
identifier) receives the permission to send. Users with lower priority interrupt
their data transfer and will access the bus when it is free again. Messages can be
received by every participant. Controlled by an acceptance filter the participant
accepts only messages that are intended for it. There are encoders implementing
different CAN protocols: DeviceNet, CANopen, CANopen Lift (specific variant
for elevators), CANopen Safety (variant for safety-critical applications), etc.

= Ethernet: Besides the above mentioned buses, manufacturers provide also
encoder variants with Ethenet interfaces,e.g., EtherCAT, Ethernet/IP, ProfiNet,
Powerlink or Modbus/TCP.
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Currently embedded software implements the bulk of functionality and features in
programmable electronic products. The development and verification processes for
dependable programmable electronics has become the main limiting factor for shortening the
time to market [CFS05]. Embedded systems ubiquity in a broadening variety of products and
applications, the increasing functional complexity of the systems and the pressure to shorten
the time to market for embedded systems demand a highly efficient development processes.
While aiming at lower development costs, sectors like automotive electronics or software
engineering progressively introduced design tools with coding automation capabilities. This
development paradigm is known as Model-Based Development (MBD) or Model Driven
Development (MDD). The key of MBD / MDD is in achieving a better consistency of
the built system with regard to the specifications, improve re-usability of knowledge and
components, and better technical documentation about the system under design or under
analysis by means of a set of models that comprise the relevant information about the
system.

3.1 Testing Objectives

The ability to numerically express the testing objectives is a desirable prerequisite for the
automation of the test design process. The rationale behind the research on testing for
dependable embedded systems, and particularly for safety-related applications, is that the
increasingly demanding certifications require objective and reproducible verification processes
that should be assessed.

39



Chapter 3. State of the Art

There are testing design approaches based on the quantification of the test objective,
thus providing a scientific background for the problem of functionally expressing the fitness
of a test suite by a number. One of them is the "evolutionary testing" technique that is based
on the transformation of the test design aim to an optimization problem. A refinement of
the test suites is carried out by applying meta-heuristic search algorithms, that improve the
suitability of the test scenarios for the specific test objective. This motivates the analysis of
the state of the art in evolutionary testing as a basis for further improvement of the metrics
available for the test design.

Regarding the test objectives, this section recalls the test taxonomy used in [WSBO01]
as a common understanding of the test problems related to embedded systems verification.
The test problems are classified in the following groups, depending on the test objective:

Functional testing: The test objective is to define a set of test scenarios for verifying the
built system functions as specified in the requirements.

Robustness testing: The test objective is to exercise the fault tolerance mechanisms
implemented in the system.

Safety testing: The test objective is to find operational scenarios where the system is
working out of a predefined safety boundary. The safety boundary consists of a set of
constraints on timing or variables derived from the safety requirements.

Structural testing: In structural software testing the aim is to find a set of test scenarios
that exercise the maximum amount of code and cover all the possible control flows,
in order to thoroughly verify the system in every possible state, according to some
metric that refers to the code structure.

Time-behaviour testing: The test objective is to find operational scenarios where the
system time constraints could be violated. A typical assumption is that the likelihood
of misbehaviour is greater when the components of the system run faster or slower
than the nominal reaction time, therefore the time-behaviour testing normally focuses
on scenarios where the system components operate at their best and/or worst-case
execution times (BCET/WCET).

3.2 Interrelationship between the Development Process
Models and Testing

The overall testing process must be adapted to the development paradigm used. Figure
3.1 represents the conventional waterfall (also known as V-model) development paradigm.

In the V-model, activities in earlier phases of the project define the verification procedures
and plans concurrently with the specification and design. The main drawback is that there
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is a significant lag between the System Level Testing Specification and the System Level
Verification, as for the latter we require a completely assembled system.

Requirements Acceptance Level Acceptance Level
Definition (RD) Test Preparation Testing (ALT)

(ALTP) k

Functional System System Level Testing System Level Testing
Design (FSD) Preparation (SLTP) (SLT
Technical System Integration Level Integration Level
Design (TSD) Testing Preparation Testing (SLT)
(SLTP)
Component Unit Lev el Testing Unit Lev el Testing Debugging
Specification (CS) Preparation (ULTP) uLm
[ Implementation j

Figure 3.1: Waterfall Development Process (V-model)
(source: [CF09])

When the system is developed following a model-based approach, the availability of
executable models enables testing at earlier stages, as the adapted V-model in Figure 3.2
shows.

Figure 3.3 outlines the differences in test objects and test levels between model- and
code-based development processes.

Taken to the extreme, in a Spiral Development Process, Testing and Design are carried
out almost simultaneously (see Figure 3.4). Although this Incremental Development differs
substantially from the conventional V-model in Figure 3.1, this process suits the pure top-
down approach initially devised in [Dij68].

3.2.1 Product Development Process Models

Projects are temporary allocations of resources commissioned to achieve a desired result. A
Product Development (PD) project consists of many multi-functional activities working
altogether to produce the information that will reduce the risk of the outcome being
something other than the project stakeholders desire. The unclear path to a project's
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Figure 3.2: MDD Process at Daimler
(source: [MSR+10])

goal can be described in terms of process uncertainty and ambiguity. Ambiguity is a source
of risk for PD projects. PD projects capable of co-evolving with their environments and
stakeholder needs can profit from the accelerating pace of change in market needs.

PD process modeling can help a project manager to understand the feasible "design
space" for the project, a set of process architectures called the process space.

Iteration occurs when the cumulative output deliverables of prior activities, plus the
assumptions that can be reasonably made at the time, are insufficient to enable subsequent
activities to add appropriate value to the project.

Iteration is a managerial control option and it will be exercised when it provides the path
of greatest added value to a project.

Product performance can be represented as a vector of attributes, each measured by
one or more technical performance measures (TPMs) that can be seen as one aspect of its
overall performance value. The TPMs define the technical performance level of a project.

The execution of project activities: 1) uses resources; 2) creates deliverables that can
revise one or more TPMs; and 3) thereby adjusts the state (and value) of a project. A PD
process may be modelled as a Cycle Accurate Simulator (CAS), where activities are agents,
deliverables imply their connections, and a process path emerges from the application of
simple rules for activity selection and deliverable flow. The fitness of (value provided
by) this process will depend on the dynamic state of the project (duration, cost, and
technical performance) and its environment (represented by project goals). Adaptability
in PD projects is facilitated by advance knowledge of the potential activities and their
relationships (planning) and their rules for combination (work policy), because this enables
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Figure 3.3: Test objects and test levels for model- and code-based control development

the activities to be quickly and effectively re-evaluated and reorganized over the course of
a project.

Systematic project control entails: 1) the synchronization of internal and external data
regarding the state of the project; and 2) the use of those data in making decisions on
project changes.

3.3 Test Automation for Safety Critical Systems

In [Pel96] Peleska analyses the verification of dependable systems with emphasis on the
safety aspect. Safety is a fairness property, thus detecting all the possible violations of the
property will theoretically require an infinite number of testing executions. In contrast, the
testing objective in practice is to find errors within a finite execution time. In practice, the
conventional manual analysis of test outputs is not sufficiently trustworthy, as errors could
be easily overlooked by humans. Also, as the system complexity grows, the test coverage
required for safety systems would be unmanageable and unattainable with acceptable costs.
A way to prevent this is to automate the test generation and test execution for safety critical
reactive systems. This can be achieved by a translation of the test specifications to a formal
language description upon which formal verification transformations can be applied. A key
point is the trustworthiness of the test tool, and the verification suite required to certify
such a framework.

Despite the introduction of formal methods, testing remains mandatory for verifying the

43



Chapter 3. State of the Art

Agile Future Increment Bcgelines
Short — Rebaselining for
Development Future Increments
ncrements ,
—\Peferrcﬂs
Foreseeable
Change (Plan) Short, Stabilized | |ncrement N Transition/0&M

» Development
of Increment N

Increment N Baseline

lArﬁfacts Concerns
Stable Development
Increments
Current V&V va&Vv Future V&V -
High Resources of Increment N | Resources
Assurance

Continuous V&V

Figure 3.4: Incremental Development Process (Spiral Model)
(source: [Boell])

behaviour on system level for safety-critical systems:

Formal development and verification usually cover partially the range of software and
hardware components.

Black-box testing remains as the only means to check the correctness of system
integrating third party components, because the vendors normally will not disclose
the implementation details for external conformance assessment,

Safety-critical systems have to integrate several built-in self-test features to detect
hardware wearing.

Acceptance testing is preferable to merely review of documents.

The general problem of testing against arbitrary types of specifications cannot be solved
in a fully automated way. But it becomes tractable if limited to well-defined restricted classes
of systems and test objectives, as the hardware-in-the-loop testing of reactive systems. The
aim is to create "implementable instantiations" of theoretical results for the construction of
dependable tools. One theoretical approach is Hennessy's testing methodology, based on
un-timed CSP process algebra.
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Logical Partition of a Test Automation System

In general, a Test Automation System integrates the following building blocks:
Test Generator: Creation of test cases from specifications

Test Driver: Interprets the test cases provided by the test generator and controls their
execution on the target system. The test driver exerts stimuli on the input channels
of the system under test and collects output data to analyse the behaviour.

Test Evaluator (Oracle): To verify the observed test execution against a specification and
to decide if the execution is correct. The specification for test evaluation can differ
from the specification used for test generation.

Test Monitor: To observe the test execution and decide whether all the relevant executions
for a test case have been exercised on the target, and to decide if the so far executed
test cases suffice for the required coverage. In many cases the black-box observations
of the system interface alone are insufficient for the tasks of the test monitor. A
Test Monitor usually requires additional channels for obtaining information about the
internal state of the system.

Testing Terminology

Some common terms used to denote verification and validation activities are:

Validation denotes the process of determining the completeness of the requirements and
their conformance to the customer’s demands. This process is normally based on
partial information, and thus cannot be fully automated.

Verification refers to the evaluation of development products in order to assure their
consistency with the relevant reference documents. As opposed to validation,
Verification relies on preceding information.

Formal Verification denotes verification done by mathematical reasoning, based on
reference information described in a language with a precise semantics.

Testing is the execution of implemented system components providing data at their input
interfaces while monitoring the component behaviour, to verify that the components
satisfy the specified requirements for the sets of input data applied. Simulation denotes
an abstract testing based on the symbolic execution of a specification with abstract
input data.
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3.3.1 Fault Injection

According to Avizienis et al. [ALR+04], a failure is an event that occurs when the delivered
service deviates from the correct service. An error is a deviation from the correct service of
an external state of the system, and a fault is the cause of an error. In other words, errors
are the manifestations of faults whereas failures are the consequence of errors. Therefore,
injecting faults into systems is a straightforward technique to verify that such faults do not
cause failures in the system, i.e., the system is tolerant to that faults.

Thus, fault injection strategies and techniques have been very widely analysed [BP03,
ZAV04] and several tools have been developed, most of them focusing on VHDL models
[JAR+94,GBG+01,BGB+08,MPEQ9]. However, as previously stated, SystemC is nowadays
the de-facto standard in industrial HW/SW system design and simulation. Therefore, fault
injection design and simulation in SystemC models has been getting an increasing interest
in the latest years [MVS07,SRH08, BMS08, LR11, RPV+13].

Misera et al. [MVSO07] adapt fault injection techniques and strategies from VHDL models
to SystemC models in order to analyse the limitations and possibilities of the SystemC kernel.
They simulate systems including saboteurs and simulator commands, and they extend logic
types of SystemC in order to perform a more realistic behaviour of logic components. Since
the approach is based on strategies used in VHDL models, they focus on logic-level models.
In [SRHO8] Shafik et al. propose an alternative technique to the one presented in [MVS07],
also focusing on logic-level models.

Bolchini et al. [BMS08] go one step further into multiple abstraction level fault injection.
They present a fault injection environment for the ReSP simulation platform [BBF-+08]. The
approach enables injecting faults by using saboteurs and simulator commands, using a novel
technique called reflective wrapper. It does not focus on a specific MoC, so simulation is
paused and resumed whenever a fault is injected.

In [LR11] Lu and Radetzki use the Concurrent and Comparative Simulation (CCS)
technique to inject faults into SystemC models. This approach makes it possible to perform
more than one fault injection experiment in each execution. The developer must use a
specific data-type in order to inject faults in variables, and fault libraries are not defined, so
the tester must implement the fault models.

Reiter et al. [RPV+13] perform error injection in simulated HW models defined using
the CHESS modeling language by extending the HW models in order to inject errors. The
approach provides a library of different error models, including data-corruption, timing-
corruption, halt, and signal-loss. The framework does not rely on a concrete model of
computation, and the paper does not describe how timing constraints of the System Under
Test (SUT) are guaranteed.

Regarding fault models and their simulation, the Model-Based Generation of Test-Cases
for Embedded Systems (MOGENTES) project [MOG31] specifies a number of HW and SW
related fault and failure models and taxonomies. On the other hand, the international ASAM
AE HIL [ASAMHIL] standard defines an interface to perform error simulation in Hardware
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in the Loop testing.

Fault injection modeling in UML for software testing

[MSU+09] Software Implemented Fault Injection (SWIFI) is a verification technique to
detect functional errors caused by hardware failures or systematic errors in the design.
SWIFI consists of the insertion of predefined faults in any software accessible units like
memories, registers, peripheral devices, etc. Software modeling is strongly recommended for
the development of high integrity safety critical systems, and currently Unified Modelling
Language (UML)2 is a widely used standard used for software modeling. Therefore a
tool supporting Fault Injection (FI) at early design stages would extend the verification
capabilities while modeling the system.

Aim To provide a UML Fault Injection framework for the verification of safety critical
systems designs.

Method The approach consists of implementing two components the Executive Manager
controlling the testing process and the Fault Injection Kernel (FIK), added to the
model under test (MUT). An automated model transformer will add Fl in the system
model for standardized fault types.

Contribution A library of components for dynamic fault injection during simulation of a
UML model in IBM Rhapsody Designer.

Applications 2003 control system for railways.

Fault injection modeling in HDL for system testing

[VMM+-09] The verification of high integrity safety-critical systems redundant architectures
(MooN) impose specific testing requirements regarding the inter-processor communication
channels and the voter functionality.

Aim To provide a Fault Injection test architecture for the verification of MooN safety critical
systems implementation.

Method The approach consists of implementing input/output and communication fault
injectors named saboteurs. These test components provide an additional control port
to trigger the fault behaviour from a test controller.

Contribution A MPC8280 Ethernet 100 communication saboteur implementation (FPGA
as less intrusive alternative).

Applications MooN RBC/ERTMS (railway)
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3.3.2 Model-based SW development vs. code-based
development

Model-based Testing (MBT) is an approach for the quality assurance of embedded systems.
MBT resembles Model-based Design (MBD) but applied to verification and validation
activities. The idea behind MBT is that carrying out verification and validation earlier
reduces the project risks. The expected benefit for early V&V is a shorter development
time, and lower costs than those achieved with a late testing process. An MBT process
works on the test specification, optimization and test planning concurrently with the design
tasks:

The delay between current adoption of MBT and already deployed MBD motivates the
research on many testing problems [Ber07] as illustrated for generic software testing in 3.5.

Figure 3.5: Software testing research road-map
(source: [Ber07])

In the last years multiple MBT techniques for embedded systems have been proposed
[Con08] .
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3.4 Model-Based Testing

This section reviews research works on the applicability of Model-Based Testing (MBT).

3.4.1 Methodological Issues in Model-Based Testing

Pretschner and Philipps [PP05] analyse some methodological issues with regard to model-
based testing. Testing denotes a set of activities that aim at showing that actual and
intended behaviour of a system differ, or at increasing confidence that they do not differ.
Often enough, the intended behaviour is defined by means of rather informal and incomplete
requirement specifications. Test engineers use these specification documents to gain an
approximate understanding of the intended behaviour.

That is to say, they build a mental model of the system. This mental model is then
used to derive test cases for the implementation, or System Under Test (SUT): input and
expected output. Obviously, this approach is implicit, unstructured, not motivated in its
details and not reproducible.
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The idea of model-based testing is to use explicit abstract behavioural models of the
SUT to encode the intended behaviour of a system, based on the system specifications.
The purpose of these models is to generate a finite set of traces that represent the stimuli
and expected output for the test cases. In order to ascertain that the model represents the
system specifications it is usual to carry out a validation of these test models. Finally the
traces provided by the test models are used for the verification of the implemented system
in order to increase confidence about the correctness of the realization.

With regard to model-based testing, two key questions arise:

1. If the test model has to faithfully represent the requirements, what are the benefits of
building a test model, validating it, deriving the test cases and running them against
the SUT instead of directly validating the SUT?

2. Taking into account time and cost constraints of engineering activities, is it possible
to use a shared, single model for the automated synthesis of the SUT and for testing
it?

The first question is answered by abstraction: the test model should be simpler than
the actual SUT, so as to make it easier to understand, validate, and maintain and make it
amenable for test case generation.

There are two basic approaches to simplification:

Omission of details Models are means to actually get rid of irrelevant details, and
capture the fundamental ideas conveyed by the specifications, making them easier to
understand and manipulate. This incurs an additional cost, as the different abstraction
levels of the testing models and the SUT prevent direct usage of testing results from
the model to verify the SUT. For testing the SUT, some specific test components
need to be developed to reinsert the discarded information.

Encapsulation of details Encapsulation is a way to reduce complexity by bundling details
of a system, which are packed in the form of libraries or language constructs. For
model-based testing this usually leads to the problem of building and validating a
model that is as complex as the system under test.

The answer to the second question is addressed by realizing that a testing activity
requires some sort of redundancy, provided by the selected realization methodology. Four
model-based testing scenarios can be distinguished:

Common model MBT The same model is used for both code and test-case generation.

The lack of redundancy prevents using automatic verdicts for testing the SUT with
automatic code generation, except for verifying the environment assumptions.
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Automatic Model Extraction The test model is automatically extracted from an existing
system. Low redundancy. The key is the abstraction purpose. Useful abstraction
requires some domain and application specific knowledge, so fully automated
abstraction is not achievable.

Manual Modeling The test model and the system models are built on top of a different
specification. Depending on the degree of interaction between the teams responsible
for specification and testing, for a low level of interaction a sufficient redundancy for
automatic assigning verdicts is achievable.

Separate Models Two redundant and separated models are used for test case generation
and code generation, thus allowing for automatic verdicts. This seems to be optimal
although not yet empirically verified, i.e., in the sense that it combines model-based
testing and model-based design, but is also most expensive approach.

In practice having a complete isolation between the development of the models and
the development of the code is unrealistic. For iterative development processes with clear
increment boundaries it is possible to interleave the development of both models, yet it is
likely to incur some overhead. Despite the fact that it is accepted that modeling might be too
expensive, modeling in itself helps in revealing errors, which is appealing for the embedded
systems industry. The fundamental concern about model-based testing is whether it is more
cost-effective than other testing approaches. Further studies with regard to the economics of
model-based testing are needed in order to help managerial decisions about the development
processes under given project constraints.

3.4.2 Testing Effort for Model-Based Testing (MBT)

Sinha et al. [SWS06] propose a measurement framework for the evaluation of four different
model-based generation tools. Following the Goal Question Metric methodology they
formulate metrics for complexity, ease of learning, effectiveness, efficiency and scalability.
Later the authors compare four different MBTG tools using a selected case study.

Gildali et al. [GMS10] tackle the managerial point-of-view about testing, following a
two-step approach in their research: first, provide an effort decomposition scheme suitable
for MBT, and second, provide a systematic method for analysing and comparing different
MBT scenarios. They identified six different model-based testing (MBT) scenarios described
in the literature up to the date of their investigation, sketched in Figure 3.7.

3.5 Test Re-usability

This section reviews some approaches to test re-usability.
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3.56.1 Testing Re-usability with Evolving Functionality

Harrold [Har08] states the test re-usability problem from the software maintenance viewpoint
(see Figure 3.8). She identifies four open research questions that arise in an incremental
development process:

1. The creation of the Regression Test Suite.
2. The unpredictability of the time needed to assess the outcome of testing.
3. The identification of faults and the location of the root causes.

4. The automated execution of the test suites.
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P’ version of T
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> Execute <
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Figure 3.8: Testing Evolving Software
Re-work and re-use of testing artefacts. (source [Har08])

3.56.2 Testing Re-usability in Model-Based Development

Marrero et al. [MK10a, MK10b, MK10c] analyse the test re-usability ratio in multi-level test
models for bottom-up and top-down and multi-level testing scenarios (see Figure 3.9). The
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objective is to improve the test re-usability from tests exercised on abstract descriptions
of the system. As shown in the figure, testing on models with mixed-levels of abstraction
requires a number of abstraction/concretization adapters to provide interface compatibility
among models. This topic was also analysed in [PP05], addressing some situations in which
the test on models cannot be computed due to a causality reversal in such adapters in a
bottom-up re-use approach.

A
3]
o TCG System
E 1 SYS Testing
<
5 IS
S TCG TCG System
© 1 + 2 SYS-C Component
D Testing
Q
< __ $ __L_ _l __________________________________________
e
3] Y
2
8 TCG + TCG + TCG SW Software
et 1 2 3 Testing
N
)
T B ———
gl ° A v
2 TCG TCG TCG TCG Software
® p + 5 + ‘ 3 ‘ + | SW-C Component
3 Testing
Abstract Detailed
<

Test Case Abstraction

Figure 3.9: Top-down reuse for multi-level testing
(source [MK10c])

3.6 Outlook for Testing in Software Engineering

Broy states that although formal methods help with constructive and analytical quality
assurance, still an important part is the validation of the requirements, for which we need
understandability and comprehensibility [Broll]. A significant goal is the reduction of
complexity and ease of understanding. This explains the acceptance of graphical description
techniques. Often understanding is even more important than formality, specially for
maintenance during the product life-cycle. Formal specification and verification can only
prove a correct relationship between the formal specifications and implementations, but still
cannot prove that the system meets valid requirements.

Model Based Engineering (MBE) is a software development methodology which focuses
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on creating models or abstractions. It is closer to particular domain concepts than
programming, computing and algorithmic concepts.

When early architecture verification is done accurately and the modules are verified
properly, we usually get fewer defects during system integration. If as part of the architectural
description of a system we provide an executable model of its constituent components, then
we have an executable system description. With such a description we can generate test
cases either at the system, integration and component levels.

For hierarchical systems the scheme of specification, design and iteration can be iterated
for each sub-hierarchy in the architecture.

Cost reduction factors:

1. Avoiding and finding defects early in the process.
2. Applying proven methods that are standardized and ready for use.
3. Automation of the development tasks and steps whenever possible.

4. Reuse of implementations, architecture requirements and development patterns
whenever possible.

The application domain should be modelled and integrated into the the development
process, which should support modeling with suitable tools.

Rustan and Leino analyse the role of Behavioural Abstraction in Software Engineering
[RL11]: Abstraction is a tool to cope with complexity by organizing a complex problem
into manageable and understandable pieces. Besides common forms of abstractions like
procedural abstraction, data abstraction and parametrization, we can use abstraction
by occlusion to hide or reveal the inside part of components, depending on the scope.
Hierarchical models fit for this purpose. Abstraction by occlusion is applicable to the
structural model of the system, but we need a different abstraction to describe what
the system does, namely the behavioural abstraction. Test suites constitute a form of
behavioural abstraction, as the set of test cases show the intent of the system design.

Stepwise refinement: The process of describing the salient properties of the system to
be constructed and then adding more details, each maintaining the properties described in
previous stages.

3.7 Standardization of XIL Tests

ASAM XIL [ASAMXiL] is an API standard for the communication between test automation
tools and test benches. The standard supports test benches at all stages of the development
and testing process —most prominently model-in-the-loop (MilL), software-in-the-loop (SiL)
and hardware-in-the-loop (HiL). The notation "XIL" indicates that the standard can be
used for all "in-the-loop" systems. This has the advantage that it enables users to freely

55



Chapter 3. State of the Art

choose testing products according to their requirements and integrate them with little effort.
Using ASAM XIL-compliant products allows users of test systems to mix and match the
best components from different suppliers without having costly integration efforts.

The standard furthermore decouples test-cases from real and virtual test systems. This
allows users to transfer tests between different test systems with little to no migration effort.
Consequently, tests can be easily re-used. Know-how is much easier transferred from one test
bench to another, resulting in reduced training costs for development- and test engineers.

These advantages are the result of two major components of the ASAM XIL standard:

= the framework, which provides data measuring and mapping functionality independent
from the used test bench hardware and software.

= the test bench, which provides port-based communication means to the simulation
model, the ECU, the electrical subsystem and the ECU network.

Test automation applications which use the ASAM XiL API are used in all automotive
E/E domains, e.g., drive-train, steering, electric lighting, etc. Cross tests for ASAM
XIL implementations are carried out regularly to ensure compatibility between the test
automation software and test benches.

The standard comes with a C# source-code library, which contains open source software
that can be used by framework developers to implement the XIL API. It covers about 69%
of the standard APl methods. Provided methods are unit and data type conversion, reading
mapping files, mathematical operations, and more. The source code has been professionally
developed and constitutes a standard-compliant implementation of significant parts of the
ASAM XIL APL.

3.8 Restbus Simulators

Commercially the term Restbus simulator denotes a test component that emulates
the messaging behaviour of a group of devices communicating with a system under
test. Simulators as dSPACE VECU [V-ECUa] or ETAS ISOLAR-EVE [V-ECUc]| feature
Transaction-level Modelling (TLM) accuracy and connectivity to real buses, supporting the
integration of platform-independent software components of a Virtual ECU (V-ECU) as
part of the HiL infrastructure. Also bus-simulation applications can be linked to behavioural
modules to emulate devices, e.g., the open-source Busmaster [BUSM] software tool, or
Controller Area Network (CAN)oe [CANoe], both enabling the connection to real CAN
buses. Similarly, Ferrari et al. developed DESYRE, a framework to support the Platform-
Based Design [SM01] of distributed elevator control systems for large buildings [FCM+12].
DESYRE recreates the CAN network in a distributed elevator control system, simulating
the behaviour of multiple node instances based on actual message timing data measured
on a real system. A drawback of many of these tools is that they require specific real-time
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simulation environments. As a consequence, tool restrictions on the capability to import
user-code in the simulator force the test developers to modify the original code of the
virtualized device.

Bringmann et al. [BEG+15] review the state-of-art in simulating Virtual Prototypes
(VPs) to accelerate the SW development process. The CAN Restbus simulator described in
this dissertation can be described as a source-level simulator (SLS), focused on emulating
the functional behaviour of a standalone application by cross-compiling the source code and
linking lightweight host-compiled OS and processor models. SLS VPs abstract the actual
devices while being Transaction-level Modelling accurate. Unless the simulator provides
strict memory separation between VP instances, an SLS running in a single execution context
-e.g., a LabVIEW-RT process- has to update the VPs sequentially, which causes an overhead
in simulation physical time due to context switching. Another limitation is the timing
inaccuracy, that could hamper the overall system behaviour of the simulated nodes. The
authors propose a Timed Binary Control Flow, where timing annotations alongside the
equivalent binary code for the simulation host increase the timing-accuracy in the logical
simulation time, yet enabling an ultra-fast offline simulation.

Similar to the VPs, the Virtual Processing Components [SGH+10] provide the basis for
Glass et al. [GGR-+14] to build a multiple-node simulator for Ethernet AVB buses. Our main
contribution with respect to these works is that we implemented a Restbus simulator based
on a CAN communication system, instead of Ethernet AVB.

An alternative to executing multiple VECUs in parallel are instruction set simulators ISS
or full virtualization environments like QEMU [QEMU], OVPsim [OVP] or Simics [SIMICS].
Yet the integration of such tools with other real-time components is challenging, since they
are not meant to work in a HiL environment.

3.9 Projects on Certifying Mixed-criticality Systems

This section recalls some recent EU projects related to safety certification of MCSs.

3.9.1 CESAR project

The CESAR project [CESAR]' was an ARTEMIS project: Cost-efficient methods and
processes for safety relevant embedded systems. Product lines were introduced into the
CESAR meta-model in an orthogonal way by the kind of technology that is used in the
BVR tool which is applied in DREAMS. In CESAR it was demonstrated in the use case of
a safety module for industrial use that several different models could be managed with the
same variability model. Furthermore, we showed how the unit test cases could be managed
in concert with variants. We demonstrated how the test suits were generated from the
product line model making sure that the tests were directly relevant for the variant derived.

'http://www.cesarproject.eu
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We used this to automate the testing of the software over the optimal set of configurations.
This proved surprisingly useful. This combined approach which makes it possible to tie tests
to variants is similar to our DREAMS certification approach where arguments are tied to
variants.

3.9.2 VERDE project

In the ITEA 3 project “VERIification-oriented & component-based model Driven Engineering
for real-time embedded systems” (VERDE) [VERDE], SINTEF through ICT-Norway
developed an algorithm with a supporting tool to select an optimal set of configurations
for testing a product line. The problem is theoretically intractable, but it was shown that
in practice a near-optimal set can be found. The underlying approach is that of coverage
arrays where combinations of features are guaranteed to appear in at least one configuration.
It turns out that the needed set of configurations is significantly smaller than intuitively
expected, and that the effect of testing on this systematically produced set of configurations
is very high [Joh13]. This selection of a near-optimal set of configurations is also being used
in DREAMS for design space exploration, and could be used as evidence to support testing
arguments for a certification relative to (say) IEC 61508.

3.9.3 VARIES project

The ARTEMIS VARIES project (2012-2015) [VARIES] targets variability modeling and
product line engineering. The VARIES project had some effort on certification of product
lines which served as a baseline for this dissertation. VARIES [VAR47] includes a walk-
through of the different analysis techniques brought forth and experimented within the
project. These techniques can in many cases be useful for assessing DREAMS systems.
Technically, the VARIES techniques could represent the means for fulfilling an argument
in the argument chains of our DREAMS approach. VARIES showed which elements of the
IEC 61508 functional safety standard could be assessed by which analysis approach. VARIES
recognized that product lines were not a concept in certification while they could handle
products with variability. In particular, we can mention the algorithm using coverage arrays
for selecting a good set of configurations for testing. This technique is also used in DREAMS
as an integral part of the domain space exploration, while for certification purposes it is well
suited for assessing the integration of different components with variability. The coverage
array approach implemented within the SINTEF BVR Tool [VHC+15] is also combined
with managing the tests according to the variant selections. This is very similar to how the
certification arguments are generated in our DREAMS certification approach.
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3.9.4 OPENCOSS project

OPENCOSS is a European large scale integrated FP7 project dedicated to produce the
first European-wide open safety certification platform: an Open Platform for EvolutioNary
Certification Of Safety-critical Systems for the railway, avionics and automotive markets.
Certification of safety critical systems remains until now a manual and tedious endeavour.
Certification encompasses various activities such as engineering, safety engineering, and
V&V that span over multiple teams located in different places, sharing many artefacts
(e.g., software components, documentation, test plans) of which there often exist multiple
versions. The FP7 OPENCOSS Project [OPENCOSS] tackles this accidental complexity
by providing an open platform for evolutionary certification of safety-critical systems. The
OPENCOSS platform [OPE23| reconciles the development and certification activities during
the development process. Amongst other features, the OPENCOSS platform (see Figure 1)
supports the following activities:

Continuous compliance monitoring The tight integration of the OPENCOSS platform in
the development process lets developers determine to which extent their contribution
matches the safety requirements at stake.

Centralised management of certification assets The OPENCOSS platform keeps the
certification assets up-to-date. It monitors changes and triggers or highlights required
activities consequently.

The OPENCOSS approach relies on the common certification language (CCL) that unifies
Goal Structuring Notation (GSN) and Structured Assurance Case Meta-model (SACM)
notations [OPE53]. Common Certification Language (CCL) enables composition of
evidence data, by distributing it accordingly to the components that form the system.
The OPENCOSS platform hence automatically composes these fragments of evidence
data as engineers assemble and reassemble the components, and highlights errors in the
argumentation.

CCL — Common Certification Language is intended to generalize over certification in
different domains, typically aerospace, automotive and rail. The motivation for CCL is to be
able to reuse certification efforts. The CCL contains standardized conceptual models for key
aspects of certification, and a vocabulary for harmonization and comparison of terminology
from different domains [OPE47]. The CCL meta-models have a presentation scheme
adopted from the OMG's Structured Assurance Case Model (SACM) [SACM]. Creating
vocabularies is the foundation on which the commonalities between certification against
different standards can be built. The vocabularies are ontologies where different terms are
related. Safety argumentation is one central part of the OPENCOSS CCL method. The
OPENCOSS project had a specific work package (WP5) that was dedicated to compositional
certification [OPE53]. Actors of the OPENCOSS platform will not (directly) use the CCL
itself (conceptual meta-models). Users of the platform will instead work on information that
is based on CCL. Users of CCL are those handling the OPENCOSS platform as such.
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3.9.5 AMASS project

The AMASS project [AMASS] builds up on OPENCOSS. AMASS is an ECSEL project
that started in April 2016 on Architecture-driven, Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Systems. In their abstract found on CORDIS we
see “The ultimate aim is to lower certification costs in face of rapidly changing product
features and market needs. This will be achieved by establishing a novel holistic and reuse-
oriented approach for architecture-driven assurance (fully compatible with standards e.g.
AUTOSAR and IMA), multi-concern assurance (compliance demonstration, impact analyses,
and compositional assurance of security and safety aspects), and for seamless interoperability
between assurance/certification and engineering activities along with third-party activities
(external assessments, supplier assurance).”

3.9.6 ASCOS Project

The EU FP7 ASCOS project [ASCOS]| was initiated by the aviation industry and funded
by the FP7 framework program. ASCOS developed novel certification process adaptations
and supporting safety driven design methods and tools to ease the certification of safety
enhancement systems and operations. The approach is to build a logical argument for the
certification of any change to the total aviation system, supporting the top-level claim that
changes are acceptably safe. The ASCOS project was motivated by the problems found to
incorporate innovative new ideas while still needing to have the product certified. Therefore,
they saw the need to formulate adaptation of the certification processes. The ASCOS
Method uses modular safety arguments to provide a framework to integrate existing approval
approaches while also providing the flexibility to adapt the approaches where necessary
to enable the smooth approval of advances in aviation technology [Bull6]. The ASCOS
approach had the following objectives:

= to be more flexible with regard to the introduction of new products and operations;
= to be more efficient, in terms of cost and time, than the current certification processes;

= to consider the impact of all elements of the aviation system and the entire system
life-cycle on safety in a complete and integrated way.

Central to the final ASCOS approach was the use of modular safety arguments precisely
described in GSN (Goal Structured Notation) and this coincides with our DREAMS
approach.

3.9.7 PROXIMA project

In the Mixed-Criticality Forum we also find the EU FP7 project PROXIMA [PROXIMA]
where one industrial benefit is declared to be “certification arguments for DO-178B and
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safety standards”. PROXIMA is an Integrated Project (IP) of the Seventh framework
programme for research and technological development (FP7). The PROXIMA project
provides industry-ready software timing analysis using probabilistic analysis for many-core
and multi-core critical real-time embedded systems and will enable cost-effective verification
of software timing analysis including worst-case execution time. Certification arguments for
DO-178B and safety standards will also be provided in PROXIMA.

3.9.8 MultiPARTES project

The MULTIPARTES project [MULTIPARTES] provides support for mixed-criticality
trusted embedded systems based on virtualization techniques for heterogeneous multi-core
processors [PGJ+13, TCA+14]. For that purpose, the main challenge of this project is
the support for mixed-criticality integration for embedded systems based on virtualization
techniques for heterogeneous multi-core processors. The starting point for this is the
XtratuM hypervisor, an open source hypervisor for real-time embedded systems. In
addition to the multi-core platform virtualization layer, MultiPARTES devised an engineering
methodology for the rapid model-driven development and production, taking advantage of
partitioning of multi-core systems. The research results of the project have been validated
in four case studies including energy, industrial control, video surveillance and space, and
complemented by an application study for the automotive sector. The key results of this
project are the reduction of the effort and cost on the engineering of mixed-criticality
embedded systems, the increase of the reliability by decreasing the number of components
(wires and connectors) that can fail, the reduction of resources required (e.g., energy
consumption, weight and volume), the reduction of time-to-market by quickly integrating 3rd
party applications into a partitioned system architecture and the reduction of the certification
cost by enabling modular-based independent verification of the components of the system.

3.10 Discussion

A safety-critical system development requires thorough knowledge of the application. This
knowledge can be elicited from experts in the field, who are required for the validation of
the proposed design. In a pure model-based process we need models for both the system to
build and the environment in which the system performs its function. Moreover the models
can be exploited for system testing in hardware-in-the-loop configurations.

Testing re-usability in model-based testing is a topic of ongoing research. To our
knowledge there is no clear guideline about how to re-use the test artefacts outside the
modeling environment, in a mixed model-code simulator. Moreover, when going to actual
system prototypes, verification re-usability is usually limited to the test vectors, despite the
effort spent before in defining, scripting and running test cases against the system models.
Availability of open source simulation solutions and extensible modeling languages pave the
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way for a better and more comprehensive integration, in order to achieve the ideal seamless
process that could finally provide the required product quality with an affordable effort.
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Theoretical Framework

This chapter presents the research methodology, hypotheses, and goals for the thesis, and
introduces the case studies used to validate the implemented solutions.

4.1 Methodology

This research work has been developed following the methodology depicted in Figure 4.1.
The main stages are described below:

1. Thesis Outline: The start phase consisted of writing a research proposal that was
submitted to the University for review and approval. The contents of the Thesis
outline included the preliminary outcomes of the following tasks:

= Problem Statement. Analyse the problem and motivate it by answering questions
such as: Why is it important? What does it solve? The context of the problem
was introduced in Chapter 1 (see §1.1).

= State of The Art. ldentify existing approaches and solutions related to the
research problem. Perform a critical analysis of the state of the art and identify:
what has been done, existing limitations and weak points, points to contribute,
etc. An update on the critical analysis of the existing work is presented in
Chapter 3.

= Research Approach. Define the research methodology to follow: tasks and
phases, collaborations, work plan, etc. Formulate the hypotheses of the thesis
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2. Goal Achievement: Goal achievement implies (for each setted goal): (i) analysing
the goal problem; (ii) implementing a solution; (iii) evaluating the solution; and (iv)
publishing results. This phase is covered by different chapters of this dissertation:
Chapters 5, 6 and 7 describe the design and implementation of the re-use approaches.
The approaches have been evaluated experimentally with three case studies.

)

Figure 4.1: Research methodology followed in this thesis

66

and set goals to be performed. These goals will be used to validate or reject
the hypotheses. They are described in Sections §4.2, §4.3 and §4.3.1 of this
chapter.




4.2. Hypotheses

results of these evaluations are presented and reviewed in Chapter 8. Finally, Chapter 9
presents the conclusion and discusses the validation of the hypotheses (see §9.1.1).

3. Thesis Dissertation. Write the thesis and perform the thesis defence.

4.2 Hypotheses

The hypotheses of this research and their links to the research objectives are:

Hypothesis A: An Automatic Test Executor (ATE) can be integrated in simulation
frameworks so that it: (i) enables the early analysis of fault-tolerance mechanisms
in dependable systems with redundant structures at various levels of abstraction, (ii)
automates the simulation of fault-injection experiments, and (iii) facilitates test re-
use across system models at different levels of abstraction, and even up to a real
test-bench.

Hypothesis B: Generic models of sensors and instruments can be designed and
validated in a Commercial-Off-The-Shelf (COTS) modelling environment, such that
these could be re-used to build real-time test components for a COTS heterogeneous
hardware-in-the-loop (HiL ) system to verify dependable systems, in which the obtained
test components may execute in parallel, keeping a strict timing synchronisation.

Hypothesis C: The capabilities of current COTS HilL platforms support the
deployment of virtual replicas of nodes in a distributed dependable system, yielding a
versatile and cost-effective test architecture through re-using code from actual devices.

Hypothesis D: A model-based argumentation framework enables the compilation of
interrelated sets of information to assist safety engineers in developing safety cases for
Mixed-Criticality Product Lines (MCPLs), following a platform-based design (PBD)
supported by a set of pre-built Modular Safety Cases (MSCs), and where results from
analysis, verification and testing activities can be incorporated to the set of supporting
evidences required to argue about the safety of a system.

4.3 Goals

The global objective of this research is to develop a top-down verification and certification
framework comprising models, techniques and tools to assess the safety of an embedded
system composed of hardware and software subsystems by means of testing on simulators
at different refinement phases of the development cycle.

The contribution consists of a model-based framework to improve the re-usability of
tests and safety arguments across different refinement stages in a model-based development
of dependable embedded systems implemented on programmable electronics. The approach
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should enable traversing from testing on abstract functional design exploration models to
the verification of physical prototypes by means of intermediate simulators at multiple
levels of abstraction. The proposed approaches should be applicable to the verification
of individual subsystems and components, for the case in which a complex system is refined
either by partitioning or decomposition, while the collection of evidences generated during
the development process is managed in a way that is consistent, rational and amenable to
review.

4.3.1 Operative Goals

The global objective is realized by the operational objectives listed below:

Operative Goal A: Define an extended Executable Time-Triggered Model (E-TTM) meta-
model (PI-TTM / PS-TTM) to describe: (i) the structure and behaviour specification
of the dependable system under test, (ii) the effects of random faults on the system,
(iii) the test cases, and (iv) the test outputs. This goal links to Hypothesis A.

Operative Goal B: Implement the PI-TTM/PS-TTM simulation engines on top of the
E-TTM framework, integrating an Automatic Test Executor (ATE) with its operational
environment, i.e., timing and fault injection component abstractions for test
automation on the simulators. The resulting simulation framework will support the
definition of a dependable system, first as a functional PI-TTM model, then as a
PS-TTM that represents the redundant structure usually required for safety-related
applications. Unmodified PI-TTM / PS-TTM models will undergo simulations of
fault scenarios. The integrated ATE will support the automated execution of test
campaigns with simulated fault injection to assess the fault tolerance on the system
models. This goal links to Hypothesis A.

Operative Goal C: Analyse the requirements to model re-usable sensors and instruments in
the Simulink language that could be transformed to FPGA-IPs and integrated in a real-
time COTS HiL platform to test dependable systems. Develop a library of component
models and validate the models in a case study. This goal links to Hypothesis B.

Operative Goal D: Design and implement a para-virtualization approach to build virtual
devices by re-using product code that could replace real nodes in a real-time test
bench for verifying a distributed dependable system. Implement and validate in a case
study. This goal links to Hypothesis C.

Operative Goal E: Develop a model-based framework to assemble the evidences for a
safety certification, supporting the partial automation of the system documentation.
The argument models will be scalable, either to be completed in a top-down approach,
or composed from partial argument fragments. Implement and validate in a case study.
This goal links to Hypothesis D.
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4.4 Case Studies

The experimental validation of the approaches proposed in this dissertation was carried out
on three different case studies. Each case study considers a different application scenario.
The application scenarios were either drawn form actual industrial projects, or developed for
collaborative research demonstrators:

» Railway Controller Case Study: The subject of this case study is the verification
of a safety odometry system for railways, where the safety requirements, context
and system structure were drawn from an actual product development carried out
at IK4-lkerlan. The safety function of the odometry system is to prevent a train
from surpassing the track speed limits. According to the applicable railway safety
standards the risk analysis for the odometry system vyields a requirement of Safety
Integrity Level (SIL) of 4. To achieve this requirement, the odometry system combines
diverse information from multiple sensors, including encoders, accelerometers, balises,
or GPS information. The fault tolerance relies on a Triple Modular Redundancy (TMR)
functional structure, while Time-Triggered (TT) communication between the safety
components provides time-determinism. The Railway Controller will be modelled using
the PI-TTM / PS-TTM meta-model, and then its fault tolerance will be exercised in
a campaign of automated simulations involving different fault scenarios.

This case study validates the achievement of operative goals A and B.

= Hardware-in-the-Loop Elevator Simulator (HiLES) Case Study: This case study
focuses on an X-in-the-loop (XilL) test framework for verifying elevator control systems.
It is intended to migrate from a prototype-based development to a Model-Based
Development (MBD) / Model-Based Testing (MBT) process for an evolving family
of elevator control systems. Nowadays, the elevator control system is a distributed
system composed of up-to hundreds of nodes. The core is the position control system,
designed as a "universal product” to operate in varying configurations. The complexity
added to the control SW brings with it an increasingly longer verification process,
where the limited test-bench configurations and the operations required to modify
the setup makes a pure Hil insufficient for a comprehensive validation. Moreover,
the introduction of new positioning sensors for safety applications, as much as the
adaptation to the new safety standards for elevators demand a framework for carrying
out proof-of-concept demonstrators before deciding about the product design.

A staged model-in-the-loop (Mil)-software-in-the-loop (SiL)-HiL development
provides a more economical assessment process. But the problem lies in the
unavailability of a suitable model base. To start with, one should consider the number
of models to develop and ultimately, maintain. ldeally, a manufacturer would benefit
from relying on a limited set of model libraries, with each model thoroughly validated
and ready to use in whichever configuration, e.g., MiL, HiL. HiLES will integrate
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sensor and instrumentation models contributed in this thesis, that can be used in
either MiL or HiL configurations. Moreover, a para-virtualization approach will be
applied to integrate virtual nodes in the HiL infrastructure, reducing the number of
test components external to the HilL platform, and enabling a more versatile, SW-
defined test architecture.

This case study validates the achievement of operative goals C and D.

= Mixed-Criticality Product Line (MCPL) for Wind Turbine Controls Case Study:
The third case study tackles the problem of assembling the safety-related evidences
generated during the planning, design, development, and verification, validation and
testing (VVT) activities of families of dependable Mixed-Criticality Systems (MCSs).
The Distributed Real-time Architecture for Mixed-criticality Systems (DREAMS)
provides an approach to certify a plurality of products by tailoring a pre-built safety
analysis: the Modular Safety Cases (MSCs). A MSC can be viewed as a generic
template covering all the possible uses of a component in a safe way, while addressing
its applicability limits. To tackle the complexity of developing an MCS product line,
DREAMS provides a Design Space Exploration (DSE) tool. DREAMS DSE feeds
with the functional and safety-requirements, a database of platform components, a
variability model and an automated combinatorial engine to resolve and optimize the
feasible product configurations, e.g., meeting the safety requirements. During the
certification process, the DREAMS DSE has to document the rationale sustaining the
validity of the design configuration.

The Wind Turbine Controller case study will exemplify the application of the DREAMS
solutions to develop a product line of controllers for wind turbines with safety
requirements according to the generic functional safety standard IEC 61508 (the latter
is used for the sake of generality, although in machinery the applicable safety standard
is the IEC 61508 derivative ISO 13849). The wind turbine controller product line will
be defined through a variability model with selectable features, amongst which are the
target safety SIL levels. The wind turbine controller is composed of several subsystems
with different criticality requirements. The subsystems will in turn integrate SW or
Programmable Logic (PL) components, that previously should be characterized with
regard to their Systematic Capability (SC) and other properties. Once a DREAMS user
allocates the safety requirements in the AF3 modelling environment, an optimization
algorithm will perform a DSE, seeking for Pareto-optimal product configurations,
i.e., the product samples in the product line. The safety of each product sample
is evaluated and assessed by the DREAMS SCCRC component. For each safety-
compliant product sample, a post-processing round in the SCCRC will traverse a
database of argumentation models, to generate the documented rationale, i.e., the
product safety-case justifying the validity of the safety claims.

This case study validates the achievement of operational objective E.
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Re-using Tests

This chapter presents a test approach to re-use test descriptions from model simulations for
testing the real system. The idea is to exploit the analysis phases in the development
process to concurrently validate the correctness of the test sequences. Assuming that
the test description is written in a programming language supported in the real-time test
environment, the return of investment results from the re-utilization of previously exercised
and validated test sequences, even in testing the physical prototypes. We propose two
complementary approaches:

Test re-use on PS-TTM simulations: This research focuses on a simulator framework
to specifically analyse the design of safety systems with a redundant HW architecture
and Time-Triggered (TT) computation. To that purpose we provide the test engineer
with a customized simulation environment, the Platform-Specific Time-Triggered
Model (PS-TTM) framework, that integrates: (a) SystemC TLM models; (b) the
Executable Time-Triggered Model SystemC extension to simulate the Time-Triggered
Model of Computation, contributed by J. Perez [Perll]; (c) a library for simulated
fault injection, contributed by |. Ayestaran [Ayel5]; and, (d) the contribution of this
thesis: an embeddable Python Automatic Test Executor to automate the simulation
runs through Python scripts, while providing compatibility with real test systems and
test re-use support.

Test re-use on Simulink simulations: We aim at executing the same test specification
in both simulation modes, on an offline simulator and a real testbench. From a
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test perspective, the System Under Test (SUT) is considered as a black-box, so
that we will only consider a model of the functionality of the system, abstracting
the hardware properties. We analyse the feasibility and limitations of integrating
our synchronous Python Automatic Test Executor with the simulation engine of the
Simulink Commercial-Off-The-Shelf (COTS) modeling environment?.

5.1 Why a Python ATE?

Python is a high-level programming language supporting multiple programming paradigms
(e.g., object-oriented, imperative, functional, etc.). The CPython reference implementation
of the Python interpreter [Python] is programmed in C/C++, and is open source software.
For the programmer, Python has a set of standard libraries, named modules, to abstract
the application from platform particularities. Python offers many potential benefits for test
automation and test re-use:

1. Python eases cross-platform portability: There are Python interpreters for many
hardware (HW) and operating system variants, even for low-end embedded
processors [uPY]. Thus, the portability of a Python application is only limited by
the availability of the external modules, and the dependencies on platform-specific
features. The latter can be alleviated by adopting an object oriented approach, hiding
the platform dependencies with replaceable abstractions for non-portable components.

2. Python eases scaling up the applications: The standard Python libraries are
comprehensive, so that Python programs can be enhanced easily, adding more
functionality as required. Currently Python applications range from quite simple
programs to scientific computing or big-data analysis applications.

3. The Python language has a compact syntax that fosters productivity: The Python
language syntax enables developers to express concepts with fewer lines of code. This
makes Python more amenable to learn for non-programmers.

4. Interactive Python accelerates learning: As an interpreted language, Python allows
for interactive execution of Python statements in a Python shell. This supports a
program-and-go, where developers can try new Python code in shorter time than the
conventional edit-compile-link-execute process required by other languages.

5. The Python interpreter is embeddable: The Python interpreter can be embedded in
an application.

1This implementation differs from executing our synchronous Python function in a given time step, that
is a function nowadays included in Simulink. Our approach instead, simulates the concurrent execution of
the test script and the system model, resembling a real-world automated test scenario.
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6. The CPython interpreter is extendible: The Python interpreter can import user-defined
extension modules, so that Python can invoke custom native functions programmed
in C/C4++. These extension modules do not work in other Python implementations,
unless an equivalent module exists.

7. There is a basic Python test support available: The unittest Python library provides
a basic framework for unit testing. A test engineer may re-use the unittest classes as
templates for derived implementations, thus homogenizing the structure and execution
of the test cases.

8. There are standardized Python Application Programming Interfaces (APls) for
controlling XiL testbenches: The ASAM association developed a number of standards
to improve the interoperability of test infrastructures provided by different vendors.
The goal is to ensure that test suppliers implement common APls such that a
test specification would run unmodified with test components from alternative
brands. This enhances the test re-usability, avoiding costly re-programming activities
and prevents tight dependencies with test equipment suppliers. In particular, the
ASAM XIL 2.0 standard [ASAMXIiL] evolved from a specification initially focused
on hardware-in-the-loop (HiL) test systems [ASAMHiL|, and now extends to more
abstract test configurations, like model-in-the-loop (MilL) or software-in-the-loop
(SiL). ASAM XIL 2.0 defines an API for programming test applications in C# or
Python. The API provides classes to control diverse test components, like models,
the SUT itself or electric error injectors. Therefore, it seems straightforward to
scale-up Python test scripts to control Commercial-Off-The-Shelf test components
compliant with the ASAM XIL specification, ranging from offline model-simulations
of the systems to real-time test execution on a Hil test infrastructure.

5.2 Test re-use on PS-TTM simulations

This section introduces the Python-based PS-TTM Automatic Test Executor (ATE), a
test automation component to provide repeatable test runs on PS-TTM simulators. The
PS-TTM simulation framework consists of a set of tools and libraries of fault models intended
to exercise the fault tolerance mechanisms implemented in the logical components of a
dependable embedded system. The faults are injected on executable models, simulated
with an E-TTM computation engine implemented with the SystemC library. The PS-TTM
Automatic Test Executor (ATE) loads the definition of faults, sequences of input values and
test points in standardized XML formats, based on the ASAM AE HIL standard. The values
at the test points are recorded in data files with a standard structure. The test automation
is achieved through Python scripts, executed by the ATE, whereas the low-level control of
each simulator component is provided by Python APls from dynamically loadable Python
extensions.
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Besides supporting the automated execution of comprehensive simulated fault-injection
campaigns, the combination of standardized interchange formats for input/output values,
the platform abstractions provided by the extension APls, and the adaptability of
the CPython interpreter brings an automated simulation environment parallel to real
testbenches. This eases the re-use of test artefacts, from input stimuli even to test
sequences, provided that suitable fault-injection units / saboteurs are available to re-create
the simulated fault scenarios.

5.2.1 The PS-TTM Modeling and Simulation platform

The Platform-Specific Time-Triggered Model (PS-TTM) [ANP+14a] is a modeling and
simulation platform for time-triggered safety-critical embedded systems, based on the Y-
chart approach [BCG+97, KDV+97] and Model Driven Architecture (MDA) models. The
goal of the PS-TTM framework is to give the designer an environment based on SystemC
for the development and testing of time-triggered safety-critical embedded systems following
the MDA.

In compliance to the Model Driven Architecture (MDA), the development of a system
in the PS-TTM framework starts with the definition of a functional model, called Platform-
Independent Model (PIM). Since the approach focuses on time-triggered systems, PIMs rely
on the Logical Execution Time (LET) Model of Computation (MoC) [KS12]. The LET MoC
defines the functionality of systems by specifying a logical duration for each computational
job of the system, regardless of its physical duration. This permits the software engineers to
communicate more effectively with the control engineers, since the properties of the system
are closely aligned with the mathematical model of the control design.

Thus, a LET computation engine called Platform Independent Time-Triggered Model
(PI-TTM) has been developed for the simulation of the PIMs [ANP-+14c]. This engine
has been built by providing an extension that imposes LET MoC constraints to the E-TTM
simulation platform [PNO+-10].

The design framework includes a library of HW components that can be assembled to
generate a model of the target platform. In accordance to the MDA, once the PIM has been
validated, it is deployed into the platform description model in order to generate the final
PSM. The simulation of Platform-Specific Models (PSMs) is handled by the Executable
Time-Triggered Model (E-TTM) engine. This gives the designers a higher freedom regarding
the definition of the temporal behaviour of their systems, as the restrictions previously
imposed by the LET MoC disappear.

This approach eases the modeling and validation of time-triggered systems, since it
starts with the design of a purely functional LET-based model and enables a straightforward
transformation into a platform specific E-TTM-based model, which guarantees that time-
properties are intrinsically preserved in the final implementation when the platform is based
on the Time-Triggered Architecture (TTA).

Appendix A expands the information about the features of the PS-TTM environment.
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5.2.2 The PS-TTM Automated Test Executor

Herein we describe the properties and specifications of the PS-TTM ATE. The PS-TTM
simulation platform includes a time-triggered simulated fault-injection framework. Testing
teams would use this framework to assess the fault-tolerance mechanisms implemented in
their PS-TTM models. The testing and simulated fault-injection tool is called PS-TTM
Automatic Test Executor (ATE).

From a testing perspective, the PS-TTM ATE features the following properties:

1. Non-intrusiveness:  Non-intrusive fault-injection techniques are the ones that
completely mask their presence, so that they have no effect on the system behaviour
apart from the faults they inject. Therefore, the model is not modified to get the
faults injected, which gives more reliable testing results.

2. Availability for PIM and PSMs: Testing and simulated fault injection can be applied
to both platform independent and platform specific models, in order to facilitate the
detection of design flaws at the earliest stages of the design.

3. Repeatability: The PS-TTM ATE provides repeatability to the testing and simulated
fault-injection (SFI) activities, which enables to prove that the bugs found in previous
versions of the models have been fixed in the newest versions.

The PS-TTM ATE is composed of the three modules shown in Figure 5.1:

1. The Test-Case Interpreter (TCl) sets the timed sequences of input signals and fault
triggers from a test specification file. The TCl is composed of: (a) a Test Case Parser,
(b) a Test Case Memory, and (c) a Test Case Data Generator.

2. The Fault-Injection Unit (FIU) sets the fault-injection points and configures the
parameters for the fault behaviours. The FIU is composed of: (a) a Fault Injection
Parser, (b) a Fault Set Memory, (c) the Fault Injector and (d) the Fault Libraries.

3. The Test Points Manager (TPM) sets the test points to capture signals as test outputs
for later analysis. The TPM is composed of: (a) a Test Points Parser, (b) a Test
Point Memory, and (c) a Test Point Data Recorder.

Test Case Interpreter (TCI)

The Test-Case Interpreter (TCl) is the module responsible for exercising the desired test
cases. The TCI supports test automation, enabling the autonomous execution of different
test cases defined by the test engineers. During the initialization phase of the tests, the
TCI test case parser reads the test case specified by the test engineers and stores it in the
test case memory. When simulation starts, signal-generators feed the SUT at each time tick
with the signals corresponding to the test case stored in memory.
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5.2. Test re-use on PS-TTM simulations

The test engineer defines test cases by timed sequences of input values for the test
time span. A timed sequence is a set of tuples of time and signal values, the time value
representing the instant at which the signal values will be set at the inputs of the SUT. The
TCI holds the last value between each two consecutive signal change instants, feeding the
SUT with the previous inputs. Listing 5.1 shows an example of the syntax of these files.

Fault Injection Unit (FIU)

The FIU provides simulated fault injection capabilities to the ATE. Specifically, the FIU
enables the test engineers injecting different types of faults in the internal signals of the
SUT. The Fault Injection Parser reads the fault configuration files (eXtensible Markup
Language (XML) files) in the initialization phase of the simulation, and stores the fault
injection campaign defined by the test engineers in its memory. Once the simulation starts,
the PS-TTM engine automatically diverts the signals inside the SUT to the Fl Set Interpreter
& Fault Injector, which compares the properties of the received signals and the current time-
stamp of the simulation with the Fault Injection Set stored in the memory. When a fault is
triggered, the fault injector sabotages the signal according to the fault effect specified in the
fault-injection campaign. To that end, the FIU uses a set of fault libraries for both platform
independent and platform specific models. Once the signal has been corrupted, it is sent
back to the SUT in zero simulation time, which guarantees that the temporal properties
of the system are not affected by the fault injection process and remain intact when faults
are applied. This way, the fault-injection process follows a non-intrusive approach, since the
model of the system does not suffer any modification from the fault injection activities.

The FIU supports two different fault modes: transient and permanent. Permanent faults
will remain active from their activation specified by the trigger time until the end of the
simulation. However, transient faults are temporary misbehaviours, so their configuration
requires to specify a duration in addition to the triggering instant. Once the injection of a
transient fault is finished, the signal affected by the fault returns back to a non-faulty state.

The XML schema for the definition of fault-injection campaigns was derived from the
ASAM AE HIL 1.0.0 standard for HilL testing. Although the aim of this work is to perform
fault-injection experiments in model/software-in-the-loop configurations, close adherence to
the standard eases the forward reuse of the fault-injection campaigns in the final prototyping
phase, provided that fault injecting equipment is available. Section A.3 in the Appendix
provides some examples of FIU configurations for PIM and PSM models of abstraction.
Fault campaigns are optional: if omitted, the ATE will run a fault-free simulation.

Test Point Manager (TPM)

The Test Point Manager (TPM) is a module to observe the evolution of the internal signals
of the SUT as the time flows.
As for the TCl and FIU, the configuration of the test points is read by the Test Point
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Parser and saved in the Test Point Set during the initialization phase. During simulation
the TP Set Interpreter identifies each signal of the SUT and sends the data of the signals
specified in the TP Set to the Data Recorder, which stores the values of each signal along
with its time stamp. When the simulation finishes, the TPM creates a value-change-dump

Listing 5.1: Example of an XML test case configuration file for the TCl module

1 <!-- TEST CASE -->

2 <TestCase>

3 <Setup instant= >

4 <Set Variable= Value= />

5 <Set Variable= Value= />

6 <Set Variable= Value= />

7 <Set Variable= Value= />

8 <Set Variable= Value= />

9 <Set Variable= Value= />
10 <Set Variable= Value= />
11 </Setup>

12 <! -- More inputs might be defined between these time stamps -->
13 <Setup instant= >

14 <Set Variable= Value= />

15 <Set Variable= Value= />

16 <Set Variable= Value= />
17 </Setup>

18 <Setup instant= >

19 <Set Variable= Value= />

20 <Set Variable= Value= />

21 <Set Variable= Value= />
22 <Set Variable= Value= />

23 <Set Variable= Value= />
24 <Set Variable= Value= />
25 <Set Variable= Value= />
26 </Setup>

27 <Setup instant= >

28 <Set Variable= Value= />

29 <Set Variable= Value= />

30 <Set Variable= Value= />
31 <Set Variable= Value= />

32 <Set Variable= Value= />

33 <Set Variable= Value= />
34 <Set Variable= Value= />
35 </Setup>

36 <Setup instant= >

37 <Set Variable= Value= />

38 <Set Variable= Value= />

39 <Set Variable= Value= />
40 </Setup>

41 <Setup instant= >

42 <Set Variable= Value= />

43 <Set Variable= Value= />

44 <Set Variable= Value= />
45 </Setup>

46 <!-- Test Case continues... -->

</TestCase>

IS
b

78




5.2. Test re-use on PS-TTM simulations

file (*.vcd)? with all the data collected during simulation, in order to enable the test engineers
to assess the emerging behaviour of the system.

Analogously to the FIU, the TPM reads the values of the internal signals of the SUT
every time a job reads or writes a signal. The specification of the test point locations is
similarly defined in XML files, using the following scheme: First, the file must specify the
hierarchical location of the job that will read or write the signal. For each job, a set of
entities (signal names) distributed in groups of inputs and outputs might be specified. The
explicit specification of the job that will read or write the signal avoids ambiguities in the
case in which a given name is repeated between ports of different jobs; moreover, specifying
whether the signal is treated as an input or output by the job enables distinguishing between
the reading and writing activities of a job, which might be useful in systems where a given
job reads a variable at the beginning of its execution and re-writes the same variable at the
end.

Listing 5.2 shows an example of the syntax of these files.

5.2.3 The PS-TTM Synchronous Python Interpreter

This section describes the internal adaptations carried out to integrate the Python ATE
into the PS-TTM simulator. The Python ATE was embedded as an extension to the
PS-TTM simulation framework, with the goal of enabling an accurate evaluation of the
functional and non-functional properties of the models in PS-TTM, with a special focus on
their fault-tolerance properties. This Python shell interpreter helps test engineers at either
running a fully automated simulation, or manually modifying inputs or conditions in the
test environment on-the-fly. The interactive experimentation eases the validation of the
test suites, thus accelerating the preparation of test artefacts. Figure 5.2 represents the
integration between the components introduced in Section §5.2:

» Automated Test Executor (ATE) System: This is the core Modified Python Interpreter
in the Automatic Test Executor (ATE) System. We opted for integrating a Python
console to load the test scripts, which enables interactive user command execution,
enhancing the PS-TTM simulator usability. The PS-TTM simulator is based on the
cross-platform E-TTM SystemC extension [Perll], that can be compiled for different
hosts and operating systems (e.g., Linux, Windows). Similarly, the Python IDLE is
a cross-platform Python console, and thus was considered for the interactive ATE
implementation. However, Python IDLE detaches the execution of scripts to a new
Python interpreter instance, which complicates the synchronization with the human-
machine interface (HMI) IDLE instance. Due to this, we switched to the Windows-
specific PythonWin [PYW] console. PythonWin is an open-source application, so that

2The value-change-dump file format is an industry-standard format to capture signal traces and
waveforms. *.vcd files can be later imported to a number of SW applications, e.g., GTKWave [GTKW]
(open source), EZWave (by Mentor Graphics) [EZW], or SimVision (by Cadence) [SimVision].
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Listing 5.2: Example of test points specification file (XML file)

1 <! -- TEST POINT LOCATIONS -->

2 <Locations>

3 <\-- NODE_EVC_A -> PROC -> CORE1 -> JOB_ODOMETRY -->
4 <Job hierarchy= >
5 <Inputs>

6 <Entity>DAS_EVC_IN_ENC1</Entity>

7 <Entity>DAS_EVC_IN_ENC2</Entity>

8 <Entity>DAS_EVC_IN_ACCEL</Entity>

9 <Entity>DAS_EVC_IN_BAL_NEWBAL</Entity>

10 <Entity>DAS_EVC_IN_BAL_POS</Entity>

11 <Entity>DAS_EVC_IN_BAL_INCL</Entity>

12 <Entity>DAS_EVC_IN_BAL_NEXTPOS</Entity>

13 </Inputs>

14 <Outputs>

15 <Entity>DAS_EVC_ST_S</Entity>

16 <Entity>DAS_EVC_ST_V</Entity>

17 </0Outputs>

18 </Job>

19 <\-- NODE_VOT_A -> PROC -> CORE -> JOB_VOTER_A -->
20 <Job hierarchy= >
21 <Inputs>

22 <Entity>CORE_VOTERA_IN_EMERG_A</Entity>

23 <Entity>CORE_VOTERA_IN_EMERG_B</Entity>

24 <Entity>CORE_VOTERA_IN_EMERG_C</Entity>

25 <Entity>CORE_VOTERA_IN_SERV_A</Entity>

26 <Entity>CORE_VOTERA_IN_SERV_B</Entity>

27 <Entity>CORE_VOTERA_IN_SERV_C</Entity>

28 <Entity>CORE_VOTERA_IN_WARN_A</Entity>

29 <Entity>CORE_VOTERA_IN_WARN_B</Entity>

30 <Entity>CORE_VOTERA_IN_WARN_C</Entity>

31 </Inputs>

32 <Outputs>

33 <Entity>CORE_VOTERA_OUT_EMERG</Entity>

34 <Entity>CORE_VOTERA_OUT_SERV</Entity>

35 <Entity>CORE_VOTERA_OUT_WARN</Entity>

36 <Entity>CORE_VOTERA_OUT_FAILURE</Entity>

37 <Entity>CORE_VOTERA_OUT_SYSTEMFAILURE</Entity>
38 </Outputs>

39 </Job>

40 <! -- NODE_VOT_B -> PROC -> CORE -> JOB_VOTER_B -->
41 <Job hierarchy= >
42 <Inputs>

43 <Entity>CORE_VOTERB_IN_EMERG_A</Entity>

44 <Entity>CORE_VOTERB_IN_EMERG_B</Entity>

45 <Entity>CORE_VOTERB_IN_EMERG_C</Entity>

46 <Entity>CORE_VOTERB_IN_SERV_A</Entity>

47 <Entity>CORE_VOTERB_IN_SERV_B</Entity>

48 <Entity>CORE_VOTERB_IN_SERV_C</Entity>

49 <Entity>CORE_VOTERB_IN_WARN_A</Entity>

50 <Entity>CORE_VOTERB_IN_WARN_B</Entity>

51 <Entity>CORE_VOTERB_IN_WARN_C</Entity>

52 </Inputs>

53 <Outputs>

54 <Entity>CORE_VOTERB_OUT_EMERG</Entity>

55 <Entity>CORE_VOTERB_OUT_SERV</Entity>

56 <Entity>CORE_VOTERB_OUT_WARN</Entity>

57 <Entity>CORE_VOTERB_OUT_FAILURE</Entity>

58 <Entity>CORE_VOTERB_OUT_SYSTEMFAILURE</Entity>
59 </0Outputs>

60 </Job>

61 </Locations>
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(5) PI/PS-TTM (4) Instantiated Fault Models
(6) Fault-Injection  System Under Test (SUT) (from Fauylt Library)

Channel (E-TTM SystemC/C/C++)

FI
i - component

S i [ sur
(7) Test Point B— h - component
Channel i
(SUT internals)

FI Channel

J 15— ﬁ—j—;l
.‘é . MODEL ¢ _) '= H |: LIF i-component LIF N }— ‘_
55— }—J}fJ
g
. (1) Modified =]
Pyt(:mlne (2) Test Stimuli
d SUT output 2
{/Interpreter an outputs (3) SystemC-Python £2
™ FI { Channel is
i - component i - component (test inputs/outputs) System Clock EU
: ; Synchronization ~ °
Test Points Channel FI Channel

\

/[ ATE Ps-TTM Adapter
: : S h- component
; w|e - -
Python PE’_'_%,_JI

; 5~ Sg-
: AF I1/0 I_"__)_}—g ‘__) : LIF i-component LIF _) ‘__) ;I
Automated modute L :IE = 4«
Test Executor St LR . S
- =] 0
System < < 51;5):55‘;;" " i ;I
DM : ;I

Figure 5.2: Integration of the Python interpreter in the PS-TTM simulator
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we could re-write parts of the original Python interpreter, in particular, the access to
the system (host) time. This way, we implemented a basic time virtualization by which
an external simulation engine (i.e., SystemC) could update the virtual host time. The
virtual Python clock supports the synchronous execution of test scripts in which time
measurements rely on the host system time, with the time resolution offered by this
timer.

= ATE PS-TTM Adapter: This is hierarchical PS-TTM component that acts as an
interface to the external inputs and outputs of the SUT, as well as provides the
virtual-clock source for the Python interpreter. The ATE PS-TTM Adapter has the
following components:

— Test Stimuli and SUT Outputs Channel: This PS-TTM component supports the
Python ATE with signal generators to stimulate the SUT with timed sequences
of input values. This component also captures the external outputs of the SUT,
that are fed back to the ATE for evaluation or logging.

— Python Synchronization Module: This component updates the virtual host
time in the embedded PS-TTM Python interpreter. It is intended to intercept
wait (time) Python statements. Upon such a statenebt the Python interpreter
freezes until the specified amount of time elapses. This makes Python behave
as executing in a TT MoC, as the underlying PS-TTM does.

= SUT: The SUT is the PS-TTM hierarchical component that contains the PI/PS-TTM
model of the system under test. It consists of:

— Model: The Model component wraps the functional or platform-specific models
of the system in a PS-TTM executable component. The system model provides
observation ports to access to internal signals. These signals are relevant to
observe the system reaction to internal faults injected by the signal saboteurs.
Their purpose is to give insight about the degraded behaviour of redundant
safety systems, as those normally would mask the effect of faults in their external
outputs (these are collected through the Test Stimuli and SUT Outputs Channel
instead). This information is required to evaluate the actual fault tolerance of
the SUT model.

— FI Component: The FI Component contains the fault injectors (signal saboteurs)
required for the fault-injection campaigns. Fault injectors are not fixed within
the SUT model. Instead these are dynamically instantiated at runtime, based on
the fault-configuration model, and relying on the SystemC signal introspection
feature. This constitutes the non-intrusive approach to fault experiments.
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Embedded Python ATE API

The Python Automatic Test Executor (ATE) embedded in the PS-TTM simulation
framework provides an API of Python functions to configure and control the simulations. The
user of the PS-TTM can either invoke the API interactively from the embedded PythonWin
shell, or alternatively may run a Python script to automate the simulation process. The API
consists of the functions listed below:

fimodule.LoadFIDescriptionFile(string filename): This function loads the
fault-injection configuration from the file path specified by the filename argument.
Then, the fault configuration is pre-processed by the FIU component that sets the
parameters for the fault models that could be activated during the simulation. The
test user may load multiple fault configuration files, in order to run several fault-
injection campaigns during a single simulation. The fault configuration is optional: if
omitted the ATE will run a fault-free simulation.

fimodule.Confirm(): This function instructs the FIU that the setup of the fault-
injection campaign is finished. When this command is sent to the FIU, the FIU notifies
the ATE that it is ready to start. It is always required to call this function in order to
start a simulation.

tcmodule.LoadTestCaseDescriptionFile(string filename): This function
loads the input values for a test case from the file path specified by the filename
argument. Test input values are timed sequences of values for multiple signals, which
are fetched to the simulator by the TCI component. During the simulation Data
Generator feeds to the SUT the input values corresponding to the simulation time.

tcmodule.SetSignal (string signal, float value): This function can be
invoked at any instant during the simulation to modify input signals. The test user
can invoke this command interactively to carry out experiments on the SUT model.

tcmodule.Confirm(): This function notifies the TCl that the test-case configuration
is completed, and the TCl is ready to start the simulation. The ATE waits until the
rest of the required PS-TTM modules notify their readiness. Then the initialization
phase finishes and the simulation begins. It is always required to call this function in
order to start a simulation.

tpmodule.LoadTPDescriptionFile(string filename): This function selects the
test output signals from the file path specified by the filename argument. This
configuration is pre-processed by the Test Point Manager (TPM) component, to
record traces of the signals to be observed. The user can select multiple sets of test
points for a single simulation run; in such a case, all the specified signals are recorded.
The test-point configuration is optional: when omitted, no information about internal
signals is recorded.
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» tpmodule.SetTraceFileName(string filename): This function specifies the
output file to store the signal traces recorded by the TPM over the simulation. The
output format is the value-change-dump. This setup can be skipped if no test-point
specification was previously given.

» tpmodule.Confirm(): This function notifies the TPM that the setup of the test-
point configuration is finished. When this command is sent to the TPM, it notifies
the ATE that it is ready to start. When the ATE receives the same notification from
the other two modules, the initialization phase finishes and the simulation begins. It
is always required to call this function in order to start a simulation.

5.3 Test re-use on Simulink simulations

The PS-TTM provides a non-intrusive fault simulation framework intended to exercise
the fault tolerance mechanisms on the redundant structures used in safety systems. The
PS-TTM simulation engine is provided by SystemC, which could be extended to support
additional models of computation (MoCs) in order to simulate non-TT plant models, that
should be coded in C/C++, then compiled and linked to build the simulator. This process
could be less productive than using a COTS simulation environment with ready-to-use model
libraries at the initial concept phase of a project. Therefore we tried a similar synchronization
approach to integrate a Python ATE inside a Simulink model. The adaptation process
consisted of these steps:

1. Define the ATE signal interfaces (i.e., Input/Output (I/O) ports) to the Simulink
model of the SUT.

2. Implement the 1/O port interfaces in a Simulink S-function, and also as a Python
extension3 [MWSF17] to encapsulate the Python interpreter as an executable Simulink
block. 1/O ports in Simulink correspond to the 1/O values read/written when the S-
function is invoked. The I/O values are copied to internal memory that is accessible
to Python 1/O extensions. The Python |/O extension provides an abstraction to the
Python test script so that it could be implemented with the actual 1/0 interfaces of
a real testbench.

3. Instantiate a PythonWin console with the modified Python interpreter.

4. Update the Python system host time synchronization within the update method in
the S-function.

3 A Simulink S-function is a dynamically loadable Simulink extension. A S-function can be written in
C/C++ programming language, and compiled for the simulation host processor and operating system. It
is also possible to link an S-function to external libraries, which provides great flexibility to customize the
Simulink simulation.
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5.3.1 Validation

The test re-usability with the Python ATE embedded in Simulink was validated using this
scenario:

1. An elevator manufacturer developed a testbench for functional testing of cabin doors.
The testbench was automated with a Python ATE extended with custom modules
to: (i) command the door under test and (ii) read the limit switches and position
sensors activated with the door motion. A Python test script defined a test suite
with multiple test cases for opening/closing the door, verifying that the sensor signals
reached the expected state within a time interval. Due to the dynamics of the door,
the Python host/system time sufficed to evaluate the timeliness of the door response
to the inputs.

2. A simplified Simulink model of the elevator door was also developed for the HiLES
elevator simulator described in § 8.2.

3. We developed a Simulink model of the testbench (see Figure 5.3), re-using the
Simulink door model, and connecting it to a virtual Python ATE embedded in an
S-function.

4. We wrote an alternative implementation of the abstract Python class to access the
door 1/0, this time redirecting the read/write operations to the Python extensions
operated from the Simulink S-function.

5. During simulation, the Python console launched the Python test scripts originally
developed for the real elevator door, but instantiating the class implemented to access
the now virtual testbench 1/Os.

The simulation campaign with the Simulink environment successfully replicated the
behaviour of the real testbench. This supports the development of test scripts that are
first validated on the virtual door testbench (i.e., the Simulink environment) and then can
be re-run on the real testbench. Listing 5.3 provides an example of a re-usable Python test
script that could be executed either on the virtual Simulink testbench or on a real door
testbench.

5.3.2 Limitations

The presented approach has the drawback that the S-function/Python 1/O interface has
to be re-programmed each time the SUT interface is modified. This impacts both parts of
the program, the C code for the S-function wrapper, and the C/C++ code for the Python
extensions required to read/write the ATE inputs and outputs. However, the inconvenience
can be mitigated with a thorough |/O interface design before implementing the S-function
and the Python extension modules, thus reducing later rework.
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Figure 5.3: The virtual elevator door testbench in Simulink

5.4 Discussion

This chapter introduced a testing and simulated fault-injection framework for time-triggered
dependable-systems based on the PS-TTM approach. The environment enables testing and
injecting faults at different stages of the design, from platform independent models to
platform specific models, which enables an early detection of design flaws in the system.
The Automatic Test Executor (ATE) presented herein is composed of three different
modules for the design and simulation of test-cases, injection of faults during simulation
and storage of simulation results for the evaluation of the behaviour of the system under
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Listing 5.3: Example of a re-usable Python test script
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##

unittest # basic testing framework
ElevatorDoorProxy # wrapper to abstract from test I/0s
time # host timing

TestLibrary(unittest.TestCase): # The test library
theSUTproxy # Global object to access the tester I/0 ports
t_max_to_open = 10 # Test parameter
# Other test attributes
assertInputs(self,_IR,_IRM,_LAP,_LCP): # Input assertions

inputs = theSUTproxy.getDI() # Acquires the SUT outputs
# Verdict
inputs.IR != _IR:

self.fail (errdescription)
. # similar for all inputs
testOpen(self): # Test door moves from closed to open
# 1. Sets to imitial conditions (i.e., door closed)

# 2. Commands the door to open
theSUTproxy. O

self.fail(errdescription)

# 3. Waits

time.sleep( self.t_max_to_open ) # Synchronizes with
simulator

# 4. Reads and asserts inputs

self.assertInputs( self.OFF, self.O0FF, self.ON, self.OFF )
# Restores the door state

testClose (self):
# Similar to testOpen

# More tests methods

TestSuite (unittest.TestSuite): # The test suite

testlist = ("testopen","testClose",...)
__init__(self):
unittest.TestSuite.__init__ (self, (TestLibrary,self.

testList))
run(self ,result):
unittest.TestSuite.run(self ,result) # Runs the test cases

testElevDoor (): # Runs the tests
theSUTproxy
theSUTproxy = ElevatorDoorProxy.ElevatorDoorProxy ()
testResult = unittest.TestResult ()
testSuite = TestSuite() # instantiates the test suite

testSuite.run( testResult ) #ezecutes the test

testSuite, testResult

__name__ == ’_ _main__"’:

sys
print __doc__

sys.argv.append (’-v’)

testElevDoor ()
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such faults. The ATE is synchronized with the simulation time of the SUT in a way that
functional tests and fault-injection experiments become reproducible.

The simulated fault-injection technique is non-intrusive, i.e., enables injecting faults in
the system models during simulations without the need of performing any modifications
to them. This is achieved by monitoring the signals of the SUT and modifying their
values if required. The framework provides the user with a library of faults in order to
configure the fault-injection experiments. The ATE imports these configurations for carrying
out the simulations. As the mapping of LET and E-TTM-based models to time-triggered
architectures is straightforward, this eventually facilitates the re-usability of tests even on
real prototypes, provided that we could build a test harness with equivalent real-world Fault-
Injection Units (FIUs).

We evaluated our framework in a case study consisting of a railway signalling system.
We modelled the system at both PIM and PSM levels, and checked the behaviour of the
system under different faults by means of the simulated fault-injection (SFI) capabilities
provided by the framework. The results of the case study evaluation are described in §8.1
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Testbenches

This chapter introduces a model and code re-use approach to build simulators for the
functional verification of real-time controllers under multiple test configurations (X-in-
the-loop). The Model-Based Development (MBD) relies on a Commercial-Off-The-Shelf
(COTS) tool-set framework, that provides a suitable level of abstraction while separating
the description of the functionality from the Model of Computation (MoC), i.e., the models
are agnostic of the MoC. This separation of concerns enables the implementation of
the MBD-generated test components into a COTS real-time Heterogeneous Computing
Platform (HCP), even supporting the re-deployment of a component to alternative execution
contexts (e.g., from processor to FPGA). To this purpose, the test designer has to refine an
orthogonal MoC specification model suited to the selected platform, yet the possible platform
constraints shall be considered beforehand, e.g., limitations regarding the components or
signal types that would eventually undergo the synthesis process.

This chapter demonstrates how the proposed workflow enables a preliminary model-in-
the-loop (MiL) validation of the test models, independently of the final test hardware (HW).
Then current COTS automated coders translate the test component model into either
hardware description language (HDL) or a conventional programming language, e.g., the C
programming language. This chapter examines some of the pitfalls that could hinder the
re-usability of the test component model at this stage, like the peculiarities of heterogeneous
test platforms. The approach will be exemplified by application to the development of a
hardware-in-the-loop elevator simulator for validating motion and safety functions deployed
in an elevator control system.
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6.1 Problem Statement

The development process for high-integrity safety-critical systems imposes a strict separation
between the development and verification, validation and testing (VVT) artefacts. Ideally
the development and evaluation phases should only share the specifications. The
development of COTS computer simulators, and the generalization of co-simulation
interfaces enable a staged simulation campaign, according to a previously established VVT
plan. The VVT workflow may comprise:

1. An initial MiL approach, where abstract test models help at refining a library of test
cases. The System Under Test (SUT) would eventually be replaced by a functional
model of the expected behaviour, developed by the test engineers and based on the
specifications, which are shared with the development team. In this phase, test
engineers can perform simulation analysis to measure the test coverage and improve
the test cases as needed. While MiL enables fast iterations to improve the quality
of the test, the results may differ with those obtained in the subsequent tasks, when
more detail is included in the simulation framework.

2. An intermediate software-in-the-loop (SiL) stage enables a cross-check of the software
(SW) source code artefacts provided by the development team versus the test
harnesses and test cases developed by the VVT team. In this phase, both teams
gather feedback about their respective accomplishments: safety developers get test
reports addressing potential defects, while they can use the simulation framework
for SW debugging. The SiL iterations are slower than the MilL, as these require
components provided by independent teams, i.e., the developers and the VVT teams.

3. The hardware-in-the-loop (HiL) test component provides a real-time simulation of the
plant using the physical interfaces of the SUT. Test engineers use HilL verifications
to examine the behaviour of the SUT under special situations that could be difficult
or expensive to generate using a real context. To that purpose, the HiL simulators
shall mimic the expected behaviour of the SUT operational context with sufficient
accuracy. A problem with the HiL approach is that could require the development
of specific models, e.g., sensor or actuator models with controlled fault-injection, or
special instrumentation models that also require a validation process, in the sense
that the model is capable of reproducing the abnormal behaviour as expected by an
application expert.

The combined use of all these simulations in a development project introduces a number
of new artefacts required in each phase. HilL simulations are the most demanding, as both
an adequate signal fidelity and a deterministic real-time behaviour are needed to resemble a
realistic environment to verify a system. Simulator modules updating at high sampling rates
are usually targeted to programmable logic. Several HiL vendors provide specific IP libraries
for FPGAs to simulate commonly used devices. The associated models are drawn from the
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libraries to the HiL programming environment, then connected with the user-provided plant
models, and finally, all of them get compiled and bundled in a bit-stream file for the FPGA.
However, the related IPs are proprietary and cannot be customized if necessary.

Another issue arises when we require a testbench that integrates custom pieces of
SW within the HiL system. This would be the case when the SUT communicates to
custom protocols with a remote device. The HilL system setup could become a very labour-
intensive task, risking a late delivery that would eventually compromise the completion of
the development project on time.

Summing up: while the combination of several X-in-the-loop (XiL) approaches eases
the early detection of errors it also requires a considerable preparation work. The problem
is how to make a profit from the validation effort spent in MiL/SiL simulations to alleviate
the setup cost of an equivalent HiL system. From MilL simulations we could benefit from an
automated translation of validated utility models into programming artefacts suited to the
HiL heterogeneity. From the SiL simulations we could benefit from portable SW artefacts
that facilitate a cross-platform deployment from the host simulation platform to the HilL
processor.

6.2 XiL Testbenches for Dependable Control Systems

The steadfast rise in computing power of embedded processors support the development of
increasingly complex deployments of dependable applications. In many fields of application
the expected life-time of functional safety systems exceeds a decade. At the same time,
the fast innovation pace in electronics leads the manufacturers of embedded control
systems to maintain different generations of electronic devices over the life span of the
system/machinery, to provide retrofitting supplies for legacy electronics. One way to cope
with this issue is to develop a ‘universal’ product concept, designing the control system
hardware and software to keep interface- and functional compatibility with earlier product
generations, while supporting the latest innovations. A key requirement to succeed in this
approach is to provide suitable testbenches for regression and backward compatibility testing.

In particular this thesis tackles the testing of dependable control systems with safety
functions related to motion supervision and control, where innovations in sensor components
also foster the development of dependable systems with a higher technical performance.
For instance, the introduction of state-of-art absolute position sensors improves the overall
availability of an elevator system by shortening the start-up time.

Nevertheless this poses specific integration-testing challenges: building up testing
facilities for motion controllers is costly, allows limited operational configurations, requires
skilled staff to setup the full system, and the availability is low due to a high demand for
regression testing of an evolving product. In this context a HiL simulator constitutes a cost-
effective mean for testing embedded electronics, even though its maintenance and upgrading
pose issues similar to those of the embedded systems. Moreover, the complexity of the HiL
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simulators could exceed that of the devices or systems under test, thus requiring special
computing platforms. An excessive dependency of the testing components on a particular
deployment target becomes the main bottleneck as the testing platform gets outdated.

Several state-of-art HiL simulators offer the feature to simulate multiple communicating
devices in real-time for testing distributed systems. In the automotive domain this capability
is known as ‘Restbus’ simulation, meaning that the test system simulates multiple Electronic
Control Units (ECUs) to represent the communication bus load (the ‘rest of the bus’)
and provide appropriate signals to verify the functionality of the ECU or system under
test. Whether this is done by running functional messaging models or by compiling
platform-independent code, the building, integration and verification of these additional
test components with current commercial-of-the-shelf test systems may require a substantial
start-up effort. On the other hand, in a regression-testing scenario most of the networked
embedded products in the distributed system would have previously undergone a thorough
verification and validation. Reusing code from the actual devices to build virtual replicas of
these devices could be a more cost-effective approach. In this context, the main technical
challenge is the implementation of the software interface between different modules, also
possibly written in different languages.

Therefore, it is crucial for manufacturers to preserve the knowledge about the product
and the related test systems while minimizing all these inconveniences.

The adoption of a model-based development process for the test system provides a solid
foundation for the future evolution of the product line. Furthermore, in order to shorten
the time-to-market sometimes the manufacturer starts the integration of a new component
concurrently relying on the specifications, even if the new part is not yet available. Current
model-based development tools could be used to build functional mock-ups of those parts,
which can then be deployed into the test system, effectively shortening the overall integration
phase.

This chapter contributes a model-based workflow to ease the construction of components
for a heterogeneous COTS HiL test system, by re-using MiL and SiL artefacts previously
validated in COTS modelling environments. We address the capabilities and limitations of
two mainstream MBD environments to support the development of such test components
and the deployment into a real-time reconfigurable computing platform: MathWorks'
Simulink product family [SL], and National Instruments’ LabVIEW [LV]. We also describe
the problems found when integrating the obtained test artefacts in a HiL system based on
the COTS NI CompactRIO (cRIO) modular controllers, and possible the workarounds to
solve them.

6.2.1 HiL System with cRIO COTS Heterogeneous Platforms

The IEC-61508 safety standard establishes requirements for the complete life-cycle of a
functional safety system. As a rule, safety-related artefacts should be preserved until the
complete retirement of all the product units. Under this assumption, and considering an
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expected operating life of about 10 years, we preferred COTS computing platforms with
modular 1/O and interfaces to build the HiL test systems. Currently marketed COTS
HiL systems for high-end test applications show a similar architecture combining multi-
core processors and FPGAs. Interchangeable modules implement the tester interfaces
(e.g., 1/Os, bus communications), and a Real-time Operating System (RTOS) warrants
the time-determinism of the simulations in real-time. Such an architecture is found in
the SCALEXIO system by dSPACE [SCALEXIO], the Real-time Target Machines from
Speedgoat [RTTM], the Hypersim simulator from Opal-RT [OPALRT] or the NI PXI
solutions for HiL simulators [NIPXIHIL]. Most of these systems can be scaled-up by
interconnecting multiple HilL units, resulting in a multi-core / multiple CPU distributed
HilL system.

For the scope of this thesis we selected the Compact RIO (cRIO) controllers from
National Instruments [cRIO]. The cRIO controllers are heterogeneous computing platforms
intended for deploying real-time control applications that integrate a multi-core processor
and a Xilinx Field-Programmable Gate Array (FPGA). The different cRIO variants offer
scalability of the computing resources while sharing most of the modular parts and
supplies, and a common LabVIEW programming environment. In the scope of this chapter
contribution the cRIO platform was used to build a HiL elevator simulator (HiLES). HiLES
replaced a preceding elevator simulator, where the substantial difference is that in the new
deployment we targeted the FPGA to run the time-critical simulation models, including the
elevator car dynamics and the associated sensor models. HiLES served for the evaluation of
the MiL/SiL re-use approaches described herein.

The Hil elevator simulator consists of:

1. A real-time heterogeneous, reconfigurable computing platform for simulating the
dynamic behaviour of electro-mechanical elevator subsystems.

2. Signal adapters to replicate the actual interfaces of sensors and actuators.

3. A graphical user interface to select the simulator settings, monitor the current state,
record data, and trigger fault injections.

We used two HiLES system variants:

1. HiLES with cRIO-9082 [cRIO9082], that integrates a dual-core Intel i7@1.33 Ghz
processor, a Xilinx Spartan-6 LX150 FPGA, and uses the Phar Lap ETS RTOS.

2. HiLES with cRIO-9039 controller [cRIO9039a], a heterogeneous computing platform
featuring an Intel ATOM Quad-Corel.91 GHz CPU processor, a Xilinx Kintex-7 325T
FPGA, and NI Real-time Linux RTOS.

In the slots of the cRIO controllers we plugged C series modules to interface with the
SUT: digital input/output for switches, command inputs and incremental encoders and
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CAN interfaces for communications. An Ethernet port connects the cRIO-9039 simulator
to a remote test control application. The subsystems of the plant model requiring a fast
sampling rate are computed in the FPGA to increase the throughput and timing coherence
of the encoder signals. Lower sampling rate subsystems run in the cRIO processor, besides
the communications server to the remote test controller. The processor runs a LabVIEW-RT
application that handles the CAN port allocated to the Restbus simulator and orchestrates
the overall synchronization.

6.2.2 Model-based workflow

We program the HIiLES simulator in a mixture of languages, adopting model-based- or
conventional- SW development processes when better suited. This is illustrated in Figure 6.1.
The bitstream file for the FPGA is synthesized from a mixture of HDL files, some of which
derive from Simulink models and are imported to the LabVIEW-FPGA project. Additional
user-defined extensions can be imported as shared libraries in the HCP processor execution
context. For instance, the test artefact obtained by re-using code-artefacts is the embedded
CAN Restbus extension.

When specifying the new elevator simulator we faced the challenge of switching
the computing platform from a conventional processor to an FPGA implementation.
The preceding simulator was programmed in the C programming language, as a multi-
thread/multi-rate application using two synchronisation sources: a fixed-cycle timed task
read the elevator controller outputs and the operator commands, while a variable-cycle
timer triggered the model computations, including the simulated position switches and the
incremental encoder. This platform-specific timing control jeopardized the integration of
new functions as the complexity of the simulator increased. The main driver to adopt
an MBD approach for developing the new simulator was the need to reduce the burden
of integration testing. MBD allows us to validate the new functions at the design phase,
unveiling earlier potential problems and fixing them before programming the actual hardware.

We selected the MathWorks toolset to support our MBD starting the design from
abstract functional descriptions. The functions can be described in a variety of languages:
MATLAB code, Simulink models, Stateflow models, custom C-code. Complex functions
can assemble parts expressed in different languages. Modeling with mixed-languages could
actually shorten the development time, but also has some drawbacks: first, it requires more
development tools, increasing both the tool acquisition and maintenance costs; second, the
resulting model depends on more components, increasing the likelihood of maintainability
issues; third, free selection of modeling language and modeling style may potentially
bring project teams to develop different models with degraded readability, unless enforcing
guidelines like MAAB [MAAB]. To minimize dependencies on MathWorks toolboxes, we
limited ourselves to use those listed in Table 6.1.
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Table 6.1: Software toolset to re-use sensor test models from MiL to HilL.

Vendor Application Purpose
MATLAB Pre-requisite for Simulink.
XS Simulink Model authoring, simulation.
s)
% Fixed-Point Designer Fixed-point arithmetic support.
g HDL Coder Model to HDL transformation.
Simulink  Verification & Model sanitization.
Validation
_ £ LabVIEW Pre-requisite for LabVIEW/RT and
g 9 LVFPGA.
S E
§ 2 LabVIEW/Real-time Programming the NI cRIO processor.
(%2}
= LabVIEW/FPGA Programming the NI cRIO FPGA.

We developed our new elevator simulator as a set of Simulink models compliant with the
requirements of the HDL Coder transformer [HDLC]. We also developed a number of test-
harnesses to simulate comprehensive validation test scenarios. This model base constitutes
a valuable asset, as it captures the manufacturer’s intellectual property in a executable
form, thus fostering further design-space exploration by supporting simulated experiments
to evaluate the performance of new designs. Once validated in simulation we transform the
Simulink models to HDL [IEEE1076] files using HDL Coder.

At the final step we program the cRIO controllers using the National Instruments software
listed in Table 6.1. We import the HDL files as LabVIEW IP Integration Nodes into the
LabVIEW/FPGA Virtual Instruments (VIs) for the cRIO target.

6.3 Re-using Test Artefacts from MiL to HilL

This section presents the re-use of Simulink models, validated in a MiL configuration, to
build test components which can be deployed in a COTS HiL heterogeneous test system.
In particular we illustrate how to synthesize some types of position encoders as well as a
customized synthetic instrument. These synthetic sensors and instruments ease the real-
time functional verification of critical systems where safety functions depend on motion
measurements, e.g., position or speed.
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6.3.1 Requirements for Real-time Simulation of Position Sensors

A motion controller typically integrates position measurements from diverse sensors,
exploiting the information redundancy for condition monitoring and diagnosis functions.
The controller could detect a faulty device by analysing the temporal correlation of the
signal values. A key requirement for a real-time plant simulator is the temporal coherence
of the information: latencies in the simulation platform can foul the motion controller,
bringing it into an emergency stop.

The required cycle times for the real-time simulation of incremental encoders depend
on the speed of moving elements and the encoder resolution. To simulate fast systems
with high resolutions, we would eventually exceed the minimum achievable cycle time of
most COTS HiL processors. FPGAs prove advantageous for this purpose, as we can achieve
short cycle times (e.g., below 100 nanoseconds), and the processing parallelism of an FPGA
enhances the scalability of the HiL simulator without degrading the real-time performance.
Besides, the Simulink language is inherently parallel, which eases the translation to HDL
code required to implement the model in an FPGA.

On the other hand, implementing the simulator models in FPGAs has some drawbacks:
the implementation of floating-point arithmetic operators requires additional IPs, that
consume more area and resources than fixed-point implementations; fixed-point arithmetic
requires specialized toolboxes; and, combined use of several model-to-HDL translators
hinders the estimation of the critical timing path.

6.3.2 A Synthesizable Quadrature Encoder Simulator

Among the position sensors, encoders and limit switches are commonly used in motion
control applications. Quadrature incremental encoders are relatively simple devices that
transmit the position variations of a moving part attached to it as modulated output signals
pulse trains (see §2.4.2). The instantaneous frequency of the pulse trains is proportional
to the speed, while the pulse count is proportional to the position. A possible solution to
simulate a quadrature encoder is to modulate the pulse trains using an input speed value. A
special burst circuit would modulate the encoder outputs at the required frequency between
every two consecutive updates of the speed value. This technique supports the computation
of the plant dynamics in a conventional processor, at a lower sampling rate, while the fast
rate subsystem deals with the generation of the signal edges. However, this method has
a major drawback to attain a high fidelity simulation: while the speed is computed with
a dynamic model, the position has to be either estimated, or updated by counting pulses.
Differences may arise, and when the HiL system has to simulate redundant position sensors,
then synchronization issues may lead to inconsistent simulator behaviour.

An alternative approach is to model the quadrature encoder as a scale-and-modulate
system, as shown in the Simulink model from Figure 6.2. This encoder model takes as input
the position of the moving object (which is calculated in the plant model). The position
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Model of the incremental B
Simulator of encoder with X4 encoding ... Signal scaling and scope view

moving part “~-.. . gnd differential outputs )
(test stimuli) <positor>
£ Y
QuadratureEncoder_fp
it »| Convert Gain: 1 L
P <postton> posiion positon Bias: 0.25 I
Probet
SignalGenerator J—l Gam 1 AB
VE pm_ppu prm_pk t B Bias:-1.25 3 N
Scope
. Gain: 1
o polarty 7| P™-Polarty Nob Bias: 025 | oA
Probe3
Gain: 1 ,
prm_sensoposition | NotB I Bias:-1.25 I—’m.g- [A.B]
\ Probed

QuadratureEncoder

Figure 6.3: Simulink testharnerss for MiL validation of the quadrature encoder model

value is then scaled and biased according to the encoder resolution and a mounting reference
position. The output signals A, B, A’, B’ are generated using an X4 encoding. In the output
stage a polarity reversal can be applied to swap signals A, B and A’, B’, which alters the
relative phase of the outputs.

Model-in-the-Loop Validation

The quadrature encoder model can be first validated by means of instrumented Simulink
models of varying complexity. Figure 6.3 shows a simple test-harness model, that was used to
generate the example pulse trains shown in Figure 2.4. A number of different test-harnesses,
including partial assemblies of models of plant subsystems were used for a comprehensive
MiL validation of the sensor model before integration into the HilL real-time simulators.

Hardware-in-the-Loop Integration

We used the tool HDL Coder to translate this model to HDL. Listing 6.1 shows an excerpt
from the generated HDL code, corresponding to the declaration of the quadrature encoder
interface. The resulting code was imported to the LabVIEW/FPGA project for the HiLES
simulator used in the case study presented in §8.2, on two different Xilinx FPGAs. Figure 6.4
shows the quadrature encoder IP, and the special-purpose chronometer instrument presented
in section §6.3.4, integrated as LabVIEW Call Library Function Nodes (CLFNs) in the
cRIO FPGA project. Both IPs are placed inside a timed LabVIEW loop that executes
synchronously, at 2.5MHz in the cRIO-9082, or at 5 MHz in the cRIO-9039. The IPs read
the same POSITION input value, which is computed at the plan model (not shown in figure).

The actual real-time behaviour of the simulated encoder was validated with laboratory
instrumentation, checking the correctness of the pulse train frequencies with regard to the
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Listing 6.1: HDL declaration of the generated IP for the quadrature encoder

1 LIBRARY IEEE;

2 USE IEEE.std_logic_1164.ALL;

3 USE IEEE.numeric_std.ALL;

4

5 ENTITY QuadratureEncoder_fp IS

6 PORT( clk : IN std_logic;

7 reset : IN std_logic;

8 clk_enable : IN std_logic;

9 -- Position of moving part

10 position : IN std_logic_vector (47 DOWNTO
0); ~-- sfiz4{8_Enl16

11 -- Resolution in pulses per unit

12 prm_pulsesperunit H IN std_logic_vector (31 DOWNTO
0); -- sfiz32_Enlié6

13 -- Output polarity

14 prm_polarity : IN std_logic;

15 -- Sensor mounting position

16 prm_sensorposition : IN std_logic_vector (31 DOWNTO
0); -- sfiz32_Enl16

17 ce_out : 0uT std_logic;

18 -- A signal (single-ended mode)

19 A : ouT std_logic;

20 -- B signal (single-ended mode)

21 B : ouT std_logic;

22 -- A’ signal (differential mode)

23 NotA : ouT std_logic;

24 -- B’ signal (differential mode)

25 NotB : ouT std_logic

26 )

27 END QuadratureEncoder_f£fp;

simulated speed of a moving elevator cabin.

6.3.3 Simulating Sensors with Bus Interfaces

Herein we present the Model-Based Development (MBD) of a real-time simulator of a
CANopen absolute encoder for the functional verification of real-time motion controllers.
We describe the step-by-step synthesis and deployment of the encoder simulator in the
FPGA of a commercial-of-the-shelf NI cRIO real-time controller. We also discuss specific
integration and portability issues that arose when migrating the simulator to a variant of
the hardware platform.

CANopen Absolute Encoders

CAN networks suit the low-cost and performance requirements for implementing a variety
of distributed control systems. Several encoder manufacturers offer devices with CAN
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Figure 6.4: Quadrature encoder and chronometer IPs in LabVIEW FPGA project for cRIO

interfaces, offering alternative protocol implementations: custom, industry standard (e.g.,
CANopen CiA 406 [CiA406]), or domain-specific (e.g., CANopen CiA 417 [CiA417] for
elevator applications).

We focus on building a functional model of an absolute encoder with a CAN interface
and withh the CANopen CiA 406 protocol, that could be used as a functional replacement
for a real device, e.g., an ELGO LIMAX 02 encoder [Mat13, LIMAX]. CANopen encoders
act as CANopen communication slaves and the controller devices act as CANopen masters.
CANopen slaves react to master messages, except for cyclic messages that are transmitted
upon the trigger of a programmable timer.

According to CANopen specifications, a CiA 406 encoder operating in normal mode
publishes the position and speed data synchronously by sending a Process Data Object
(PDO) (TPDO1). The basic node operation complies with the common CiA 301 [CiA301]
services. The CANopen master can set the TPDO transmission cycle for sending a Service
Data Object (SDO) message. The encoder also emits a Heartbeat (CANopen message
service) (HB) periodically, triggered by a programmable timer. Other functions include
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saving parameters, or resetting to factory configuration. The encoder implements Layer
Setting Services (LSS) to setup configuration parameters like the node-ID and bit rate.
The LSS configuration requires a point-to-point connection to the CANopen master and
a reset of the sensor to become effective. The configuration is typically carried out at
commissioning. For our purpose, we assumed that the sensor is pre-configured at start-up,
and that the elevator controller will only overwrite the TPDO1 and HB transmission cycle
times.

Modeling the CANopen absolute encoder in Simulink

The purpose of the encoder simulator is to verify the performance of the elevator-position
controller. We first derived the requirements for the encoder model from the functional
requirements for the position controller. As said in the preceding paragraph, the actual
CANopen encoder implements LSS services intended to configure persistent parameters
of the sensor at commissioning. We assumed that the sensor will be pre-configured prior
to connecting it to the elevator controller. Therefore, we did not implement these setup
functions. Instead we replace the non-volatile memory for communication parameters with
a pre-set configuration file. These parameters will be fed into the model through additional
input ports (e.g., the CANopen nodeid, see Table 6.2).

In normal operation the CANopen master, i.e., the position controller, would enable
or disable the encoder messages using the NMT services, read the position and speed
information contained in the TPDO1 datagrams, and re-configure the transmission cycles
for heartbeat and TPDO1 messages. To keep the model simple, we implemented a subset
of the CiA 406 object dictionary with only 3 read/write entries: the heartbeat cycle time
(entry10700h), the TPDO1 transmission cycle time (entry18500h) and the Network
Management (NMT) slave-mode state. The model provides inputs for an external tick
counter and a scaling factor to control the timing for transmitting HB and TPDO1 messages.
This external tick count is fed to the model EVENTTIMER shown in Figure 6.6, which
implements a programmable event timer compliant with the standard CiA 301 [CiA301].

The interface to the elevator simulator consists of inputs for the elevator car position
and the position reference of the encoder (expressed in mm, using a signed 48-bit fixed-
point format) and the cabin speed (expressed in mm/s, in 16-bit signed integer format). We
initially sought for a general model of an encoder compliant with standard CiA 406 [CiA406],
so we designed the scaling function depicted in Figure 6.7. The figure shows the
CiADS406scaler Simulink model that realizes a fixed-point arithmetic scaler for position
and speed values, according to the CiA 406 CANopen standard for encoders. CiA 406
specifies that the measurement resolution could be dynamically re-defined by CANopen
masters through the CANopen SDO service, and also defines the range of valid values for
the resolution parameter. The resulting scaler model using fixed-point data-types requires
non-standard fixed-point arithmetic with lengthy intermediate registers. Ultimately, the
timing constraints for the cRIO-9082 forced the removal of this function: once the encoder
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Table 6.2: Input/output ports for the absolute encoder model

Port 1/0 Datatype Description

EN input(1) boolean Enable

RST input(2) boolean Reset

tickcount input(3) boolean External clock tick count
txrdy input(4) boolean CAN port ready for TX
rxindication input(6) boolean Signals a message RX
rxextid input(7) boolean Indicates a 29-bit rxcobid
rxcobid input(8) uint32 CAN message ID (RX)
rxdlc input(9) uint8 RX msg. data byte length
rxdatabyten input(10...17) uint8 n-th RX databyte

nodeid input(18) uint8 CANopen encoder 1D
position input(19) fixdt(1,48,16) Cabin position in [mm]
speed input(20) fixdt(1,48,16) Cabin speed in [mm/s]
positionref input(21) fixdt(1,48,16) Position reference.

errin input(22) boolean Signals a preceding error.
txindication output(1) boolean Transmission trigger.
txextid output(2) boolean Indicates a 29-bit txcobid.
txcobid output(3) uint32 CAN message ID (TX)
txdlc output(4) uint8 TX data byte length
txdatabyten output(5...12) uint8 n-th TX databyte

errout output(13) boolean Signals an error.

model was coded in HDL, the bit-length of the holding registers for the arithmetic operations
required cascading multiple DSP stages. As a consequence, the total delay resulting from
the critical path was 245,00ns (Logic Delay: 91,82ns/Routing Delay: 153, 14ns) missing
the timing constraint (199, 92ns@Q40M H z) by 45, 66ns.

We assumed that the CAN port of the HiL simulator will provide queues for receiving
and transmitting messages. We decided that the model will read a single incoming message
at a time, and that only a single outgoing message will be written to the model outputs. In
the worst case, in a single cycle the encoder could receive an SDO request while the event
timers trigger the transmission of the HB and TPDO1 messages simultaneously. To solve
this problem we modelled a triple-mailbox and a scheduler that outputs first the messages
with higher priority, delaying the other until the CAN port is available. Besides that, as the
different CANopen services run concurrently, we modelled a serializing/de-serializing access
to the entries of the object dictionary to prevent read/write collisions.
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Figure 6.7: Simulink model of a fixed-point CiA DS406 encoder scaler

Validation of the Simulink model

To assess the functional equivalence of the Simulink encoder model with the manufacturer
specifications we built a test-harness model that imports the encoder model as a Simulink’
Model Reference Block (see Figure 6.8). For the CAN communication we developed a set
of Simulink extensions (C-MEX S-functions) for controlling a CAN port from an IXXAT
USB-to-CAN interface attached to the simulation host computer®.

We also included a C-MEX S-function for simulation-to-host time synchronization that

sleeps the computing thread to achieve soft-real-time behaviour 2.

This way the functional correctness of the sensor model can be validated using a standard
computer, and a client application or device acting as a CANopen master. Although
the timing of the functions is not deterministic (only a delay synchronization keeps the
simulation time close to the elapsed host time), this desktop simulator reacts to the
CANopen master as specified, with regard to the queuing of messages as well as the internal
timing mechanisms to trigger the CAN transmissions work properly, even if the measured
CAN message timestamps showed timing jitter.

!Optionally a Simulink model can be connected to a CAN network using either the Vehicle Network
Toolbox or CANoe.
2Instead of MathWorks Real-time Windows Target.
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Transformation to HDL

We used HDL Coder [HDLC| to generate a Very High-Speed Integrated Hardware
Description Language (VHDL) description of the Simulink model, adding to the model
VHDL profiling information. At first we used a generic FPGA coding profile, seeking
for better portability across the cRIO variants. After some trials in LabVIEW /FPGA this
approach turned up to be unfeasible, due to timing issues. Finally we had to set a different
profile to generate HDL specific to each FPGA target. This way we exploited the features
of the Xilinx Kintex-7 DSPs in the cRIO-9039 controller to actually shorten the critical
execution path and match the timing constraints.

6.3.4 Re-usable Instrumentation Models

Current HiL computing platforms show a similar architecture, including: (a) a multi-core
processor with multiple communication interfaces and (b) a number of internal buses (e.g.,
PCI Express (PCle)) connecting the processor to reconfigurable computing resources (e.g.,
FPGAs). For complex plant models the HilL could be scaled-up to a distributed architecture,
partitioning the models and deploying them on multiple interconnected processing elements.
Test engineers must balance the computing overhead in the HiL platform, partitioning the
model between the conventional processors and the Programmable Logic (PL) resources,
while considering at the same time the potential performance bottlenecks at the internal
communication buses.

The main processor in a COTS HiL platform usually deploys an RTOS to handle the
communication buses and provide services to integrate the test within a quality management
system. Due to this, the minimum cycle time achievable for simulations running in the main
processor is constrained by the system RTOS/firmware. When the dynamic behaviour of
the System Under Test (SUT) is faster than that minimum cycle time then the test engineer
has to move the model to the PL subsystem. For a Model-Based Testing (MBT) approach
this could bring the test engineer to develop an alternative set of models that would be
coded to HDL.

Sometimes the HiL system is intended for the verification process, which requires a
precise time instrumentation of the internal plant variables to evaluate the SUT, e.g., for
benchmarking different variants or candidate designs of the SUT). On some occasions, these
variables cannot be output to physical interfaces, thus preventing the use of instruments
external to the HiL platform. Besides the increased cost of the required HW, there is the
problem of potential data throughput bottlenecks (e.g., should the HilL transfer a big amount
of data to the instrument/analyser in real-time, its functioning could be compromised by a
low availability of bandwidth in a PCle bus or a networking interface).

When the output from the instrument/analyser updates at a slower rate than the inputs
required to evaluate the technical performance, then a feasible alternative would be to
integrate the instrumentation components in the HilL platform. This also opens the door to
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the development of custom instruments that benefit from a common timing source, which
enhances the correlation of the measurements with the actual time sample taken when the
interesting dataset was created.

This subsection exemplifies the application of the proposed MBD/MBT framework and
workflow to develop such specialized components, by application to a synthesizable speed-
triggered chronometer.

A Synthesizable Speed-triggered Chronometer Model

The verification of motion-control systems usually requires measurements of the time elapsed
between motion-related events. For instance, in a HiL system like the HIiLES elevator
simulator we had to implement a speed-triggered chronometer to compare the relative
performance of alternative motion control strategies.

To this aim we applied our MBD approach to design the special instrument shown in
Figure 6.4. This Simulink model implements a speed-triggered chronometer to record the
time elapsed between external activation events (triggered with the control inputs TRIGGER1,
TRIGGER2 or START) or when the speed-value reaches a pre-set threshold. We integrated
this chronometer in the HIiLES elevator simulator, such that the START event could be
triggered by the user of the test system, while the TRIGGER1 and TRIGGER2 events are
fired by the plant model upon changes in the speed set-point, or when the moving part
starts/stops its motion. The time is measured in tick count increments, where the tick
value depends on the sampling rate at which the model is executed. The model implements
internal shifting registers to store the values of the speed, speed set-point and position
inputs when a triggering event activtes the ChronometerMemory2 subsystem.

One can observe that the model from Figure 6.9 has scalar-type outputs instead of
vectors or arrays. Although HDL Coder can translate Simulink models with vector outputs
to HDL code, here we faced the limitation of the LabVIEW CLFN import capabilities, that
only supported HDL modules with scalar I/Os. As a consequence, this cluttered the Simulink
model.

The Simulink model of the instrument was coded to HDL and imported to the cRIO
LabVIEW/FPGA project, as shown previously in Figure 6.4. The time measurements have a
resolution related to the sampling rate in the FPGA, that is, 400ns for cRI0-9082, and 200n.s
for cRI0-9039. Therefore, the FPGA implementation of the synthetic instruments provides
sufficiently precise measurements of time intervals. Finally, the recorded measurements are
sent to the test control application. Figure 6.10 is a snapshot of the HiLES remote test
interface showing the motion and time values recorded by the FPGA chronometer IP.

6.4 Re-using Code Artefacts from SiL to HiL

This section presents a para-virtualization approach for concurrently validating product
lines of distributed dependable systems, even while the embedded software applications
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Figure 6.10: Remote LabVIEW interface for the speed-triggered chronometer

evolve incrementally. The para-virtualization relies on code re-use from the replaced
products, which eases the upgrade of the test systems. The code re-use approach aims
at: (i) virtualizing a number of networked embedded Input/Output (1/O) devices and (ii)
integrating those virtual devices in a COTS HilL simulator.

6.4.1 CAN Distributed Control systems

Distributed embedded control systems may integrate diverse industrial networking
technologies or buses, e.g., Ethernet, FlexRay, LIN, ARINC 429, Profibus, etc. Our work
focuses on distributed systems with embedded 1/O devices connected to a Controller Area
Network (CAN) compliant with the CAN2.0A/B specifications.

The CAN bus was originally designed for automotive applications, but has also been
adopted for industrial and building automation. Depending on the communication protocol,
a single CAN node may implement diverse communication models, e.g., master/slave,
producer/consumer, client/server, etc. For instance, in the CANopen protocol, a remote
I/O node may act as a server (e.g., for accepting Service Data Object (SDO) request from
a client device), as a slave (e.g., for configuring as the NMT request from the master), and
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as producer (e.g., for transmitting cyclic PDOs messages).

In automation applications, CAN is used to interconnect the devices composing a
distributed control system. Devices that in some configurations may amount to more than
a hundred |/O nodes networked on a single CAN bus. As each real |/O device has at least
one CAN port, and considering the constrained scalability of the HiL targets, one needs a
virtualization approach that minimizes the number of CAN interfaces allocated to the virtual
devices in the HilL system.

To that end, we first analyse the basic functionality of low-end |/O devices, as well as
the CAN bus operation.

Assumptions on the 1/0 node embedded application

The para-virtualization approach is based on the following assumptions about the I/O
application:

Assumption 1 C/C++ Programming Language: The embedded /O node application shall
be programmed in the C or C++ programming languages, so that the source code can
be cross-compiled for the HiL processor targets. The platform-dependent functions
are separated from the platform-independent ones.

Assumption 2 Memory initialization: The initial values of volatile and non-volatile memory
are pre-determined by executing a memory setup routine (e.g., a C start-up procedure
to initialize global or static C variables), and the source code for the initialization
is available.

Assumption 3 Peripheral initialization: The peripherals used by the application are
initialized at start-up, e.g., after powering-on or resetting the I/O device, and the
source code for the initialization is available.

Assumption 4 Interrupt service routines: The source code of the interrupt service routines
is available.

Assumption 5 Non-blocking control flow: The main execution thread in the application is
based on an indefinite-loop that calls a non-blocking sub-routine.

6.4.2 Para-virtualization of /O CAN Devices

As CAN is a half-duplex bus, a simple solution to simulate a group of networked nodes is to
share a single CAN port between several virtual devices. A CAN Restbus simulator denotes
a group of virtualized devices that share a single CAN port to connect to a CAN bus. The
purpose of CAN Restbus simulators is to replace a multiplicity of embedded 1/0O nodes,
using fewer HW resources to replicate a distributed control system.
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As the simulated CAN interface of each virtual device increases the computing overhead,
the challenge is to timely transmit the outgoing messages in a sequence indistinguishable
from that generated by the real devices. CAN frames contain an 11- or 29-bit message
identifier (CAN-ID) and a data field. CAN interfaces arbitrate the transmission of frames
based on the CAN-ID: the lower the value of the identifier, the higher the priority to transmit
the frame. Thus the range of CAN-IDs allocated to a message class in a CAN communication
protocol, determines its precedence.

Virtualization of CAN Devices

In our case study we focused on the CAN 1/O devices that share a common C source code
baseline, used in two alternative deployments:

In standalone devices: These are embedded networked devices with specialized
interfaces. All the Printed Circuit Board (PCB) designs integrate the same Micro-
controller Unit (MCU) architecture and share the application code. The behaviour is
determined at run-time by means of a hardware identifier specific to each PCB variant.

As interfacing component: In this configuration the remote | /O functionality combines
with additional control functions on an MCU or DSP target. Parts of the source code
are shared with the standalone embedded applications. This software is inherently
portable across hardware platforms, easing the integration with the simulator.

Re-using the same source files of the actual nodes has a number of potential benefits:

Comprehensibility of behaviour: The remote devices are reactive, i.e., their behaviour
depends on the current inputs and messages and past action history. With a proper
implementation the virtual device exhibits nearly the same behaviour as the actual
component, getting similar 1/O and messaging time series for an indefinite time
period. This is advantageous to replay approaches, where the outputs (e.g., message
sequences) of the simulator derive form a pre-defined sequence database.

Extensibility: The number of simulated device instances to simulate can be modified
at run-time. Thus we can reproduce scenarios were some nodes switch on or off
dynamically without modifications in the physical layout.

The technique chosen to import the virtual devices in the real-time HiL platform is
influenced by both the programming style of the legacy code and the models of computation
available in the HiL controller. The main issues found were:

Issues related to the programming paradigm: For low-resource embedded devices it is

common to deploy the application into a bare system, i.e., without an operating
system. The source code of low-end embedded applications usually has many parts of
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the program written in C. When developing an embedded application, programmers
may use persistent global variables, allocated to fixed memory regions to access shared
resources from different execution paths.

Listing 6.2 shows a simplified main C module for an embedded CAN device, where
global variable bState and static variable bDevId would be allocated to fixed memory
positions. The program control flow starts with a platform-specific initialization
(e.g., a __cstartup() entry point) and then calls the main() function. The latter
calls function init() that enables the CAN service routines as well as does other
program initialization, like retrieving non-volatile device parameters. Variable bDevId
is a device identifier, used to distinguish the multiple devices of the same kind that
could communicate on the CAN bus. After completing the initialization, the main()
function executes an indefinite loop that calls function step(). Function step() can
use the system timing services to (almost) synchronously execute the device functions,
e.g., acquire inputs, read incoming messages, update the internal state (e.g., by writing
variable bState), modify the device outputs and send the outgoing messages.

The para-virtualization to simulate multiple instances of a program device like
Listing 6.2 requires a proper context-switching to (i) retrieve the values for variables
bState and bDevId, (ii) update the virtual time in the device, (iii) emulate the
behaviour of the main() function, and (iv) store the updated state variables.

Listing 6.2: Example of embedded application main C module

1 char bState = 0; /% global scope */
2 static char bDevid; /% module scope */
3 /* program initialization */

4 static void init(void) { /% module scope */
5 canInit ();

6 /* setup */

7}

8 /* synchronous task */

9 static void step(void) { /% module scope */
10 if (elapsedTsamp ()) { /* check timer */
11 getInputs () ; /* read inputs */
12 dequeueRxMsgs () ; /% handles msgs */
13 . /% other processing */
14 setOutputs () ; /% write outputs */
15 enqueueTxMsgs () ; /% send msgs */

16 }

17 }

18 /* program entry point at startup */

19 void main(void) { /* global scope */
20 init () /* dnitialize */
21 for (;3;) /* endless loop */
22 step(); /* task */

23}
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Instead of calling the main() function, a multiple-instance virtual device simulator
can conveniently call init() to simulate the power-on of a device instance and
then recursively call the step() function for each active virtual instance. In
case the platform-specific initialization routine also sets the initial values for global
variables, then additional initialization instructions shall be added to the virtual device
initialization.

The Restbus device simulator must handle these global objects, by switching to the
memory values corresponding to each simulated device at the simulation time.

In order to handle multiple instances of the embedded application, we developed a

Listing 6.3: C++ CModule interface

class CModule {

public:
virtual void _get(void)
virtual void _init(void)
virtual void _step(void)
virtual void _set(void)

o O O o

N o R W N

Listing 6.4: C4++ CMain wrapper with context switching

#include
extern {
#include //< Wrapped C module
}
class CMain : public CModule {
private:
char _bState; /* global scope */
static char _bDevid; /* module scope */
public:
bool _dequeueTxMsg(canmsg_t *msg) { ... }
bool _enqueueRxMsg(canmsg_t *msg) { ... }
void _get(void) {
bState = _bState;
bDevid = _bDevid;

© 0N o ORr W N R

R e
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}
void _getOutputs (outputs_t *out) { ... }
void _init(void) { init(); %}
void _set(void) {
_bState = bState;
_bDevid = bDevid;

[ S e
B S © o~ o o

}

void _setInputs(inputs_t *inp) { ... }
void _updateTimer (time_t elapsed) { ... }
void _step(void) { step(O); }

N N NN
a2 W N
[
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set of C++ wrappers to implement the context switching for each C-file (to save and
restore the internal state variables). Listing 6.3 shows the C++ interface CModule,
realized by the C++ wrapper for module main.c, CMain (see Listing 6.4). Class
CMain exports public methods to simulate basic embedded HW operations like filling
or emptying CAN mailboxes, setting the inputs, reading the output values commanded
by the application or updating the internal timers. These mirror the Application
Programming Interface (API) as seen from the embedded application, that reads
inputs and writes the outputs, while the para-virtualization wrappers do the opposite.
Each C file containing global or static variables shall be wrapped in the same way.
Note that this approach has a limited applicability, as static variables within function
scope are not readable from the C++ wrapper methods.

Performance issues due to mixing languages: The motivation to use multiple languages
to program the HilL simulator was to take advantage of the ease of integration provided
with LabVIEW (see Fig. 6.1), while re-using as much code as possible to preserve the
major part of the functionality from the simulated nodes. But the data-flow Model of
Computation (MoC) of LabVIEW imposes a synchronized update of the inputs and
outputs of a block. While beneficial for programming, this approach has the drawback
of adding a computational burden due to memory transfers and data-type conversions
that are critical for a multi-node simulator iterating over each virtual node instance.

Real-time synchronization issues: A heterogeneous platform like a cRIO-9039 suits the
timing requirements for the execution of the models and the Restbus simulator.
However, when the plant model involves redundant data-paths to the real-world
devices it is hard to synchronize a signal going to an external actuator (e.g., a relay)
with a correlated signal propagating through the elevator simulator to the Restbus
simulator (e.g., the signal published as a CAN frame).

Other considerations for a CAN Restbus simulator are:

= In a CAN bus only one node may transmit a frame at a time. Thus it is feasible to
share a single CAN port between multiple virtual devices, if proper queuing handles
the in/outgoing messages for each instance.

= Not only the CAN bus-load varies with the number of virtual device instances, but
also the frame delays, as the number of priority frames sent by the controller under
test may change with the number of connected devices.

= When virtualizing retro-compatible devices, it is also possible to have allocations of
CAN-IDs to protocols that are specific to a product line. In this case, then the worst-
case transmission delays for a protocol change with the controller variant.

= There could be signals with redundant paths to the controller. Race conditions may
arise between input changes notified by a message from a virtual device and the
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alternative paths, e.g., the switching of a relay in the safety circuit. A wrong time
correlation between them may trigger fault reactions from the System Under Test.

LabVIEW/RT API for virtual Device Simulators

Both run-times of LabVIEW and LabVIEW/Real-time support calling user-provided code
components by means of a Call Library Function Node (CLFN). A CLFN in LabVIEW
inserts a function call to a method provided by the shared library. CLFN is a LabVIEW
facade that declares the function signature, including parameters and return type. The
calling convention for the invoked function shall be declared as stdcall (only for WINAPI)
or C. The library path can be specified as an input parameter to the CLFN in the caller
VI (Virtual Instrument, LabVIEW program subroutine). When interfacing a CLFN, derived
data types supported in LabVIEW (e.g., arrays and clusters) transform to C arrays and
structures. These datatype conversions increase the execution overhead.

CAN implementation in cRI0-903x

In order to allocate the CAN Restbus simulator to the cRIO processor we require a CAN
interface accessible from the LabVIEW RT execution context, for which we considered two
alternatives: (a) a 2-port NI 9853 C-series CAN module as used in HiLES to simulate a
CANopen absolute position encoder [NAM+16], or (b) a Linux-supported CAN interface.
The C modules in a cRIO can be controlled from the FPGA, the processor or operate
in hybrid mode, the latter implementing the shared access in the FPGA. If the virtual
device simulator is intended to be deployed at the same target as the absolute encoder
simulator described in §6.3.3, then the control of C-modules must be set to either FPGA
or hybrid modes. After several tests the hybrid mode showed to be troublesome, and we
were unable to get it going. Hence we finally preferred to integrate an external Peak PCAN
interface connected to the Universal Serial Bus (USB) port of the cRIO controller. The
NI Real-time Linux kernel (version 3.14.40) from the cRI0-9039 provides support for CAN
communications, yet only brings a limited set of pre-installed device drivers. The user can
provide compatible device drivers for alternative CAN devices, either for real-time or non
real-time operation. The latter also supports CAN devices attached to the cRIO USB ports.
The real-time mode requires a time-deterministic handling of the communication ports, e.g.,
through PCI/PCle or SPI buses, eventually limiting the RT-CAN devices to the NI modules.

Linux support for Peak CAN devices consists of source code for the device driver (for
both, real-time and non-real-time operation) and a shared library. As we selected a PCAN
device with USB interface, this is supported only for non real-time operation. Although
this does not hinder most of our test applications, non-determinism makes the resulting HilL
simulator unsuitable for the thorough verification of safety-critical functions involving CAN
messages. We had to cross-compile the PEAK device-driver sources for the NI Real-Time
Linux (NIRTL) kernel version, then download and configure the device driver. The API of
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the Linux shared library differs from the Windows one. Therefore, we had to modify the
LabVIEW Vs containing the CLFNs to the Windows Peak library. Alternatively we could
have re-implemented an equivalent Windows-like APl in the Linux variant, to facilitate
the cross-platform porting of Vs between LabVIEW (Windows target) and LabVIEW-RT
(NIRTL cRIO target) projects. This would eventually reduce the validation and future
maintenance effort by avoiding variants.

6.5 Discussion

In this chapter we presented two complementary approaches aiming at reducing the cost for
building time-deterministic and scalable HiL simulators for verifying real-time dependable
systems implementing safety functions related to motion and having a distributed system of
remote |/O nodes, connected through a CAN bus.

Our contribution is a workflow that aims at supporting cross-domain collaboration, so
that experts in different fields could compose realistic models of the operating environment
of the system to test. To some extent those models help at preserving the functional
definition of test components at an abstract level, disregarding a particular HiL computing
platform. An automatic model-to-code translator can be profiled and used to get the
required programming artefacts for the specific HiL subsystem. In heterogeneous COTS
HiL systems like the NI cRIO, the model subsystem requiring a faster sampling can be
transformed to VHDL code and implemented in Programmable Logic (PL). The advantage
of our proposed approach is that sophisticated models of devices peripheral to the SUT
can be designed without needing a deep knowledge about FPGA programming. However,
the suggested mixed-language programming showed some shortcomings, partly due to the
novelty of the extensions for FPGAs from some MBD environments.

On the other hand, the para-virtualization approach pretends to enhance the scalability
of the HiL system, ny providing virtual replacement for low-complexity remote 1/O networked
to a CAN bus. This enables the simulation of many different configurations for a distributed
control system. Although the functionality of each replaced device may be simple, the
feasibility of preserving most of its internal behaviour supports the simulation of fairly
complex overall emergent behaviours. For instance, multi-protocol virtual devices can be
intentionally activated in a wrong configuration (i.e., acting as a saboteur) to examine the
reactions of the SUT. This is of particular interest for verifying dependable systems relying
on networked 1/0 devices. Even if the virtualization has been realized for CAN devices, the
same approach could be extended to other networking technologies, with the exception of
real-time protocols in which communication messages are marked with hardware-generated
timestamps.

The model/code re-use approaches have been exemplified by their application to a HiL
simulator, used for regression testing of elevator control systems (see §3.2). On this we
evaluated the feasibility, benefits and limits of the re-use approaches proposed herein.
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Framework of Re-usable Safety Arguments for
Mixed-Criticality Product Lines

Preceding chapters 5 and 6 contributed techniques to improve the re-usability of artefacts
used for the Model-Based Testing (MBT) of Dependable Embedded Systems (DESs) on
executable models, with the aim of recovering the validation effort spent in modeling or
programming components that would interact with the DES at later system/validation
testing phases. A consequence of adopting an MBT development process with executable
specifications is an increasing amount of generated analysis results considering simulation
amongst the analysis techniques recommended by safety standards. Due to possible model
inaccuracies, several tests carried out on the models should be exercised again on the physical
DES to ascertain the correctness of the implementation. These test runs try to trace the
results forecast by simulations and may re-use test specifications, components or analysis
tools formerly used in the simulation phase, which eases the comparison of the actual and
the predicted system behaviour. A mandatory requirement for the safety certification is that
all the test campaigns fit to an overall verification, validation and testing (VVT) plan, that
should provide a logical chain of conclusive evidences gathered from different VVT tasks of
the compliance of the DES to the safety requirements.

This chapter contributes a complementary model-based framework to iteratively
assemble a logical argument for the safety certification of Mixed-Criticality Product Lines
(MCPLs), developed with a platform-based design (PBD) approach based on the DREAMS
platform and tools. The argumentation framework enables the re-use of pre-built arguments,
the Modular Safety Cases (MSCs), to be later completed with the staged incorporation of
VVT evidences into the overall logical chain to support the safety claims: the Safety Cases.
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7.1 What is DREAMS?

Safety-critical applications could benefit from the standardization, cost reduction and cross-
domain suitability of current Heterogeneous Computing Platforms (HCPs). These are of
particular interest for Mixed-Criticality Product Lines (MCPLs), as both safety- and non-
safety functions can be deployed on a single embedded device, provided that suitable isolation
artefacts and development processes are used. The development of MCPLs can be facilitated
by providing a reference architecture, model-based design and analysis tools and Modular
Safety Cases (MSCs) to support the safety claims.

Modern HCPs enable architectural simplifications and standardization across multiple
application fields to implement embedded systems with homogeneous hardware (HW) and
software (SW). The research on bringing determinism and fault isolation to HCP platforms
enable safety-critical applications for heterogeneous processors, while also deploying non-
safety related applications. At the same time, the cost reduction in multi-purpose
HW components fosters a common-platform development for multiple domains. In the
scope of the Distributed Real-time Architecture for Mixed-criticality Systems (DREAMS)
project [DREAMS], the safety-certification of MCPL according to the IEC 61508 standard
is one of the objectives.

The target of DREAMS are families of embedded systems that embody varying sets of
features, amongst which some relate to functional safety. Following the PBD paradigm, we
developed a common HW/SW baseline to deploy the product functionalities of DREAMS.
This platform, also referred to as the DREAMS harmonized platform (DHP), incorporates a
multi-core heterogeneous System-on-Chip (SoC), where a reliable Network-on-Chip (NoC)
is synthesized and deployed. Furthermore, the XtratuM hypervisor [XTR] is implemented in
the DHP to prevent interference between SW components of different criticality. For each
of these components, DREAMS developed separate MSCs! according to the IEC 61508
standard. These MSCs consider scenarios with different integrity requirements [LPA+15,
LPO15,LPN+16].

Complementary to these MSCs, DREAMS provides a model-based design framework that
is based on the open-source model-based development tool AutoFOCUS 3 (AF3) [AF3].
Under the DREAMS project this tool is enhanced with additional plug-ins to capture
the MCPL requirements, define the variability model for MCPLs, sample the MCPL and
instantiate the feasible product variant models, analyse and assess the safety properties on
the variant models and build and refine the variant safety argumentation model in Goal
Structuring Notation (GSN). From the latter we derive a variant-specific preliminary safety
case. MCPL is an abstraction to represent all the possible product variants of a product
family. As in the sense of IEC 61508 safety is an emergent property, the MCPL abstraction
shall be resolved and each variant shall be instantiated before assessing its safety capability.

!DREAMS HW/SW components are for experimental and demonstrative purposes only. The certification
of HW, SW and tools is out of the scope of this thesis and the DREAMS project.
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7.1.1 DREAMS Platform-based Design for MCPLs

The platform concept is an abstraction that covers several possible lower-level refinements
[SMO01]. PBD supports the meet-in-the-middle process [FKM11], where successive
refinements of specifications meet with abstractions of potential implementations and the
identification of precisely defined layers, i.e., the platforms [SCB+04]. The meet-in-the-
middle approach aims at preventing the convergence to non-feasible solutions sometimes
found with a top-down approach, as well as preserving abstractions to tackle the complexity
arising in a bottom-up approach. A platform consists of a set of elements together within
their constraints and rules. It can be thought of as a library of elements which can
interconnect through communication components. Each element is characterised by its
functionality and expected behaviour. Figure 7.1 shows the meet-in-the-middle methodology
where it applies a top-down design (application design) for a high level of abstraction and
implements a bottom-up design for a low level of abstraction (platform design). Both designs
converge where the platform is ready to host an application which is ready to be hosted
on a platform. From a HW perspective, the bottom-up approach is supported (low to high
abstraction level). This enables the adaptation of the HW both at the design time and the
run-time using dynamic and partial reconfiguration.

In the context of IEC 61508-2 the following requirements may be implemented to show
the absence of systematic faults. The first requirement implies to meet the requirements
of Route 2g¢ or Route 3g. Route 2g "Proven-in-use approach" establishes the compliance
with the requirements of proven-in-use components. A component shall only be regarded
as proven-in-use when it has a clearly restricted and specified functionality and when the
absence of systematic faults is demonstrated (see Subsection 7.4.10 of IEC 61508-2). Route
35 "Pre-existing SW" establishes the compliance with the requirements of IEC 61508-
3, including the requirements for pre-existing and re-used SW. On the other hand, the

Application Design . High

Top-Down

Meet-in-the-middle

Abstraction Level

Botton-Up

Platform Design Low

Figure 7.1: Meet-in-the-middle methodology
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second requirement implies to provide a safety manual that includes a precise and complete
description of the pre-existent components, enabling the assessment of the integrity of a
specific safety function that depends wholly or partly on the pre-existing SW components
(see Annex D of IEC 61508-2 and IEC 61508-3).

DREAMS aims at developing a cross-domain real-time (RT) architecture and design
tools for complex networked systems where application subsystems of different criticality
executing on networked multi-core chips are supported. This research project delivers
virtualization technologies, model-driven development methods, software tools, adaptation
strategies and validation, verification and assessment methods for the seamless integration
of mixed-criticality systems to establish security, safety and real-time performance as well as
data, energy and system integrity. The execution platform design is based on a cross-domain
system architecture of a hierarchical distributed platform for mixed-criticality applications
combining the logical and physical views (see Figure 7.2).
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Figure 7.2: Overview of the DREAMS platform architecture

This architecture enables the implementation of heterogeneous application subsystems
with different criticality levels (e.g., SIL1 to 4 according to IEC 61508), timing (e.g., firm,
soft, hard, non-RT) and computation models such as Time-Triggered (TT) messages, data-
flow and shared memory. The variability in the application subsystems can impose diverging
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requirements, so that designers have to find different trade-offs between predictability,
assessment and performance in processor cores (e.g., Zyng-7000 processor), hypervisors
(e.g., XtratuM hypervisor), operating systems (e.g., Windows CE) and networks (e.g., on-
chip and off-chip networks). This platform architecture provides global and local resource
management units for executing multiple application subsystems, i.e., for managing their
component and different execution environments and resources such as memories and 1/Os.

7.1.2 Certification

This research focuses on the cost-efficient development and certification of Mixed-
Criticality Systems (MCSs). MCSs have particular properties that pose special certification
challenges [VARA48], requiring specific certification guidelines to overcome these.

What is certification?

Certification is a third party attestation confirming that defined requirements have been met.
Certification may include products (components, devices, or technical systems e.g., tools),
processes, organizational systems (like management systems) or persons. Certification and
approvals refer to standards that define what requirements are to be met. Central to most
certification of functional safety is the IEC 61508 [IEC61508] functional safety standard.

Certification is a process based on objective evidence for compliance with requirements.
This evidence results from documentation review, audit or testing. Generally, certificates
have an expiration date of validity and have to be renewed after a certain time. In the
meantime, periodic verification may be necessary to ensure continuous validity. In case a
certified product is either modified or used for a different application, a reassessment is
necessary. The extent of such reassessment depends on various conditions, such as the
certification scheme, applicable standards, intended application, or component certification,
to name a few.

Safety certification usually requires two types of assessments:

1. Process Assessments: To show that the system development complies with the
techniques and measures recommended by a safety standard. Sticking to a pre-defined
development process would provide error-freeness, acting as a filter against systematic
failures.

2. Product/System Assessments: To show that the system satisfies the safety
requirements. From the perspective of process-based certification, safety is an
emergent property of the whole system, including the operational environment.

Thus re-usability of process assessment is limited and re-certification is costly. On the

contrary, product assessments enable the reuse of evidence artefacts, therefore supporting
a compositional development. The certification of MCSs will require both types of
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assessments. In a piecewise certification ideally both argumentations should be independent,
while in practice preserving a strict separation between process and product assessment is
challenging? [DGJ+12].

Safety Cases for Compositional Certification

A key tool to provide modularity in safety certification is the Safety Case (SC). A Safety
Case is a structured argument supported by a body of evidence that provides a compelling,
comprehensive and valid case that a system is safe for a given application in a given operating
environment. Our approach to certification consists of providing a number of safety cases
for foundational components (e.g., hypervisor, networking, etc.); when these components
are integrated in a MCS configuration, then a specific global safety argument for this MCS
can be also assembled to show the validity of the safety claims.

The Safety Case approach is already accepted in safety-application domains like
railway applications (according to the requirements of EN50129 [TR50506-2]) or air
traffic management systems. For the latter, EUROCONTROL published a safety-case
development manual [SCDMO06] for Air Traffic Management applications, based on the GSN
notation [Kel98]. Other safety standards allow the use of SCs, even if there is no specific
guidance on the SC structure, or the overall structure for cross-reference. Appendix D.1
recalls the Safety Case structures described in [TR50506-2, SCDMO06].

Herein we will adopt a multi-layered SC structure, the underlying SCs corresponding to
pre-built safety arguments for safety components and a number of derived SCs representing
the safety argument for a particular MCS product from a mixed-criticality product line.
In order to lower the cost of manual argumentation/documentation rework, we seek a
computer-assisted production of SCs for derived MCS. It is worth recalling [NEFAB]: “The
Safety Case is not an alternative to carrying out a Safety Assessment; rather, it is a means
of structuring and documenting a summary of the results of a Safety Assessment, and other
activities (e.g., simulations, surveys, etc.), in a way that a reader can readily follow the
logical reasoning as to why a change (or on-going service) can be considered safe.” From
the certification perspective this means that tool semi-automation alone does not guarantee
the quality of the SC with regard to properties like readability, credibility or understandability
of the arguments. The evaluation of such properties requires a semantic interpretation of the
safety argument, involving many subjective terms that make automation extremely difficult
(see the SC evaluation check-list in Appendix D.2, reproduced from [SCDMO06]). In the
scope of this research we assume that this task is would be carried out by a qualified
reviewer.

2For example, the evidence for the execution of a test activity could be the evidence generated, i.e., the
test results that would be also the supporting evidence for a product assessment, e.g., evidence of correct
functionality.
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Modeling Safety Arguments to Support Certification

Mixed criticality product lines consist of a number of complex systems implementing some
functional safety feature. The safety-critical aspect of MCSs requires that the system
suppliers engineer their products and services to prevent the risks posed by potential
malfunction, in such a way that users and other stakeholders (e.g., a certification body)
can rationally possess the needed confidence in them or at least judge their level of risk.
Suppliers of MCS product lines must not only ensure their delivery of adequate systems,
but customers and users require the explicit, valid, well-reasoned, and evidence-supported
grounds for their confidence and decision making including related to engineering conclusions
and their uncertainty. In the DREAMS piecewise certification approach we can associate
the supplier role to the providers of the foundational components (and the corresponding
safety argumentation), and the customer role to the integrated MCS.

Safety cases covering safety and security requirements for systems constitute a valuable
tool for the interchange of assurance information. To make system assurance more
practical, automation and meaningful exchange of this assurance-related information is
needed. Argumentation models are flexible and extensible means for the representation and
exchange of SCs. We shall describe the safety arguments using an argumentation meta-
model for representing structured safety cases. A safety case is a set of auditable claims,
arguments, and evidence created to support the claim that a defined system or service
satisfies particular safety requirements. A safety case is a document that facilitates the
information exchange between various system stakeholders such as suppliers and customers,
and between the operator and regulator, where the knowledge related to the safety and
security of the system is communicated in a clear and defensible way. Each safety case
should communicate the scope of the system, the operational context, the claims, the
safety and/or security arguments, along with the corresponding evidence.

Systems assurance is the process of building clear, comprehensive, and defensible
arguments regarding the safety and security properties of systems. The vital element of
systems assurance is that it makes clear and well-defined claims about the safety and security
of systems. Certain claims are supported through reasoning. Reasoning is expressed by
explicit annotated links between claims, where one or more claims (called sub-claims) when
combined provide inferential support to a larger claim. Certain associations (recorded as
assertions) between claims and sub-claims can require supporting arguments of their own
(e.g., justification of an asserted inference). Claims are propositions which translate into
statements in some natural language.

The precision in formulating the claims may contribute to the comprehensiveness of an
assurance case. The context is important for the scope of the claim, and for clarifying the
language used by the claim by providing necessary definition and explanations. Context
involves assumptions made about the system and its environment. An explicit statement
about the assumptions enhances the comprehensiveness of the argument. A well-structured
argumentation flow between claims facilitates the communication of the entire SC.
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A safety case specifies the interpretation and implementation of safety requirements in a
system, including the engineering decisions and rationale to show the safety achievements.
To achieve an effective certification method, we tackle the compilation of the whole set of
safety information required by each variant of an MCS product line. Such a compilation
is costly and time-consuming: even when two variants show minor differences, their safety
argumentation may share only some small fragments. To improve cost-effectiveness, we
aim at automating the construction of preliminary safety arguments, after a successful
safety evaluation of a candidate MCS. A number of software components process the
argumentation models from the DREAMS tool set (e.g., the SCCRC evaluator [DRE433],
integrated in AF3). At this point, we reflected on the best language to describe, store and
compose argument models as intended, bringing these conclusions:

1. Argumentation Meta-model (ARM) is deprecated, and Structured Assurance Case
Meta-model (SACM) should be used instead of ARM.

2. The GSN has been in use for a while, and it has been enhanced and extended to
support the certification arguments in many ways, e.g.:

= Habli and Kelly introduced GSN extensions to support a safety case
approach [HK10];

= Hutchesson and McDermid [HM13] applied GSN for developing trusted product
lines.

= Denney et al. [DPP12] developed AdvoCATE, a tool to automate building
certification arguments.

= Denney et al. [DPH11] extended the GSN with annotations for confidence
measurement, to handle also possible subjective criteria w.r.t. the strength or
credibility of the solutions supporting an argument. This enables the integration
of complimentary information, e.g., the ‘strength’ credited to the evidences by
a reviewer to support an argument (e.g., position paper CAP 760 [CAP760]
states the supporting strength associated with evidences generated by specific
arrangements of Verification and Validation (VnV) techniques).

= GSN usage is recommended to structure the arguments in the aerospace
domain [CAP760], with SC development guidelines [SCDMO06].

In addition, FORTISS developed a GSN editor, capable of handling and assembling
argument models based on the GSN meta-model.

3. Claim Argument Evidence (CAE) is a proprietary language, with a limited tool
support [ASCE, CERTWARE].

4. SACM provides more expressiveness than GSN or CAE, which eases the automation
and integration of information; on the other hand, it does not define a graphical
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depiction of the arguments, where it is a useful feature of GSN or CAE to present the
argument in a reader-friendly format. Another drawback of SACM is the novelty of
the specification, which makes SACM unstable and could bring about maintainability
issues for the models or tools.

7.2 Certification Support in DREAMS

As pointed out in §7.1.2, the mixed-criticality systems considered in DREAMS have some
special properties that affect certification and approval, namely:

1. The need for total separation between critical and non-critical applications.
2. The high degree of configurability and re-configurability.

The first of these properties, the need for total separation, has been extensively covered
in [DRE551], where detailed argumentation chains are described both generically and in
particular for the XtratuM hypervisor to assert how virtualization will keep applications fully
separated.

To achieve the second property, the high variability and configurability, we shall
demonstrate how explicit modelling product-lines of MCS makes it possible to generate
detailed and product specific arguments for any individual product up for approval.

DREAMS aims at a cost-effective development process for MCS product lines, where
product samples may share common features, subsystems or components. The overall
DREAMS development approach relies on the composition of modules to design the
products, thus enabling the final users to reuse safety assurance artefacts either at subsystem
or component levels when analysing the safety properties of the samples (e.g., safety
manuals). Likewise, the DREAMS certification approach also consists of a modular
composition of arguments that links the safety claims, starting from the safety requirements,
to the final evidences that the developers have to provide to the certification authorities.
This composition of arguments shall reflect the design rationale, ending in a number of
proofs such as test results analysis and validation, analysis results, formal proofs, referred
documents or available certificates for pre-certified items.

The DREAMS toolset supports the semi-automated Design Space Exploration (DSE),
seeking for the best possible product configuration for a given set of requirements, also
including safety requirements. During the design stage, these tools automatically select
alternative candidate deployments of the logical components on the target hardware,
resolving the variability models and going through a number of verifications in a safety
evaluator component: the Safety Compliance Constraints & Rules Checker (SCCRC). As for
the certification, this toolset also automatically assembles an argumentation model for each
product sample. The outcome after the completion of the DSE is a partial argumentation
model, which will be mapped to a set of certification documents according to the Functional
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Safety Management process chosen by the DREAMS user. These documents are generated
in a semi-automated fashion, taking into account that part of the final evidences would
come from Verification and Validation (VnV) activities to be carried out at later stages of
the project —some of these evidences are not available in the DSE phase.

The modular certification approach in DREAMS is supported by a database of argument
models for each pre-certified or certifiable component. The DREAMS argumentation
database eases tackling with safety standards from different application domains requiring
specific argumentation patterns, as it can handle multiple argumentation variants tailored
to the domain certification requirements. For instance, for a part having an IEC 61508
argumentation template besides a DO-178C argumentation model the DREAMS toolset
could assemble differentiated argumentations for certifying products containing this
component according to either safety standards.

A substantial burden of the certification process comes from the compilation of final
evidences resulting from VnV. Note that safety standards impose process redundancy
in the safety product development to prevent systematic errors, stated as a requirement
for strict separation between activities related to product design and implementation
and the quality assurance activities, including VnV tasks. In order to comply with the
isolation between development and verification, the DREAMS certification support shall
support interoperability with VnV information repositories. The DREAMS database-based
argumentation provides such an extensible framework to relate diverse information sources
into a single argumentation model. In the event of development iterations, the DREAMS
approach facilitates updating the whole set of information, enabling improvements at the
coherence between arguments. In the near future, automated argumentation model checkers
may be integrated in the DREAMS toolset and help the certification process by automatically
unveiling the weak or missing points in an argumentation, therefore reducing iterations
and lowering the overall certification costs. The DREAMS certification approach could
also benefit during the other phases of the product lifecycle, as the same rework on the
argumentation models is applicable to the product evolution (e.g., substitution of parts,
retrofitting, enhancements to the safety product line), requiring a re-assessment of the
resulting configuration.

7.2.1 Certification Arguments

When a candidate product fits the safety requirements, the DREAMS safety oracle outputs
the external assessment of the evaluation rationale by an expert. A structured representation
of claims, arguments and evidences in a standardized format is desirable, either by adopting
CAE, GSN or SACM standards. This would also enable exporting the argumentation to
other specialised tools for further formal analysis or even back-to-back validation of the
DREAMS toolset with other safety-analysis COTS tools.
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Composition of Safety Cases

Product line approaches can be applied to the different requirements imposed by different
safety-standards, or even for different safety integrity requirements while claiming compliance
with a selected standard. The compositional approach to argumentation shall support that
different argumentation patterns can be applied.

Argumentation Patterns

Arranging the safety cases in a stereotyped structure eases the composition of the supporting
arguments. The OPENCOSS project contributed a number of patterns (templates) to build
a layered safety argument.. Whenever possible, DREAMS safety arguments for certification
will adhere to OPENCOSS patterns. We remark that the application of patterns does not
necessarily improve the readability of the resulting SC, as advised in [OPE53].

Composition of Evidence

Safety evidences are produced as a result of applying different analysis and testing techniques
to a component to back up the contract compromises. Although some evidences are easy
to compose (e.g., fault trees) others require a detailed examination of the validity of the
argument in the new context of the composition, whereas some simply cannot be composed.
A particular challenge is the assessment of the 'certifiability’ of a system resulting from the
integration of several pre-certified modules. The DREAMS certification can be classified
in what OPENCOSS D5.3 names “evolutionary chain of evidence”. This means that when
the system is evolving, the chain of evidence changes. In particular, this scenario appears
when there is an incomplete set of evidences. This corresponds to a development scenario in
which evidence is gathered and structured for a new system, thus the evidence is progressively
collected and structured. The safety argument is not valid until all the pieces of evidence
in the argument link are available.

Certification Artefacts

The DREAMS toolset outputs the collection of available evidences supporting the safety
claims (i.e., demonstration of compliance with regard to safety manuals). Whenever
the claims require additional evidences, the toolset enumerates the required strategies or
evidences. When the available information is too abstract to define the required strategies
and evidences, these are annotated as “underdeveloped”, requiring further development by
an expert in order to realize them.
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7.2.2 DREAMS Design Space Exploration (DSE)

Design-space exploration (DSE) investigates alternative solutions to system configuration
at design time in order to obtain a balance between conflicting system properties such
as functionality, cost, complexity or energy consumption to name a few. The proposed
approach finds Pareto-optimal solutions based on the input goals configuration in DSE.

The DREAMS project therefore approaches design-space exploration at both the business
and technical levels, using variability models and an evolutionary optimization, respectively
[DRE412]. At the business level, the variability models capture the design decisions that
govern what functionality will be offered by the system. At the technical level, the
evolutionary DSE algorithm explores alternative engineering decisions resulting in contrasted
trade-off between different extra-functional system properties. Although complementary,
the final products yielded by both approaches must remain within the limits of the design
problem.

Design problems are indeed constrained by the application or the application domain,
which may require for instance compliance with laws or domain specific regulations and
standards. In the context of MCS in particular, the compliance with safety standards
influences both the functional and extra-functional concerns. In general, to be pertinent
and support the designer’'s decision process, design space exploration must be integrated
with specific analysis (e.g., analysis of safety, temporal properties, etc.), to ensure that
obtained solutions remain within the problem scope. The process we propose in Figure 7.7
combines the exploration based on business variability specification with an evolutionary
optimization based on a given set of goals (i.e., the defined design constraints and
optimization objectives), while minimizing their overlap. In the following, we describe this
combined process by splitting the common approach in product-line exploration into several
steps (i.e., to derive from a product-line description a set of high-quality products defined
as models in a given domain language).

= The description of a product line is a specification of the variability as well as all
reusable assets from which final products can be constructed. Here, reusable assets
are encoded as so-called "150 %"-model in the domain language that is used to model
the final products. In the proposed approach, the DREAMS application and platform-
meta-model is used as domain-specific language. Since this model contains all assets
that can potentially be used in the final product, it is in general not a valid product
model itself.

= The first step is to identify a set of resolutions that maximizes interaction coverage
between the different features contained in the variability specification. Then, each
resolution is realized by the BVR engine. Instead of directly constructing product
models (as it would be the case in a traditional variability exploration process), the
combined process yields a so-called "125 %" model.
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= In the "125%-model", the variability has been only partially resolved. This partial
variability resolution process focuses on the resolution of business decisions governing
what features to include into a product. However, the model contains some remaining
variability that mainly concerns technical decisions. This is because the resolution of
these technical decisions requires information that is only available internally during
the evaluation phase of the evolutionary optimization algorithm. Here, a typical
example is the execution schedule that is computed during the decoding step of
the algorithm and that is required to perform decisions regarding the application of
fault-tolerance mechanisms (e.g., whether to replicate components or to use diverse
implementations).

» As pointed out before, most of the features are directly "realized" using some reusable
assets in the first step. However, some specific features (e.g., those concerning safety)
require further technical investigations and hence cannot be resolved using solely the
variability specification. The evolutionary optimization engine collects the remaining
technical variability decisions and searches among alternative implementations to
obtain a complete product model (i.e., in the present approach to compute an
application to platform deployment and potentially a redundant version of the original
application model). Here, the exploration ensures that the selection of all extra-
functional constraints (e.g., safety, timing) are met and that the solutions w.r.t.
the defined objectives are optimized (e.g., energy consumption). The results form
a Pareto-optimal set of contrasted solutions, i.e., valid product models or "100 %"
models.

The DSE provides an optimization of the partially resolved models yielded by BVR,
from which it generates a set of Pareto-optimal solutions [DRE412]. For each of these
solutions, the metrics computed during the evaluation phase of the evolutionary algorithm
are provided. These metrics enable the designer to evaluate the quality of the selected "125
%"-models, and hence to select the best strategy for product sampling.

7.2.3 Safety-compliant use of the DREAMS tool inventory

Current safety standards require a demonstrable compliance to development process
paradigms. The IEC 61508:2010 safety standard defines the general requirements for each
phase of the development process. Part IEC 61508-7 provides an application guideline and
a collection of recommended techniques for the design, development and verification of the
safety critical system. Unless specifically addressed, the project team shall define the actual
selection and combination of techniques considering the required systematic capability level,
but there is no guarantee of positive assessment from the certification body.

The DREAMS tool inventory [DRE541] provides a number of features and use cases
intended to ease the development of Mixed-Criticality Systems (MCSs) product lines. Some
of the tools implement analysis capabilities that help at assuring the safety of each feasible
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system variant. Table 7.1 recalls the toolset, and summarizes the potential evidences
generated by each tool. Once available, the argumentation model could be referred to
these evidences in order to support the safety claims. Noticeably most of the tools work
with models of the product variant, and therefore the satisfaction of the safety claims by
the final system implementation shall be demonstrated by complementary means (additional
verification, validation and testing).

7.3 Automated Composition with Modular Safety Cases
for Re-usability

This section describes the contribution of a re-usable argument database based on the
modular safety analyses for the main subsystems of the DREAMS platform: Hypervisor
[LPA+15], cross-domain Network-on-Chip (NoC) [LPN+16], Commercial-Off-The-Shelf
(COTS) multicore device [LPO15], and, partitioning [LAN+15].

Without loss of generality, for demonstration purposes we selected the GSN language to
describe and build the safety argument models for certification of MCSs.

7.3.1 Implementing GSN in Enterprise Architect model
databases

The GSN notation language has been adopted in the work presented in this thesis for
representing a product line development process. The main reason for that is its acceptance
in the safety domain, available guidelines, and tool support. On the other hand, we use
the Unified Modelling Language (UML) modelling application Enterprise Architect (EA),
from Sparx Systems [EA], to model the safety arguments for the modular safety-cases®.
EA supports the user’s extensions named Model Driven Generation (MDG) Technologies,
to extend EA’s modelling capabilities to specific domains and notations. Kuono [EAGSN]
released a basic MDG GSN extension for EA, which we extended by adding the modular
GSN extensions, as well as other GSN stereotypes found in safety cases (see Figure 7.3).
EA supports a concurrent engineering workflow by storing the model in an external DBMS,
supporting concurrent access by multiple users. The modular GSN models for DREAMS
were stored in an SQL DBMS.

3The DREAMS tool-set is a derivative of the AF3 environment, for which there is a GSN extension to
model arguments. However, AF3 relies on information file-storage, and the AF3 GSN extension underwent
adaptations to integrate with other DREAMS analysis tools. EA Database Management System (DBMS)
is implemented to support collaborative teamwork, enabling a concurrent development of the DREAMS
baseline of MSCs. These tools also enable developing application-specific compliance and VVT-arguments.
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Table 7.1: Evidences provided by the DREAMS toolset to support the safety certification
(source [DRE553])

Phase Tool Tool Evidence
output provided
AutoFOCUS3 e Model of system logical
architecture.

e Model of system platform
architecture.

e Mapping of application
components on execution
units.

Timing Model e Model of the logical

Editor architecture, extended with
timing constraints
(repetition and end-to-end
latencies).

Safety Model e Model of the safety

Editor functions of the system.

e Library of models for
HW/SW components,
annotated with safety
properties.

BVR Variability

Editor

BVR Product

generator
HW/SW RTaW-Timing e Analysis results for the sub-
Detailed Decomposition latency constraints for each

Requirement
Specification
HW/SW
Detailed
Design

Xconcrete

TTE-Plan

RTaW-OnChip-

TT-Sched

GRec

MCOSF

scheduling domain.

Partition/task scheduling
parameters, for the nominal
mode.

Off-chip network scheduling
parameters.

On-chip network scheduling
parameters.

Partition / task scheduling
parameters, for a set of core
failure related modes.

Core failure related mode
transitions for the
configuration of the GRM.
Partition/task scheduling

. Deployment model for the

allocation of software to
hardware.

. Redundancy model for software

components.

. Deployment model for the

allocation of software to
hardware.

. Redundancy model for software

components.
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Table 7.1: Evidences provided by the DREAMS toolset to support the safety certification

(continued)

Phase Tool Tool Evidence
output provided
parameters, for transition
modes.
Transition mode parameters
for the configuration of the
GRM.
Safety Model IKL Safety Analysis results for the . Documented assertion that
Analysis Constraint safety properties of the deployment model (SW
Checker system architecture. Components into SW Partitions,
Preliminary GSN argument SW Hypervisors, and Tiles)
model for preparation of satisfies the System Safety
safety case report. Requirements.
Timing Model RTaW-Timing Analysis results for the . Assertion that deployment and
Analysis Evaluation timing properties of the timing models meet the timing
system deployment and constraints, i.e., maximum latency
timing model. assumptions and recurrent
execution/communication
assumptions.
Timing Model TTVerify Analysis results for off-chip . Assertion that the model of off-
Analysis communication parameter chip TT communication scheduling
set timing properties and meets the timing constraints
constraints. assumptions.
Timing Model Virtual Scheduling parameter sets . Assertion that the statistical
Analysis Platform for task/partition execution analysis yields acceptable test

and on-chip/off-chip
communication.
Occurrence and repetition
parameters for the injection
of different communication
related errors: omission
failure, corruption, link
failure, crash failure, delay
failure, babbling idiot,
masquerading.

results for the communication
latencies observed on the
simulator.

7.3.2 Model-based Certification Workflow

This thesis contributes an extended DREAMS modelling toolset to ease the certification of
Mixed-Criticality Product Lines (MCPLs). Figure 7.4 delimits the scope of the contribution,
that introduces a pivotal Safety Models Database repository to store the pre-defined GSN
argument templates for the Modular Safety Cases (MSCs) accompanying the DREAMS
solutions to deploy safety functions.

The Safety Models Database is deployed in an SQL DBMS that is initialized with the
database schemas provided with the Enterprise Architect (EA) UML design environment.
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This extension derives from the EA plug-in by Kuono [EAGSN]. The extended GSN toolbox is used to model
re-usable safety-case argument fragments. These GSN models are stored in one of the SQL DBMS servers

supported by EA, and later retrieved, traversed and instantiated by the DREAMS DSE engine.

Using EA we create an empty model in the DB, then we import the MDG profile extension to
define the GSN meta-model, including the modular extensions. Developers of the MCSs can
then concurrently build the GSN argumentation models for each MSC. The GSN arguments
for MSCs may be parametrized, i.e., define place-holders to be replaced by specific data
from a product safety case.

In case of incorporating COTS safety components to the DREAMS pool of components,
the corresponding safety argumentation model should be added to the Safety Models
Database. Other accompanying safety evidences in digital formats could be stored in a
separate configuration management (CM) system. For instance, a safety-compliant product
typically would have a safety certificate, and a safety manual. These could be referred to
from within the GSN argument model using an Uniform Resource Locator (URL) to the CM
system.

A user designing a DREAMS MCPL starts by creating a variability model, which defines
all the feasible features, amongst them, the possible target safety requirements. Separate
DREAMS models would be created to represent the properties of additional components to
be considered at the automated DREAMS Design Space Exploration (DSE), e.g., WCET
timing models for new application-specific SW parts.

Then the user selects the desired features in a MCPL configuration, where the Base
Variability Resolution (BVR) component resolves the business variability, and generates a
reduced variability model to start the DSE phase.

The DSE component generates a number of possible product configurations, the Product
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Line Samples, which are evaluated by the DREAMS Property Evaluators, as well as the
Safety Compliance Constraints & Rules Checker (SCCRC). The SCCRC checks the resulting
safety properties for each particular product configuration, and feeds the verdict back to the
DSE optimizer.

Once the valid product candidates are found, the user can invoke the SCCRC to
automatically generate a preliminary Safety-Case Report (SCR). To create this document
the Safety-Case Report (SCR) combines two information sources: (i) the internally generated
GSN safety argument and (ii) the argument models for the MCSs stored in the database. The
DREAMS reporting tool writes up the safety argument, detailing the rationale by which the
SCCRC judged the product as compliant to the safety requirements. The resulting document
also links the claim support to the evidences referred to in the MCSs.

The overall argumentation can be later completed by adding to the Safety Models
Database additional GSN branches that compile the safety evidences gathered at later
development stages (e.g., verification and validation results). The user can then invoke
the SCCRC again, to check the completeness of the argument, and to automatically update
the SCR.

The Safety Models Database eases tool integration into a collaborative framework by
collecting the pre- and post-design information contributed by actors with different roles in
the safety project.

7.3.3 Adapting MSCs for Reuse as Argument Models

The argument database contains inter-related GSN models corresponding to the safety
analyses presented in [DRE511, DRE512, DRE513]. We should remark that each of these
argumentation models consist of two layers: a generic safety case argumentation for an
abstraction of the considered component, and a specific safety argumentation for a particular
component choice. Figure 7.5 depicts this structure: the abstract argumentation modules
(folders in second column from the right) is supported by a corresponding safety argument for
a concrete component (folders at the rightmost part). The situation where several alternative
components can be used as replacements is represented by the GSN Choice elements, and the
justification about why the real component supports the abstract argument is represented
by the contract arguments.

7.3.4 Supporting Certification for Diverse Safety Standards

Product line approaches can be applied to different requirements sets for different safety-
standards, or even for different safety integrity requirements while claiming compliance
with a selected standard. The compositional approach to argumentation shall support
the application of different argumentation patterns. The OPENCOSS project defined a
safety argumentation meta-model by combining the graphical depictions of GSN with the
extended expressiveness of SACM, yielding the Common Certification Language (CCL). CCL
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argument models can be agnostic to the specific safety standard, and by using mapping
components, one can adapt an argumentation model to the argument structure required by
a particular safety standard. OPENCOSS claims that this effectively provides cross-domain
translatability of the safety arguments.

Unfortunately, CCL in not yet standardized, neither are the required tools available to the
public. In the scope of DREAMS, a simple alternative is to include variants of the argument
modules for cross-domain safety components, where each of these variants is tailored to the
argumentation structure required by the applicable safety standard (see Figure 7.6). These
variants would be stored in the argument database. These would be recalled by an extended
SCCRC when needed.
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Figure 7.6: DREAMS argumentation database for diverse safety certifications

7.3.5

Integration of DB within Variability Management in MCPL

The DREAMS tool-set supports the development of Mixed-Criticality Product Lines
(MCPLs) by handling variability in two layers (see Figure 7.7):

» Business variability, capturing what the system has to do.
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Technical variability, describing how the system does it.
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In DREAMS the business variability is solved by the user when selecting the required features
in the product line (e.g., functionality, SIL levels, etc.). On the other hand, technical
variability is resolved automatically by the AF3-DSE design optimizer.

AF3 extensions compose pre-built MSCs according to the compliant product
configurations, then document the preliminary safety cases with cross-references to either
available or due documents. To attain this goal, the DREAMS workflow consists of the
following steps:

1. Build the argumentation meta-models for the common components.
2. Set the design objectives into the design space explorer.
3. Run the optimizer.

4. When a product line configuration meets the safety requirements, a safety
argumentation model is generated by the safety-validator.

5. The report generator translates the argumentation model for a given design solution
into a set of documents with proper references to already available information (e.g.
pre-built argumentations).

7.3.6 Integrating post-DSE VVT evidences

The DREAMS tool inventory allows the developer to generate a number of evidences
supporting the safety claims. Nevertheless, to credit an MCS configuration for certification,
the claiming organization shall elaborate many other complementary arguments and their
corresponding evidences. Process redundancy and qualification of tools as required by
safety standards imply that these additional pieces of information should be generated by
an independent team, and possibly using different tools and formats. The integration of
this information into a single argumentation is out of the scope of the DREAMS project.
However, the underlying argument database constitutes a feasible integration infrastructure:
it could be used to store and refer to the arguments and evidences generated in project tasks,
executed concurrently with the design and analysis of the MCSs product line.

7.4 Summary

The certification of safety-critical systems requires a considerable effort to provide coherent
information about the system properties and its development, in an understandable and
re-viewable from. Preserving the coherence of the information with the information split
across multiples sources is challenging. Argumentation models are valuable tools to integrate
diverse information sources into a global overview of the safety claims and the rationale and
evidences to support these claims.
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While MCSs product lines bring up families of alternative designs satisfying the safety
requirements, safety remains an emergent property specific to each particular product
configuration.  Thus for certification purposes, one shall bundle the safety-relevant
information on a per-product configuration.

In the DREAMS approach a number of pre-built safety components form the basis to
build the different variants, using two levels of abstraction to ease the instantiation of the
components. These foundation arguments are stored in an argument database, that could
also support the development of complementary supporting arguments, e.g., collection of
VVT arguments and evidences. This database will be accessed from the SCCRC component
to assemble a preliminary SC for each MCSs configuration, generated in a semi-automated
fashion, and containing the required document references to support the overall safety claim.

7.5 Discussion

This section describes some identified limitations as well as possible improvements to the
contributed modular certification approach.

7.5.1 Limitations

The adoption of a model-based safety argumentation in DREAMS supports the automated
safety assessment of candidate MCS configurations, as well as the transcription of the
safety rationale to a set of cross-referenced documents for expert review. However, there
are limitations in the prototype implementation of the system:

1. Hard-coded model-to-document transformer: The SCCRC module transforms a GSN
safety argument model into a safety-case document structure calling an SW module
programmed in JAVA. This module accesses the DBMS, traverses and retrieves the
GSN graphs to assemble the safety argument for a given system configuration. The
conversion of the argument graph to IATEXcode is programmed in the module, that at
the time does not support document templates or scripts to extract the information.
As a consequence, the SCR has a fixed format. A new SCR writer module should be
coded to adapt the DREAMS tool-set to other SC document structure.

2. The arrangement of safety arguments is specific to a standard: DREAMS focuses
on safety certification with regard to IEC 61508 and its derivatives. The adaptation
of the MSCs to other safety applications (e.g., DO-178C) may require the definition
of alternative GSN graphs, as well as a modified SCR writer module. This hampers
the applicability of DREAMS to derive cross-domain safety MCPLs. The OPENCOSS
project tackled this problem differently by defining a more abstract safety meta-model.
Safety arguments were specified at this abstract level, then these were converted to
safety arguments specific to the safety standard applicable in the domain.
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3. Definition of the proper contents in SCRs: A wholly connected safety argument would
translate into a too detailed and complex document, that ultimately could be rejected
from the review. The current workaround is to insert GSN contracts to be used
as argument end points, but this is prone to user abuse, that would fragment the
information in too many documents.

7.5.2 Improvements

The DREAMS GSN modular argument eases the composition of system and pre-built
components safety arguments in a single GSN graph. GSN modules and GSN contracts are
organizational constructs to manage the argument model, and do not affect the underlying
('flat’) chain of argumentation. However, the supporting evidences for a given argument
may be available at different stages, depending on the kind of evidence.

The OPENCOSS [OPE53] project contributed an argumentation template consisting of
several module patterns, that target compositional certification. Arguments are classified in
three groups, according to the kind of evidence(s) provided:

= Direct evidences, relying on a direct proof of the system correctness;

= Backing evidences, related to cross-verification of compatibility (e.g., holding of
assumptions at integration); and

= Compliance evidences, that show how a component/subsystem was developed
according to the accepted standard procedures.

Figure 7.8 depicts a generic GSN system safety argumentation model, structured in
compliance with the pattern of modules and contracts. We remarked in the figure a suitable
mapping between DREAMS argumentations and the generic argumentation templates
defined by OPENCQOSS:

= Module patterns CompNDev, CompNAssump, CompNSpec and CompNCompliance shall
be instantiated by a safety engineer for each modular subsystem in the DREAMS
platform. The group of instances capture the safety arguments from the Modular
Safety Cases (MSCs) and defines the logical interface for integration (e.g., the
assumptions to hold). This constitutes a library of re-usable arguments.

= Module patterns SysSafe and SysSafeReq would be instantiated in DREAMS when
specifying the MCPL requirements. The instances shall be defined by the DREAMS
user, and would be linked to modules and contracts from the MCSs.

» Contract patterns CompNInSys and SysAssump would be instantiated by the DREAMS
DSE toolset, through the SCCRC safety oracle.
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Figure 7.8: Mapping OPENCOSS argument templates to DREAMS certification arguments

The instantiation of the contract SysCompliance requires additional information about the
process development, e.g., safety management, staff qualification, quality control process,
etc., that should be provided by the organization.

The DREAMS support to the certification of MCSs is twofold:

1. Product-oriented Certification Support: The DREAMS harmonized platform provides
safety components that are re-usable across different application domains. These
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components can be combined in different deployments, as to satisfy the requirements
specific to each product variant of an MCS product line.

2. Process-oriented Certification Support: The DREAMS toolset provides automated
analysis and configuration features that would ease the staged development of the
MCS product line, and eventually provide evidences to support the safety claims.

When the DREAMS toolset explores the design space (DSE) it relies on oracles that
compute the performance of a candidate product for different properties, including safety.
The safety oracle analyses the suitability of the product architecture and the safety manuals
of the intended components and subsystems to establish which safety integrity level can
be claimed. This evaluation is based on a rationale elicited from the safety standard, and
the information provided from the safety manuals. A preliminary Safety Case (SC) is then
generated, based on safety-relevant information from the DREAMS platform components
and the system composition analysis, i.e., a given MCS product configuration. This
preliminary SC can be either completed at a later stage with additional arguments and
evidences (e.g., by integrating information gathered from VnV), or may refer to documents
that shall be available prior to the certification to support the safety claim.

We identify the following challenging issues for assembling preliminary SCs for MCSs:

1. The integration of fragments of diverse information, described in diverse formats
and possibly stored on distributed information sources (FTAs, HAZOP, requirements
databases, natural language documents, system models, etc.);

2. The preservation of traceability and coherence between information cross-references;
3. The description of the safety claim arguments in a human-friendly format.

The integration of the safety-relevant information is one of the main concerns of the
projects OPENCOSS [OPENCOSS] and AMASS-ECSEL [AMASS]. In DREAMS, we relate
the information sources by using textual links (e.g., an URL or a bibliography reference
entry) to tackle issue 1, and the toolset will partially address the issues 2 and 3 by relying on
compositional argument models to build the MCSs safety-claim argument. To this end, we
require re-usable and coherent information about the modular safety-cases, and this should
be ideally arranged in some argument database*. In order to simplify the composition of
arguments in the AutoFOCUS3 environment, we selected the Goal Structuring Notation
(GSN) (see Appendix C) to represent the arguments. Already developed modular SCs for
DREAMS components are translated to GSN and stored in the argument database.

*The database for modular safety arguments would refer to information out of the scope of the SCCRC
component (e.g., graphical depictions), required to ease the overall understanding of the preliminary SC.
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7.6 Conclusion

The objective of this research is to provide a structured methodology to ease the certification
of mixed-criticality product lines built upon the certified and/or certifiable components of the
DREAMS harmonized platform. The cost-effectiveness of certification of mixed-criticality
product lines is challenging, as safety is an emergent property specific of each particular
system configuration (i.e., a product sampled from the product line). This implies that a
specific safety argument shall be developed and provided for each valid product variant,
and all the supporting evidences shall be collected and structured alongside this particular
argumentation. To fulfil this requirement we propose a composition of safety arguments
resembling the compositional approach adopted for the product development: we provide a
library of safety-argument fragments for all the DREAMS re-usable components, expressed
in a graph notation that enables the semi-automated composition of argument models and
the production of evidence documents (i.e., preliminary safety-cases).

When developing a mixed-criticality product line, the integrated design toolset can
partially assemble a root safety argument for each product configuration. DREAMS
analysis tools help at assessing the satisfaction of the safety-related requirements for a
candidate product model by static or dynamic analysis. DREAMS fault-injection tools
provide additional verification and validation tools to test the actual system under some
foreseen fault scenarios, bringing additional evidences to show that the system handles
these faults adequately with regard to the safety requirements. However, safety cases
will typically require additional evidences to credit for safety certification that are either
not specifically targeted by DREAMS or shall be produced by other means or tools (e.g.,
test plans, test artefacts for the real system). The argumentation models proposed in
the DREAMS certification approach address this situation, as evidence elements in the
argumentation model (i.e., GSN Solutions) can link to other documents. This way, the
argument model becomes the backbone of the overall argument for a successful product
certification.

The proposed certification approach preserves the process redundancy required by safety
standards: the strict separation between development and verification activities. While the
project team concerned with the design and development brings safety argument models
for the MCPL configuration, the VVT project team works on producing credible arguments
and conclusive evidences or counter-evidences that should substantiate or rebut their safety
claims for each particular system configuration. Both teams produce two argumentation
models independently, and afterwards the VVT team will connect its argument fragments to
the corresponding design and development argument model, linking to the argument nodes
the required supportive evidences from analysis, testing or review. This yields a global safety-
argument model of the system. Finally, this global argument model can be mapped to a
number of standardized documents, as required by a Functional Safety Management (FSM)
process specification.
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Validation on Case Studies

This chapter presents three different case studies used to determine the applicability,
achievements and limitations of the re-use approaches contributed in Chapter 5 (re-use of
fault campaigns on Platform-Specific Time-Triggered Model (PS-TTM) models of safety
systems), Chapter 6 (re-use of models and code for real-time HilL test systems), and
Chapter 7 (re-use arguments for safety certification of mixed-criticality systems).

8.1 Development of a Railway Controller

This case study evaluates the feasibility of integrating an automated test executor to exercise
the fault tolerance of a redundant safety controller architecture compliant with the Time-
Triggered (TT) communication paradigm, by using a SystemC-based PS-TTM simulator for
platform and functional models based on the TT model of computation.

8.1.1 Context

The system under consideration is a safety controller intended to prevent a train from
exceeding the allowable speed limits. From the requirements and risk analysis it is stated
that the safety device shall fulfil a Safety Integrity Level (SIL) of 4, according to the
EN50129 [EN50129] railway standard, and it will integrate programmable electronics to
deploy the safety functions. On the other hand, considering the safety properties of the
hardware (HW), a redundant system structure is specified to achieve the required SIL
level. The distributed functions of the controller will communicate through a TT network
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that provides determinism. Besides, the safety application shall be developed seeking
diversification in the programming tools and teams. As a consequence, the safety application
would be composed of pieces of software that would be either programmed manually or coded
automatically from a functional model.

It is intended to use the Platform-Specific Time-Triggered Model (PS-TTM) modelling
and simulation framework presented in Chapter 5 to support the early analysis of the
achievable fault tolerance based on the functional and deployment specifications. To
that aim, we model the Time-Triggered execution of the safety functions and the target
system structure at two abstraction levels: first we abstract from HW, which yields a
platform-independent model; second we combine the functional model with a deployment
model, mapping functions to HW components, which yields the platform-specific model.
Concurrently, simulated fault-injection campaigns are planned for each model variant,
configured with the PS-TTM and carried out with the integrated Automatic Test Executor
(ATE). The analysis of the test results from the fault-injection campaign would unveil
potential weaknesses in the safety-system concept.

8.1.2 System Description

The European Railway Traffic Management System (ERTMS) is a European-wide
standardization initiative to enhance the safety, efficiency and cross-border interoperability of
rail transport across Europe. ERTMS replaces signalling equipment with digitized, mostly
wireless versions, and defines a single standard for train control and command systems.
The two main components of ERTMS are European Train Control System (ETCS), i.e., the
standard on-board train control [WG09], and the Global System for Mobile Communications-
Railway (GSM-R), the GSM mobile communications standard for railway operations.

European Train Control System (ETCS)

The ETCS prevents over-speeding in high-speed trains by supervising the travelled distance
and speed, and activating an emergency brake when the train exceeds the authorized values.
The safety requirements for the ETCS state that it shall be designed as a safety-critical
embedded system for SIL-4. In addition, the ETCS shall be a fail-safe system (see §2.3.3):
in the event of a massive system failure, the ETCS should apply the emergency brakes to
stop the train, so that the train reaches its safe state. Figure 8.1 sketches the structure of
the ETCS, that is composed of the subsystems listed in Table 8.1.

Functionality of the ETCS

The on-board safety processing unit of the ETCS is the European Vital Computer (EVC),
its functionality consisting of the following tasks, as shown in Figure 8.2a:
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Figure 8.1: ETCS on-board reference architecture
(source: [WG09])

1. Estimation of the speed and position of the train: The EVC reads the information
provided by a longitudinal accelerometer placed in the chassis of the train and two
angular encoders located in two different wheels. With these measurements the EVC
odometry subsystem estimates the current speed and position of the vehicle.

2. Selection of the operation mode: The driver can choose between two operation modes:

= In Standby mode, the emergency brake of the train is activated and the service
brake and warning signal are deactivated.

= In Supervision mode, the EVC supervises the current speed and position of
the train and activates the warning and brakes when the maximum permitted
speed values are exceeded. Eurobalises provide absolute position references
to correct the estimations. Upon detection of a balise in the railway by the
Balise Transmission Module (BTM) the odometry system replaces the computed
position estimate with the value read from the balise.

3. Emergency brake control: This task controls the activation and deactivation of the
emergency brake of the train.

= When the system is in Standby mode the emergency brake is activated.

» When the train is in Supervision mode, the estimated position and speed are
compared to a predefined braking curve that sets a maximum speed for each
position on the track. The emergency brake is activated when the estimated
speed exceeds the speed set by the braking curve.
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The emergency brake is released only when the train is stopped and the driver sends
a reset command through the Driver Machine Interface (DMI).

4. Service brake control: This task controls the activation and deactivation of the service
brake and the warning signal.

= In Standby mode, both the service brake and the warning are deactivated.

= In Supervision mode the estimated position and speed are compared to the
service-brake and warning braking-curves. The warning signal is activated when
the speed of the train reaches the warning activation speed set by its braking-
curve, and analogously, the service brake is activated when the speed exceeds
the service brake activation speed.

Both the warning and the service brake are deactivated when the speed of the train
falls below the warning activation speed.

Table 8.1: ETCS subsystems

(source: [ANP+14d])

ETCS Component Description

BTM

DMI

EVC

GSM-R

JRU

(O

TIU

Balise Transmission Module The BTM unit processes the information provided by the eurobalises
as the train passes them, and transmits it to the EVC. The Loop
Transmission Module (LTM) provides analogous functionality with the
data received from Euroloops.

Driver Machine Interface Interface for the train driver, which periodically updates state
information like the speed and position of the train, and transmits user
command events (e.g., button pressed).

European Vital Computer EVC is the locomotive central safety processing unit that executes all
the safety functions related to the supervision of the traveling speed
and distance. The EVC executes the safety kernel, that includes the
odometry subsystem, which fusions information from disparate sensors
to estimate the vehicle speed and position.

Global System for Mobile The GSM-R is an interface for the management of bidirectional
Communications - Railway information exchange between the remote control centers and the train.

Juridical Recorder Unit The JRU subsystem records a trace of all relevant external events (e.g.,
new eurobalise message) and internal events (e.g., activate emergency
brake).

Odometry Sensors Is a group of sensors consisting on encoders, Doppler radars and
longitudinal accelerometers that provide a set of measurements for
angular speed and acceleration, and send the measurement data to
the EVC.

Train Interface Unit The TIU reads/writes a set of input/output digital values, such as the
emergency brake digital output.
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8.1.3 Modelling the ETCS in PS-TTM

This subsection describes how a simplified ETCS system is modelled applying the PI/PS-
TTM approach. The subject of our case study is building a reduced ETCS system, omitting
the GSM-R and Juridical Recorder Unit (JRU) subsystems. Besides, the boundary of the
System Under Test (SUT) comprises the EVC and the DMI, while the BTM, the Train
Interface Unit (TIU) and the odometry sensors are considered parts of the SUT environment.

Platform-Independent Model (PIM)

We design the PIM of the ETCS system relying on the PS-TTM modelling framework
described in Chapter 5. We develop the platform-independent model of the ETCS in
SystemC using the Platform Independent Time-Triggered Model (PI-TTM) library. As
shown in Figure 8.2, we designed the SUT hierarchically, according to the spatial distribution
of the functions. The PIM implementation consists of 5 jobs deployed in 2 main DASes
(Distributed Application Subsystems): the 'DAS_EVC' and the 'DAS_DMI' If preferred, the
'DAS_EVC’ could be further decomposed by aggregating DASes, as shown in [ANP+14d].

Each function in the decomposition in Figure 8.2a maps to a job in 8.2b, where the
thick red dashed arrows depict the mapping relationships. The 'DAS_DMI' contains a single
job, 'job_dmi’, that enables the driver to select the desired operation mode and release the
emergency brake. Four jobs are mapped to the 'DAS_EVC’, one for each of the previously
defined tasks: The odometry estimation of speed and position is allocated to 'job_odo’, the
operational mode control goes to 'job_mode’, and the emergency and service brake controls
go to 'job_emerg' and 'job_serv’ respectively.

The ETCS system activates an emergency brake when the values estimated by the
odometry system exceed the authorized limits. Therefore, the odometry subsystem shall
provide accurate and reliable measurements. Usually, an odometry algorithm is based on a
fault-tolerant sensor-fusion approach. In this case, we design the algorithm following one of
the approaches described by Malvezzi et al. in [MAR10]. The algorithm estimates the speed
of the train and the travelled distance with the information provided by an accelerometer,
that measures the acceleration of the train, and two encoders, each one of those measuring
the speed of a different wheel.

We design the functions of the SUT in SCADE and we generate the C-code
implementation automatically using KCG. Then we integrate the resulting components into
the platform-independent model of the system for their verification. We also design a
simplified model of the ETCS environment using SCADE. In this example we set the period
of the system to 250ms. All jobs in the SUT have frequency = 1, so the Logical Execution
Time (LET) of the jobs is 250ms.
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(a) Functional structure of the ETCS.
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(b) Platform-independent model of the ETCS in PI-TTM.

Figure 8.2: Mapping the functional structure of the ETCS to the PI-TTM model
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Platform-Specific Model (PSM)

Once we have defined and verified the functional system with the PI-TTM library, the model
is refined into a PSM. Following the recommendations from the IEC 61508 safety standard,
we choose a Triple Modular Redundancy (TMR) configuration for the ETCS platform to be
able to achieve the SIL-4 safety requirement. Redundancy increases the robustness of the
system against random faults, such as hardware faults.

In this example the PIM is deployed into a Triple Modular Redundancy (TMR) platform,
in compliance with the requirements from the EN-50126 international safety standard for
railway applications. The TMR system is composed by three main nodes, each of them
hosting a replica of the simplified EVC functionality. Each of the nodes is connected to its
dedicated sensors and Balise Transmission Module (BTM).

The introduction of redundancy in the system requires the implementation of voters to
handle the redundant output values. Two 2003 voters handle the replicated values of the
EVC nodes. The voters receive 9 input signals (a warning, service brake and emergency
brake from each EVC node) and they compare the replicated values to produce 3 output
signals (voted warning, service brake, and emergency brake). Besides, the voters output two
additional signals, the failure warning and the system-failure warning signals to inform the
driver about the detection of failures in the system. The functionality of the voting system
is the following:

= The voters start in normal voting mode. In this situation, if the three replicated input
values are equal, the voter remains in normal voting mode and forwards the input
values to the output value. No failure warning is sent to the DMI.

= If one of the replicated values received by the voter differs from the other two, the
voter switches to degraded voting mode, behaving as a 1002 voter where the voting
algorithm ignores the inputs coming from the faulty node. The result of the 1002
algorithm is forwarded to the output, and a failure warning is sent to the DMI.

= |f there is a disagreement between the two active inputs when the voter is in degraded
voting mode, the voter sends a system-failure warning to the DMI to notify a multiple
failure in the system. The voting system is disconnected and the emergency brakes
are applied to the train, whereas the service-brake and the warning are deactivated.

Figure 8.3 shows the PSM of the system in PS-TTM, modelled as a 6-Node Cluster: The
dual Voters (Voter_A, Voter_B) and the driver interface (DMI) are deployed on separate
single-core processor nodes, each processor / core executing a single job. The redundant
EVCs are hosted in three identical nodes, each node integrating a dual-core processor. One
of the cores is the host for the safety-critical jobs, i.e., the odometry job, the mode-control
job and the emergency-brake-system job, whereas the other core hosts the service-brake
system job. We design the functions with SCADE and we generate C code automatically
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(a) TMR structure of the ETCS.
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Figure 8.4: Connection between ATE (Python) and SUT (ETCS)
(source: [ANP+14d])

using the KCG tool. C code for the voters is also automatically generated from SCADE
models.

The PS-TTM also integrates an ATE with the Test-Case Interpreter (TCl), Fault-
Injection Unit (FIU) and Test Points Manager (TPM) modules mentioned before, which
enables verifying the functionality of the system and validating the fault tolerance
mechanisms. The Pl / PS-TTM ATE is connected to the SUT and the environment model
as shown in Figure 8.4 to assess the fault tolerance mechanisms introduced in the platform-
independent / specific model of the system by injecting faults during simulation.

Listing 8.1: Example Python script to setup the Pl / PS-TTM ATE and run a simulation

1 # File : psttm_test.py

2 # Description: Python script to configure the test-case, test-points

3 # and fault-injection for a single ATE-controlled
simulation

4 # on the PS-TTM model.

5 tcmodule as tc # loads the test-case configuration

6 tc.LoadTestCaseDescriptionFile("./psmtestcase.xml")

7 tc.Confirm() # configures the signal gemnerators

8

9 fimodule as fi # loads the fault campaign configuration

10 fi.LoadDescriptionFile("./psmfaultinjection.xml")

11 fi.Confirm() # configures the signal saboteurs

12

13 tpmodule as tp # loads the test-points configuration

14 tp.LoadTPDescriptionFile("./psmtestpoints.xml")

15 tp.SetTraceFileName ("./psmtestresults")

16 tp.Confirm() # configures the signal probes
17 # The simulation starts immediately upon setup completion,

18 # then the Python ATE exzits automatically when finished.

19 # END OF FILE psttm_test.py

The PS-TTM ATE enables the test automation for massive fault-injection campaigns
through its Python Application Programming Interfaces (APIls) to control the TCI, FIU
and TPM components. For instance, listing 8.1 is a single-simulation Python script
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that: (a) loads the timed sequences of SUT inputs from file 'psmtestcase.xml’, (b)
configures the fault mode and triggers the fault-injection saboteurs according to file
'psmfaultinjection.xml’, and (c) specifies the virtual signal probes through the test-
point configuration 'psmtestpoints.xml’. Output traces in value-change-dump format are
recorded in file 'psmtestresults.vecd. The statement tp.Confirm() runs the simulation
automatically (if the test-case inputs are already configured) and then exits.

8.1.4 Reliability Assessment

This section describes the reliability assessment made to the railway-signalling system model
described in §8.1.2. The fault tolerance mechanisms to be implemented in the system
(e.g., TMR) are evaluated by means of simulated fault injection. Thus, the PS-TTM ATE
framework is connected to the SUT and the environment model as in Figure 8.4.

Figure 8.5 depicts the extended PI-TTM model hierarchy for the SUT model from
Figure 8.2b. To support test automation, the PI-TTM simulator model consists of a
single PS-TTM System instance ('SYSTEM_testmdl’), that connects two DASes in closed-

Extended PI-TTM model

Platform-independent model of the ETCS in PI-TTM.

DAS_DMI

PI-TTM System: ETCS (SUT) & ATE)
SYSTEM_testmdl !
R T ~DAS_ATE

Figure 8.5: PI-TTM system model for ATE-controlled fault injection simulation of ETCS
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loop: the ETCS model (i.e., the SUT, 'DAS_SUT'), and the Python ATE ('DAS_ATE’).
'SYSTEM_testmdl’ is the top-level view of the test setup (including the SUT) and has
no external communication interfaces. All the stimuli signals fed to the SUT are timely
generated at the TCl component of the ATE, the effects of faults on the signals are injected
by the saboteurs (i.e., executable fault-models) from the FIU component, and the data sinks
to record output traces of selected signals are provided by the TPM component.

The virtual ATE 'DAS_SUT' includes two jobs:

= job_jo: this task generates synchronously the test inputs from the test case
description, pre-loaded through the TCl interface.

= job_time: this task controls the simulation time.

This way, the TCl parses the test cases defined in XML files and feeds the environment
during simulation with the corresponding input signals. The environment model generates
the sensor values and sends them to the SUT. The simulation engine sends all the
communication signals inside the SUT to the FIU, which modifies their values according to
the fault-injection campaigns defined by the testing team. The results of the simulations
are sent to the TPM, which stores them for their off-line evaluation.

We designed the fault campaigns to exercise the fault tolerance of the ETCS PIM/PSM
models against the faults identified in the Failure Mode and Effects Analysis (FMEA) that
the implementation under test (IUT) should mask. Table 8.6 compares the complexity for
both the PIM and PSM models in terms of number of modelling items, potential failure
modes and error causes (more detailed information is provided in [Ayel5]).

Reliability Testing on the Platform-Independent Model (PIM)

As mentioned before, the odometry algorithm should be tolerant to a fault in one of
its sensors. Injecting faults at the functional model enables an early assessment of the
robustness of the algorithm. Therefore, we first simulate the PIM by means of the PI-
TTM engine with a pre-defined test case and we store the results provided by the odometry
algorithm. We consider the results of this fault-free simulation the golden behaviour of the
system. Then, we carry several simulations including the fault-injection campaigns shown
in Table 8.2, and we compare their results with the golden behaviour.

For instance, Listing 8.2 shows the XML fault configuration #4 in Table 8.2
(’Wheel slipping during acceleration’). The integrated Python ATE loads the fault
configuration in the FIU component of the PS-TTM framework, the FIU sets the trigger and
behaviour configuration in the fault model. During simulation, the ’>encoder 1’ signal is
sabotaged at simulation time ¢t = 91sec in the EVC input (DAS_EVC_IN_ENC1). Figure 8.6
graphs an extract of the results obtained in the simulation, showing the effect of fault #4
on the odometry estimates. The results show that the odometry algorithm designed for
this system provides accurate results in the estimation of the travelled distance even in the
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Table 8.2: Fault-injection campaign for the PIM model of the ETCS.
(source: [ANP+14d])

Fault Location Fault Fault Set

Description
# Job Entity Type | Effect Attributes Mode | Trigger Duration
time(s) (s)

1 | job_odo ency input I_C 0 p 130.0 - Wheel stuck /
Encoder broken

2 | job_odo ency input I_S - p 180.0 - Encoder broken
(measuring a fix value)

3 job_odo ency input I_R 0,600 p 80.0 - Encocer broken
(measuring wrong
values)

4 | job_odo ency input I_C 600 t 91.0 7.0 Wheel slipping during
acceleration

5 | job_odo ency input I_C 0 t 150.0 8.0 Wheel skidding
(blocked by brakes)

6 | job_odo  accel input F_A 11 p 0.0 - Accelerometer
incorrectly installed

7 | job_odo accel input F_S - p 200.0 - Accelerometer broken
(measuring a fix value)

8 | job_odo accel input F_R -2,2 p 20.0 - Accelerometer broken
(measuring wrong
values)

9 job_odo accel input F_OR -0.1, 0.1 t 35.0 50.0 Noise in the signal

presence of faults in the sensors. The maximum position-estimation error occurred during
the 8" fault-injection campaign, where the maximum error raised up to 3.07m from a total
of 6044.46m (0.05%, at 160.5sec). The maximum error in percentage took place during
the 6" campaign, and reached 4.76%. Anyway, this happened at instant 8.250sec, where
the travelled distance was still very low (0.21m travelled, 0.22m measured due to the fault).

Regarding the estimation of the speed, within the experiments made by means of our
fault injection framework show the robustness of the algorithm. In this case we also get the
maximum error in the 8™ campaign, where at instant 151.75s we find a disagreement of
1.350m/s respect to the non-faulty simulation (60.23m/s, 2.24%) .

All in all, estimation errors made by the algorithm are considered acceptable, since they
always fall below the 5% of the travelled distance and speed, and never go further than
+5m and £2m/s. As a conclusion, we state that the algorithm has shown to be specially
sensitive to faults in the accelerometer, so future work could focus on the improvement of
this fact.

Reliability Testing on the Platform-Specific Model (PSM)

The PSM of the system introduces redundancy to tolerate hardware-related faults. A TMR
architecture is chosen to guarantee the availability of the system even in the presence of
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Listing 8.2: Fault config. #4 injected by the PI-TTM ATE on the ETCS PIM

<! -- FAULT CONFIGURATION -->
<FaultConfiguration>
<FaultSet>
<Name>FC4</Name>
<FaultMode>TRANSIENT</FaultMode>
<Duration>7.0</Duration>
<TriggerInstant>91.0</TriggerInstant>
<Fault ref= />
</FaultSet>
</FaultConfiguration>
<! -- FAULTS -->
<Faults>
<Fault id= >
<Name>i4</Name>
<Location ref= />
<FaultEffect>Integer_Constant</FaultEffect>
<ConstantValue>600</ConstantValue>
</Fault>
</Faults>
<! -- FAULT LOCATIONS -->
<Locations>
<Location id= >
<Job>system_inst.das_sut_inst.das_evc.odo_inst</Job>
<PortType>Input</PortType>
<Entity>DAS_EVC_IN_ENC1</Entity>
26 </Location>
27 </Locations>
28 </pim_fault_metamodel:FaultInjectionSettings>
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faults. As stated before, a voting algorithm should be able to identify any failure in the
replicated nodes. In such cases, the voters send a failure-warning signal and ignore the
results provided by the faulty node. If a second failure is detected in the system, the voters
activate the emergency brake and inform about a failure in the system. We set the period
of each job to the time-triggered macrotick, i.e., 250msec.

Listing 8.3 is an example eXtensible Markup Language (XML) fault configuration file
used to simulate the fault campaigns on the PS-TTM model of the ETCS. This file is loaded
from the PS-TTM ATE, besides the test case description and test points specification.

Table 8.3 shows the fault-injection campaigns made to the PSM in order to evaluate
the voting algorithm.

Figure 8.8 shows the results captured by the TPM module when the system is simulated
against a pre-defined test case. In the first simulation over the PI-TTM library (see
Figure 8.8a), the TCl feeds the SUT with the test case and the system estimates the speed
and activates the service brake and warning signal accordingly. In the second simulation (see
Figure 8.8b) we repeat the same test case but we simulate a blocked wheel, by injecting a
“stuck at 0" fault in the encoderl between t = 24.0sec and t = 27.0sec with the FIU. As
the figure shows, the odometry system masks the fault and estimates the speed correctly,

161




Chapter 8. Validation on Case Studies

4 T T T S —— 8000
— FC#1 — FC#4 — FC#7| |-~ Distance _e=""
3| — FC#2  — FC#5 — FC#8 - 17000
— FC#3 FC#6 — FC#9 L6000
5 £
— 5000 8
E
5 I {4000 &
= b
w /‘MMW] 130003
0 ~f 7 > &
AR 12000 ™
-1 =" -
-7 11000
—2 =" L 0
0 50 100 150 200
Time (s)

(a) Traveled distance and estimation error due to faults

1.5

— FC#1 — FC#4 — FC#7 EEEEEEE N [ - - Speed]{70
A}

1ol FC#2 — FC#5 — FC#8 P

Error (m/s)
Speed (m/s)

) 50 100 150 200
Time (s)

(b) Speed and estimation error due to faults

Figure 8.6: Results of the PIM simulation and fault injection
(source: [ANP+14d])

so the brakes and warning are activated as expected.

Figures 8.8c and 8.8d show the results of the simulations of the PS-TTM model. In
the first simulation (see Figure 8.8c) we repeat the previous test case and we obtain similar
results, with a small delay due to the execution time of the voters. In the second simulation
we execute the same test case and we inject a permanent “no-execution” fault in the corel
of the EVC node A at instant ¢ = 14.5sec, which mimics the destruction of the core. As
Figure 8.8d shows, the speed estimated by node A gets stuck at ¢t = 14.5sec, whereas the
other nodes still estimate the speed correctly. The output of the system is still correct, since
the voters mask the faulty node.

During the fault-free simulation, the system activated the warning 4 times, and the
service brake once. As expected, the failure and system-failure warnings were not activated.
The results obtained for each fault-injection campaign are summarized in Table 8.4. All
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Extended PS-TTM model
Platform-specific model of the TMR ETCS in PS-TTM.
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Figure 8.7: PS-TTM system model for ATE-controlled fault injection simulation of ETCS

the faults injected in the system during the simulations were detected by the voters. Since
we configured all jobs in the system with a period of one macrotick (250msec), corruption
and babbling faults were detected 250msec after their injection in the system, as expected.
Bit-flips in signals and open circuits were also detected in the next macrotick.

However, no-execution and out-of-time faults, injected in the 1%, 3" and 5% fault
configurations, took longer to detect. This happened because, due to the state of the
system at the moment of the injection, the faults were dormant. In fact, no-execution and
out-of-time faults do not get active until the value of the signal changes, since they do not
cause an alteration of the signal values by themselves.

All in all, the faults were detected as expected. The voters also notified a multiple failure
caused by the two faults injected in the system during the 5" simulation. That occurred at
instant 150.25sec, and also caused the activation of the emergency brakes of the train, as
stated by the requirements. Figure 8.9 shows an extract of the results of the 5™ simulation.
For the sake of simplicity, we omit input signals of emergency and service brakes from the
figure.
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Listing 8.3: Fault configuration #b5 injected by the PS-TTM ATE on the ETCS PSM

<pim_fault_metamodel:FaultInjectionSettings>
<!-- FAULT CONFIGURATION -->
<FaultConfiguration>
<FaultSet>
<Name>FC5A</Name >
<FaultMode>PERMANENT</FaultMode>
<Duration></Duration>
<TriggerInstant>60.0</TriggerInstant>
<Fault ref= />
</FaultSet>
<FaultSet>
<Name>FC5B</Name >
<FaultMode>PERMANENT</FaultMode>
<Duration></Duration>
<TriggerInstant>150.0</TriggerInstant>
<Fault ref= />
</FaultSet>
</FaultConfiguration>

<!-- FAULTS -->
<Faults>
<Fault id= >
<Name>bb5a</Name>
<Location ref= />
<FaultEffect>HW_NoExecution</FaultEffect>
</Fault>
<Fault id= >
<Name>b5b</Name>
<Location ref= />
<FaultEffect>HW_Corruption</FaultEffect>
</Fault>
</Faults>

<!-- FAULT LOCATIONS -->
<Locations>
<Location id= >
<Job>system_inst.cluster_sut_inst.node_evc_B</Job>
<PortType></PortType>
<Entity></Entity>
</Location>
<Location id= >
<Job>system_inst.cluster_sut_inst.node_evc_C.proc_evc</Job>
<PortType></PortType>
<Entity></Entity>
</Location>
</Locations>
</pim_fault_metamodel:FaultInjectionSettings>
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(a) PI-TTM test-case results
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(b) PI-TTM test-case results with SFI in encoder 1.
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(c) PS-TTM test-case results.
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(d) PS-TTM test-case results with SFI on the core 1 of Node A.

Figure 8.8: Simulation results of the PS-TTM model
(source: [ANP+14b])
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Table 8.3: Fault-injection campaign for the PSM model of the ETCS.
(source: [ANP+14d])

. Fault Fault Set L.
# Fault Location Description
Effect  Attributes | Mode Trig. Duration
time(s) (s)

1 Node_EVC_A NE - p 85.0 - Node A stopped
working

2 Proc_EVC_B C - p 20.0 - Processor B
provides incorrect
results

3 EVC_C_Corel OoT 0.50 p 120.0 - Core 1 of a
processor C is out
of time bounds

4 Node_EVC_A B - t 40.0 25.0 Node A babbling,
incorrect results

5 Node_EVC_B, Proc_EVC_C NE, C - P, P 60.0, - Double failure

150.0 (Node B stops,

then processor C
incorrect)

6 job_serv_A serv  output B_I - t 160.0 0.50 Bit-flip in Service.
Brake signal sent
by node A

7 | job_emrg_C emrg output | B_OC - t 105.0 15.0 Emerg. Brake

not received from
Node C (noise)

Fault injected: Node B, no-excutiong\ Fault injected: Node C, corruptiong\

Input_warning_nodeA I

Input_warning_nodeB I

Input_warning_nodeC I

Output_emerg ‘

Output_serv I

Output_warning I
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Figure 8.9: Results of the PSM simulation with fault configuration #5
(source: [ANP+14d])
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Table 8.4: Results of fault-injection campaigns in the PSM model of the ETCS.
(source: [ANP+14d])

# Fault trigger Fault warning System fault
instant (s) activ. instant (s) activ. instant (s)

1| 85.0 125.25 -

2 | 20.0 20.25 =

3 | 120.0 125.25 -

4 | 40.0 40.25 -

5 | 60.0, 150.0 79.00 150.25

6 | 160.0 160.25 -

7 | 105.0 105.25 -

8.1.5 Discussion

This case study uses our Time-Triggered (TT) modelling framework for safety-critical
embedded systems. The modelling workflow follows the Y-chart paradigm over the Logical
Execution Time (LET) and TT models of computation (MoC). We introduced the Platform
Independent Time-Triggered Model (PI-TTM), which is a LET simulation engine built as
an extension to the Executable Time-Triggered Model (E-TTM) that enables the simulation
of platform-independent LET-models in SystemC. In addition, the Platform-Specific Time-
Triggered Model (PS-TTM) extension enables the design of platform specific E-TTM models
including abstractions of the HW components.

The deployment of LET and E-TTM based models into time-triggered architecture
platforms becomes straightforward. Moreover, the fact of relying on time-triggered models of
computation reduces the number of system failures that need to be considered since failures
due to faulty synchronization or altered orders of execution are prevented by construction.
Besides, the fact of implementing the LET Model of Computation (MoC) as an extension to
the E-TTM engine enables merging subsystems described in both models of computation.
This enables the simulation of mixed-abstraction level subsystems with fault injection,
seamlessly combining descriptions of subsystems at PIM and PSM design stages.

Finally, the framework integrates a time-triggered ATE that enables non-intrusive
simulated fault-injection (SFI) in the PI-TTM and PS-TTM models. The ATE is
synchronized with the SUT to enable reproducibility in the tests and SFI experiments. The
selected SFI configuration scheme is compliant with the international ASAM AE hardware-
in-the-loop (HilL) standard, which would ease the forward reuse of the SFI campaigns in all
development phases up to the deployment of the final Time-Triggered Architecture (TTA)
prototypes.
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Table 8.5: Example PS-TTM simulator performance for PIM and PSM models.
(source: [Ayel5])

Simulator Simulation time  Computation Acceleration
configuration time (min,max)  factor
PI-TTM 240s [1.01s, 1.185]  x200
PI-TTM 240s [6.19s, 6.725] x40

Results running the PS-TTM simulator on a Windows 7 SP1 host (in x86/32-bit mode) with an Intel i7
quad-core processor 2.60 GHz. PS-TTM applications built on SystemC version 2.3.0 and Python 3.2.

Limitations

Table 8.5 compares the simulated time to the execution time for both the PIM and PSM.
The test scenario consisted of a train journey between two stations, covering 7.5km in 240s.
The time acceleration is about 2200 for the PIM and x35 for the PSM.

The computing time varies with the model complexity, as well as the activated fault
injectors or signal probes. Table 8.6 summarizes the number of modelling artefacts and
scenarios considered for the analysis at the PIM and PSM abstraction levels. It should be
noted that these figures correspond to a Lransaction-Level Modeling (TLM) abstraction, and
that a more precise Register-Transfer Level (RTL) simulation would increase the computation
time considerably, which eventually would yield long, impractical simulations.

Table 8.6: Comparison between the PIM and PSM PS-TTM reliability analysis.

PIM PSM
Iltem (Type) # # Notes
Jobs 5 15 PSM has triple redundancy in EVCs (with 4
Jobs deployed on each node), and 2 Voters
(with 1 job per node).
DASes 6 - Used in PIM only.
Modeling elements Nodes - 6 Used in PSM only.
Procesors - 6 Used in PSM only.
Cores - 9 Used in PSM only.
Maskable 36 261
Failure modes Non-maskable 21 Due to systematic errors in SW.
Any (total) 109 282
Potential error causes 276 608
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8.1.6 Conclusion

This section presented the application of the testing and simulated fault-injection framework
for Time-Triggered (TT) dependable-systems based on the PS-TTM approach. The
environment enables testing and injecting faults at different stages of the design, from
Platform-Independent Models (PIMs) to Platform-Specific Models (PSMs), which enables
an early detection of design flaws in the system.

The Automatic Test Executor (ATE) used to assess the fault tolerance in this case
study is composed by three different modules for the design and simulation of test cases,
injection of faults during simulation and storage of simulation results for the evaluation of the
behaviour of the system under such faults. The ATE is synchronized with the simulation time
of the System Under Test (SUT), such that functional tests and fault injection experiments
become reproducible.

The SFI technique is non-intrusive [Ayel5], i.e., engineers can setup different fault
configurations to carry out different fault tolerance simulation tests cases using the same
system model: the PS-TTM simulator exploits SystemC introspection to instantiate the fault
injectors at run-time, so that no system-model modifications are required. This is achieved
by monitoring the signals of the SUT and modifying their values if required. The framework
provides the user with a library of faults to configure the fault-injection experiments. The
ATE imports these configurations for carrying out the simulations. The mapping of LET
and E-TTM-based models to time-triggered architectures is straightforward. This eventually
facilitates the re-usability of tests even on real prototypes, provided that we could build a
test harness with equivalent real-world Fault-Injection Units (FIUs).

The PS-TTM ATE framework presented in Chapter 5 is evaluated using a railway
signalling system case study. We modelled the system at both PIM and PSM levels, and
checked the behaviour of the system under different faults by means of the simulated fault-
injection (SFI) capabilities provided by the framework. Our non-intrusive SFI approach
enabled an early assessment of a fault-tolerant odometry algorithm long before assembling
a costly system prototype, and eased identifying its main weaknesses. We also evaluated
the behaviour of the voters introduced in the Triple Modular Redundancy (TMR) system
by means of our framework. The response of the voters under the presence of faults
was considered successful. This case study evidences the suitability of the framework for
simulated fault injection in TT safety-critical systems modelled with the PS-TTM platform
at different stages of the development.

Related Publications

The results presented herein also appeared in [ANP+14a, ANP+14b, ANP+14c, ANP-+14d].
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8.2 Model and Code Re-use for a HiL Elevator Simulator

This case study evaluates the practicality of re-using models and actual production code of
devices to build test components and special-purpose instruments that could be integrated
in real-time testbenches for the validation of distributed safety control systems.

8.2.1 Context

The system under consideration is an automated testbench for the verification of distributed
elevator-control systems. Elevator systems can adopt multiple configurations, depending on
factors like the building, the sensor system, the human-machine interfaces or the drive
technology, amongst others. In order to avoid a proliferation of variants, a manufacturer of
elevator controllers could opt for an universal product concept, i.e., a highly configurable
control system that could be parametrized to fit any possible elevator installation. Such
configurability is achieved by embedding all the possibly required control functions in the
controller application. The immediate consequence is a complex control flow in the controller
software, with many optional routes that become active depending on the configuration.

In this scenario, the verification of the elevator controllers on real test elevators provides
a too limited set of feasible configurations. Further, such a verification on real elevators
becomes impractical for a thorough verification. However, the product maintenance for
the elevator controller depends on a comprehensive regression testing, as modifications in
the system software may have side-effects on the functionality for some configurations. As
a consequence, it is required an equivalent test system that could be easily reconfigured
and scaled-up to replicate different buildings, elevator sensors and elevator actuators: the
Hardware-in-the-Loop Elevator Simulator (HiLES).

The HILES testbench integrates a programmable simulator to replicate the mechanical
behaviour of physical parts (e.g., the elevator car, the car doors, etc.), while providing the
same signal formats as the actual elevator sensors (e.g., position limit switches, encoders,
elevator user interfaces, etc.) and actuators (e.g., drive, safety-circuit, etc.). The HiLES
simulator is a real-time hardware-in-the-loop (HiL) testbench that can reproduce several
elevator installations by switching to a different model configuration. HiLES connects to a
mock-up of an elevator-control system for elevator groups. The elevator-group controller is a
distributed system consisting of multiple networked embedded devices, physically scattered
along the shaft, e.g., the level-call pushbuttons or the human-machine interface (HMI)
aboard the cabin.

The original HiLES incorporated several remote Input/Output (I/O) nodes from the
elevator-control system, which have to be manually installed or removed/disabled. Besides
the inconvenience of requiring more physical room for the elevator testbench, this drawback
eventually constrains the simulator versatility and increases the cost of the test campaigns,
as it limits the feasible test automation.

Another threat to scalability in the original HiLES test system came from the sequential
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execution of the simulator models: the computation time depends on both, the model
configuration, and the capabilities of HW/SW from the simulator controller platform.
Pushed to the limits, the exploitation of every available computing resource to run higher
complexity models demanded very platform-specific optimizations, which on the other hand,
degraded the simulator portability to alternative execution contexts. The complexity of all
the possible interactions made the feasibility of simulator improvements unpredictable, which
caused maintenance problems.

To overcome the above-mentioned limitations, an alternative deployment was selected:
instead of conventional processors, the new HIiLES would use a Commercial-Off-The-
Shelf (COTS) heterogeneous controller providing Programmable Logic (PL) resources,
i.e., a Field-Programmable Gate Array (FPGA). Considering that the original HiLES was
programmed in the C/C++ programming languages, that the coding tweaks applied over
time made the source code almost unusable for other platforms, and last, but not least,
that the deployment of simulator components on the FPGA require coding of those parts in
hardware description language (HDL), it was decided that the new HiLES should be built
from scratch, following a Model-Based Development (MBD) process.

The library of models for HiLES would be developed in the MATLAB/Simulink [ML, SL]
COTS development environment. By using the transformations to C (Simulink Coder)
or HDL (HDL Coder), alternative implementations could be obtained for either the
conventional processor or the FPGA parts of the simulator platform. It is intended to
apply the techniques presented in Chapter 6 to enhance the HIiLES test system in several
ways:

Provide a strict timing synchronization in all the simulated position and speed sensors.

Integrate virtual position sensors with fault injectors to support fault testing.

Integrate virtual position sensors with communication interfaces.

Provide scalability in the remote 1/O nodes, by replacing the physical embedded
devices with virtual replicas that could be instantiated on-demand.

8.2.2 System Description

The subject of this case study is the real-time verification of an Elevator Control System
(ECS) with a federated architecture, i.e., a distributed embedded system with spatially
scattered and networked nodes, each node having local computing resources. The main
node in the ECS is the elevator controller.

The elevator controller is an embedded device implementing motion control, diagnostics,
monitoring and safety functions. Among other tasks, an elevator controller processes and
queues the calls from the users, controls the motion of the cabin and the elevator doors,
and guards against the unsafe operation of the system. An elevator controller may operate
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as part of an elevator group, where a dispatching algorithm optimizes and coordinates the
allocation of elevators to serve the user calls. The controller application can be set up to
operate with any possible elevator configuration: for each hoist system (hydraulic, AC or
variable speed drive), arrangement of sensors (position switches, incremental or absolute
position encoders) and layout of user interfaces (conventional button call boxes and/or
destination floor selectors).

In modern elevator systems the users may call an elevator through a variety of HMIs,
ranging from conventional pushbuttons and simple displays, to advanced kiosks or multi-
functional touch displays. For the sake of simplicity, in this case study we consider an
elevator system with a conventional HMI, i.e., level and car pushbuttons. In addition, an
elevator-control system would integrate special-purpose HMIs for maintenance and rescue,
that shall be operated in a safe manner by qualified staff. A safety circuit prevents the
elevator from moving in unsafe conditions. For instance, the elevator doors shall always be
closed before the cabin starts moving, in order to avoid trapping the passengers against the
walls or leaving people in risk of falling though the well. To avoid this, an interlock device
connected to a safety circuit disables the elevator drive until the doors are properly closed.
For safety reasons, the safety circuit is usually redundant with the elevator controller, i.e.,
the safety circuit operates independently from the controller, although the controller can
monitor the state of the circuit for diagnosis and maintenance purposes.

Figure 8.10 sketches a simplified control system for an elevator group. The group consists
of a number of Elevator Controllers communicating through a dedicated Controller Area
Network (CAN) bus ('CANH BUS'). Each controller has a secondary CAN bus ('CANV BUS')
connecting it with the distributed slave nodes, i.e., car/level HMI, door control interfaces
('EXT3'), and safety-monitoring devices ('EXT4'). The controller commands the drive to
move/stop the cabin, read a set of position switches installed along the shaft to update the
current position estimate and determine the speed setup.

As mentioned in §8.2.1, the elevator-positioning system varies depending on the drive
technology, e.g., hydraulic or electric, as well as the sensing system, e.g., limit switches
or encoders, etc. The development of new position sensors for elevators enables further
product improvements and yields benefits. In particular, absolute encoders are easier to
install and calibrate, minimize the elevator start-up time (they do not require a homing
movement after powering-on or resetting the elevator controller) and may even replace
several safety elements with a single safety-encoder device, thus simplifying the safety circuit
and easing the diagnostic of system malfunctions. However, an elevator-controller concept
based on the universal-product approach may require a major overhauling of the control
functions and interfaces to use the new device. Moreover, the novelty of many of these
components may delay the integration in the elevator-control system till pre-series sensors
become available. Hence, the availability of a HiL-enabled virtual sensor replacement could
boost the development of an enhanced elevator-control strategy, by supporting a concurrent
engineering process.
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Figure 8.10: Schematic view of the elevator group distributed control system, integrating
multiple controllers and networked remote /O devices
(source: [NAP+17])
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Distributed control systems for elevator groups

Our case study consists of a simulator for testing distributed control systems for elevator
groups. The plant consists of 1 to 8 elevators (1 < N¢¢” < 8), with up to 3 doors per
elevator (1 < Nfeom < 3), and up to 64 levels (1 < Nile”el < 64). The distributed control
system comprises N¢? elevator controllers interconnected through a CAN bus, called the
horizontal bus (CANH), as shown in Figure 8.10. When operating as a group, a dispatcher
handles the traffic and allocates the user’s calls to each controller.

Many peripheral elements of the elevator-control system are networked |/O embedded
devices, named Extensions (EXT). Each controller handles a local CAN bus, termed the
vertical bus (CANV), that links 1/O Extensions of various sub-types: the N/l user
interfaces at the levels (EXTI) and inside the elevator car (EXT2), the Nf°°" door
controllers (EXT3) and special-purpose sensors and devices (EXT4/EXT5) located in the
shaft (see Table 8.7). EXT3 and EXT4 devices also monitor some safety-circuit contacts
in order to diagnose eventual elevator malfunctions. The number of nodes on a CANV
bus depends on building parameters like the number of levels. By design, most remote
|/O-device types implement similar functionality while differing in the signal interfaces.
These |/O-device variants integrate a common micro-controller architecture and share the
application code to simplify the maintenance and evolution of the product line.

The expected product lifetime of the elevator system is about 20 years, during which the
elevator manufacturer has to supply replacements for the electronic devices. A way to avoid
stocks of obsolescent spare parts is to require the evolving embedded product lines to be
retro-compatible, i.e., when updating the embedded product line, the manufacturer has to
preserve the interoperability with former elevator controllers. To that end, a comprehensive
regression testing phase follows each development iteration, to verify the behaviour of the
system for each control configuration. When the control system evolves to a new product
generation, new functional and interface specifications extend the application code for the
|/O devices, while required to be retro-compatible with precedent product families.

Table 8.7: Remote 1/O EXT device types.

Type Purpose Max. devices NMT Cycle
EXT1 Level user interface. 64 3s

EXT2 Elevator car user interface. 16 3s

EXT3 Elevator door interface. 3 3s

EXT4.0 Safety-related I/0. 1 200 ms
EXT4.1 Safety-related |/0. 1 3s

EXT5 General purpose 1/0. 64 3s
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Elevator Position Control System

An elevator controller operates the cabin movements by reading a set of sensor measurements
and commanding the speed setpoint on the main drive. The conventional position control
mode is the creep-to-floor travel, where the elevator drive operates at two speed values:
at start the drive accelerates to the high-speed value. Then it keeps uniform motion until
the controller detects a predefined position switch. When the latter happens, the controller
commands the drive to the low-speed value (creep speed) and waits for activation of a
second position switch (car levelling at landing position). When found, the controller triggers
a timed stop command and brakes the cabin.

A typical arrangement of sensors combines encoders either incremental or absolute and
position switches attached to the elevator frame. As incremental encoder measurements
introduce uncertainty about the actual position of the car, the elevator controller corrects
the eventual drifts with the absolute references provided by the position switches. The main
drawback of incremental encoders is that the controller requires a homing move to find a
reference position at power-on, lengthening the elevator start-up time, specially for high-
rise elevators. Moreover, due to the uncertainty about the actual position and speed, the
controller shall select at a conservative sub-optimum speed set-point to prevent overshooting
the desired landing position.

Absolute encoders measure the elevator car position with regard to a fixed position
reference, so that the controller skips the homing move. This shortens the start-up time
and enables the optimisation of the speed set-point, increasing the overall availability and
capacity of the vertical transportation system.

CANopen Absolute Encoders for Elevators

CAN networks suit the low-cost and performance requirements for implementing distributed
elevator-control systems. Several elevator manufacturers adopted CAN solutions, and
encoder vendors developed devices with CAN interfaces [Mat13,LIMAX], offering alternative
protocol implementations: custom, industry standard (e.g., CANopen CiA 406 [CiA406]), or
lift standard (i.e., CANopen CiA 417 [CiA417]). Our work focuses on building a functional
model of an ELGO LIMAX 02 absolute encoder with a CAN interface and CANopen CiA 406
protocol. Figure 8.11 shows an elevator-control system integrating an ELGO LIMAX device,
where the encoder is a CANopen communication slave and the elevator controller is a
CANopen master.

According to the manufacturer's specifications, an ELGO LIMAX 02 CiA 406 encoder
operating in normal mode synchronously publishes the position and speed data by sending
a Process Data Object (TPDOL1) cyclically. The basic node operation complies with the
common CiA 301 [CiA301] services. The CANopen master can set the TPDO transmission
cycle by sending a Service Data Object (SDO) message. The encoder also emits a periodic
Heartbeat (CANopen message service) (HB) message, triggered by a programmable timer.
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Other functions include saving parameters or resetting to factory configuration. The encoder
implements Layer Setting Services (LSS) to setup configuration parameters like the node-ID
and bit rate. LSS configuration requires a point-to-point connection to the CANopen master
and a reset of the sensor to become effective, and is typically carried out at commissioning.
For our purpose, we assumed that the sensor is pre-configured at start-up and that the
elevator controller will only overwrite the TPDO1 and HB transmission cycle times.
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Figure 8.11: Elevator controller with absolute encoder and CAN link
(source: [NAM+16])
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Development of the HiL Elevator Simulator (HiLES)

The introduction of elevator controllers based on programmable custom electronics raised
the need for versatile test systems. Although the elevator controllers are eventually validated
on special test facilities (e.g., test towers), the developers of the embedded applications have
to debug the software thoroughly beforehand on a system mock-up.

The alternative to the test tower is the lower-cost real-time Hardware-in-the-Loop
Elevator Simulator (HiLES). Since the development of the first programmable elevator
controller, a real-time HiL elevator simulator was also concurrently developed and
maintained. The real-time Hil-elevator simulator is intended for the verification of the
elevator controllers, with different elevator configurations and under many operational
conditions (e.g., simulated faults). The function of HIiLES is to compute the kinematics of
the elevator car and the car doors, then replicate the electronic interfaces from the position
sensors, e.g., limit switches and encoders. The test operator can setup HiLES to reproduce
multiple elevator variants by plugging in HW elements as required by the installation, loading
the SW components and switching the building-parameter databases.

The HiLES testbench also has a number of |/O embedded devices connected to the
CANV buses: EXT1 and EXT?2 user interfaces connect to the elevator controller, and EXT3
and EXT4 nodes monitor the safety circuit. For the latter, the simulator outputs related to
safety protection route through redundant signal paths, e.g., limit switches located at the
bottom and top of the elevator shaft signal the arrival of the elevator car at a potentially
dangerous height: when the elevator controller detects these signals, it slows down the drive
and eventually brakes, landing the cabin at the lower/uppermost level. In the event of a
delayed reaction, a second limit switch connected in series in the safety circuit would trigger
an emergency stop. HIiLES updates these signals according to the simulated car position
and feeds them to the controller. An external HW interface replicates the signals to act
simultaneously on the safety circuit and the inputs of the monitoring devices.

8.2.3 Problem Statement

A feature of the HIiLES simulator is the emulation of incremental (pulse) encoder signals.
Our first simulator was built on a computer with a customized real-time operating
system. Over time, demanding requirements and the obsolescence of the platform forced
a first migration to an up-to-date 'soft’ real-time configuration. At that time the key
requirement was to reduce the cost of the computing platform, although this constrained
the achievable simulation performance with regard to the incremental encoder simulation.
In the meantime, improvements in elevator machinery attained higher speeds. For the
HiL elevator simulator, simulating taller buildings required lowering the computing cycle, in
order to keep the temporal coherence of the position information fed back to the elevator
controller. Considering the past experience with former simulators, the priority requirement
was that the new simulator should simulate an incremental encoder with the maximum
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resolution at a maximum car speed of 6m/s. This proved unattainable with the preceding
HiL architecture. As a consequence, the manufacturer requested a new simulator in 2012.

On the other hand, while using actual embedded devices from the elevator-control, the
system provides a realistic communication behaviour in HIiLES, this also limits the feasible
test automation: EXT1 and EXT2 devices require manual actions from the test operator
to stimulate/observe the control system, the reconfiguration of the testbench to simulate
different buildings requires physically plugging and removing the devices and the simulation
of abnormal operation scenarios require additional fault-injection hardware.

8.2.4 Heterogeneous COTS Platform for HiL Elevator Simulator

Our development targeted two different simulator controller platforms: the NI cRIO-9082
and the NI cRIO-9039 (see Figure 8.12). These controllers integrate different FPGAs: Xilinx
Spartan-6 for NI cRI0-9082 or Xilinx Kintex-7 for NI cRIO-90309.

(a) cRIO-908x for single-elevator simulator (b) cRIO-9039 for dual-elevator simulator
(source: [cRI09082]) (source: [cRI09039a])

Figure 8.12: NI cRIO heterogeneous controllers to realize the HiLES simulators

Single-elevator simulator using NI cR10-9082

We initially developed the HiL elevator simulator targeting the cRIO-9082 model [cRI09082],
that integrates a dual-core Intel i7@1.33 Ghz processor and a Xilinx Spartan-6 LX150 FPGA.
The LX150 FPGA sufficed to deploy a single-elevator simulator with an absolute encoder.

Dual-elevator simulator using NI cR10-9039

In mid-2015, National Instruments marketed the cRIO-9039 variant [cRIO9039b], featuring
a quad-core Intel Atom E384501.91 GHz processor and Xilinx Kintex-7 7K325T FPGA. As
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shown in Table 8.8, the cRIO-9039 FPGA doubles the resources available in the original
cRI0-9082, enabling the deployment of a dual-elevator simulator in a single cRIO-9039
controller. A key portability issue is that the maximum clock divider is different, getting
a minimum frequency of 2.5MHz for the cRIO-9082 and 5MHz for the cRIO-9039. As a
consequence, the time constraint for the critical path in the cRIO-9039 is half than that for
the cRIO-9082.

In 7 series FPGAs the clock management tile (CMT) includes a mixed-mode clock
manager (MMCM). MMCM has some restrictions that we must be adhered to. In general,
the major limitations are the VCO operation range, input frequency, programmable duty
cycle, and phase shift. The minimum and maximum VCO operating frequencies are defined
in the electrical specification of the 7 Series FPGA Data Sheets [Xil15]; it is possible to set it
between 600MHz and 1200MHz. With this minimum VCO frequency, when the MMCM is
configured in cascade mode, the CLKOUTS6 divider can be cascaded with the CLKOUT4 divider.
This provides a capability to have an output divider that is larger than 128. CLKOUT6 feeds
the input of the CLKOUT4 divider creating a minimum output frequency for this pin of 36kHz.

When using the NI software, this last divider cannot be used, imposing a minimum
operating frequency of 36KHz x 128 = 4.6MHz. This problem was not observed when using
the cRIO-9082 platform (6 series FPGAs) because the clock management uses Digital Clock
Managers (DCMs) and the tile architecture differs from that used in 7 series FPGAs.

CAN implementation in cRIO-90xx

In order to achieve time determinism and coherence in the generation of position information,
all the encoder simulators would be deployed on the FPGA subsystem in the cRIO controller.
Thus, we selected the NI 9853 C-series modules, with 2-port high-speed CAN [N19853] and
directly controllable from the FPGA. However, to allocate the CAN Restbus simulator to the
cRIO processor, we required a CAN interface accessible from the LabVIEW RT execution
context, for which we considered two alternatives: (a) share the NI 9853 module already used
to simulate the CANopen absolute position encoder or (b) an NI cRIO Real-time Operating
System (RTOS)-supported CAN interface.

The C modules in a cRIO can be controlled from the FPGA, the processor or operate in
hybrid mode, the latter implementing the shared access in the FPGA. The HiLES simulator

Table 8.8: NI cRIO FPGA specifications.

Number of Number of

Device FPGA Type Flip-Flops 6-input LUTs
cRIO-9082 Xilinx Spartan-6 LX150 184,304 92,152
cRI0-9039 Xilinx Kintex-7 7K325T 407,600 203,800
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was set to FPGA-control to generate encoder signals, so we tried the hybrid mode. After
several tests, this mode showed up to be troublesome, and we were unable to get it going.
Hence, we finally preferred to integrate an external Peak PCAN interface connected to the
Universal Serial Bus (USB) port of the cRIO 9039 controllers, featuring an NI Real-time
Linux RTOS . This enabled the installation of the Linux pcan driver, although the USB
to CAN interface is not supported in real-time mode.

Integration

Figure 8.13 shows a simplified sketch of the single-elevator with absolute encoder Hil test
system, deployed on the cRIO-9082 controller. This illustrates the real-time composability
achieved by Programmable Logic (PL): there are two groups of IPs generated from Simulink
models which correspond to the elevator and encoder models. These are computed side-by-
side, resembling the parallel behaviour of the real-world.

¢RIO-9082

«bitstream»
Clock Single Elevator Simulator

r Abs. Encoder Simulator| Boundary

«lP»

«|Px»

ELGOLIMAXCO406

Elevator Simulator
DPRAM

«lP»

LVFPGANI9853

Elevator Controller CAN bus
«f ow» CAND

NI19853

CANR ) e e e e e e ——

Cycle Time=400ns @ 2,5 MHz

Figure 8.13: Integration of the encoder simulator in the cRIO-9082 controller
(source: [NAM+-16])

Figure 8.14 illustrates how the LabVIEW /FPGA VI links the HDL-coded model with the
IP libraries to control the hardware resources. The encoder simulator runs inside a LabVIEW
timed loop, triggered by the FPGA clock. We designed two separate queues to decouple
the synchronous execution of the elevator models from the event-triggered processing of
incoming and outgoing messages. Each queue has a separate while-loop that reads from or
writes to the CAN port from the NI 9853 interface.

'The cRIO-9082 has a different RTOS, which a much more limited set of supported devices.
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Issues with cRI0-9039 dual-elevator simulator

The cRIO-9039 FPGA doubles the resources allocated to a single-elevator simulator in a
cRI0-9082, therefore our first attempt to get a dual-elevator simulator was to replicate the
IP Integration Node in the LabVIEW/FPGA VI. We also duplicated the required dual-port
RAM resources, communication queues and configuration parameters, and we allocated the
secondary CAN port in the NI 9853 to the new simulator instance. During the development
of the dual-elevator version, we found the issues enumerated below:

1. Failure of LabVIEW/FPGA compilation: When dealing with the FPGA project in
the National Instruments 32-bit LabVIEW/FPGA environment (release 2015DS2)
we found that the system was not able to successfully process the project files and
some unexpected errors showed up when synthesizing the FPGA code. The problem
arose when the NI software tried to create a project including the VHDL wrappers
automatically generated by the environment. It seemed as if the LVFPGA environment
was unable to cope with the resulting project size, which resulted in excessive memory
use for the HDL compilation, resulting in a software failure. After reporting this
problem to NI, we tried another approach, splitting the original design in several Vls
that realize the same functionality but use a different project architecture. With this
turnaround we got the whole FPGA design synthesized.

2. Unexpected IP behaviour: As both elevator simulators run synchronously in the FPGA,
we first tried to implement the dual-encoder simulator using both CAN interfaces from
a single NI 9853 module. Although the LVFPGA library provides IP blocks to control
these ports separately, we did not manage to get both CAN ports working, without
knowing the reasons. To prevent this issue, we chose to install 2 NI 9853 modules per
cRI0-9039 controller, allocating the first CAN port from each module to an encoder
simulator instance.

8.2.5 The CAN Restbus Simulator

A second objective of the Elevator-Simulator case study is to reduce the verification cost of
the distributed elevator-control systems, through embedded code re-use to co-simulated
networked devices in the HIiLES simulator. This will demonstrate the feasibility and
limitations of including actual production code from embedded devices as part of the COTS
HiL test system, providing a rich-behaviour replacement of the original nodes for real-time
testing.

The target for deployment of the CAN Restbus Simulator is the cRIO-9039 HiLES,
featuring the NI Real-time Linux RTOS, which offers better compatibility with third-party
drivers than the cRIO-9082. In the cRIO-9039 slots we plugged C-series modules to interface
with the elevator-control system, e.g., digital input/output for limit switches, command
inputs and incremental encoders, or CAN interfaces as those required for the FPGA absolute
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position encoder simulator (see §8.2.4). Additionally, serial ports simulate the main drive
interface and an Ethernet port connects the cRIO-9039 simulator to a remote test control
application. The elevator model is computed in the FPGA to increase the throughput and
timing coherence of the encoder signals, whilst the processor runs the communication server
to the remote test controller. We program HiLES in a mixture of languages, adopting
model-based or conventional SW development processes when better suited (see §6.2.2).

Queue design: Understanding the elevator CANV bus

The CAN Restbus simulator would replace a multiplicity of embedded |/O nodes connected
to a CANV bus in the elevator-control system: the extensions (EXT). More than a hundred
EXTs can be networked to a single CANV bus. Currently the embedded 1/0O application
supports 3 controller product families, each requiring a particular CAN dialect which the
application configures during start-up. There are some high-layer custom protocols common
to all the controller variants, but differing in the frame specification:

» Process data object (PDO): Transmitted synchronously by the controller to modify
the outputs in the 1/O devices.

= Urgent service data object (USDO): Transmitted asynchronously by the 1/0O devices
after input changes.

= Non-urgent service data object (NUSDO): Sent by the controller to set and read
values from the I/O device.

» Network management protocol (NMT): Messages to identify the nodes available in
the bus. 1/0 devices transmit Network Management (NMT) messages synchronously.

According to the range of CAN-IDs allocated to each protocol, in our case the message
precedence is (ordered from the highest to the lowest priority): Process Data Object (PDO),
USDO, NMT and NUSDOQO. The implications for the CAN Restbus simulator are:

= In a CAN bus only one node may transmit a frame at a time. Thus, it is feasible to
share a single CAN port between multiple virtual devices, if proper queuing handles
the in/outgoing messages for each instance.

= Not only the CANV bus-load varies with the shaft configuration (for instance,
increasing the levels in a shaft model may require more EXT1 interfaces), but also
the frame delays, as the number of PDOs sent by the controller increases with the
number of connected devices.

= The allocation of CAN-IDs to the protocols is specific to each product line, then the
worst-case transmission delay for a protocol changes with the controller variant.
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= There are signals with redundant paths to the controller. Race conditions may arise
between input changes notified by a message from a virtual device and the alternative
paths, e.g., the switching of a relay in the safety circuit. A wrong time correlation
between them may trigger fault reactions from the elevator controller.

In some elevator systems the EXT4 devices monitor the bottom and top limit switches in
the shaft. When a so-configured EXT4 detects an input change, it immediately signals the
new state to the controller by sending an USDO. EXT3 devices also handle safety inputs
to prevent trapping people with the elevator doors, e.g., photoelectric sensors. Therefore
the virtualization of EXT3 and EXT4 devices requires a minimum-delay timing to properly
simulate the real-elevator behaviour.

Implementation: Restbus simulator LabVIEW API

To implement the Restbus simulator we first designed an API to deploy the device para-
virtualization under a LabVIEW run-time as a shared library. This container holds both
the hardware resource emulation and the embedded application. Second, we adapted and
re-arranged the source code of the embedded application to isolate the platform-specific
dependencies.

The Restbus simulator was packaged as a runtime-loadable component. This component
is imported within the LabVIEW /Real-time (LVRT) project as a Call Library Function Node
(CLFN) (see §6.4.2). At first, we designed an Application Programming Interface (API) to
invoke single instances of Virtual ECUs (V-ECUs) from a LabVIEW Virtual Instrument (VI),
that is, a LabVIEW V-ECU. A LabVIEW Restbus consists of a LabVIEW class including
a private array of aggregated LabVIEW V-ECU nodes. The LabVIEW Restbus update
function provides a single control for incoming messages, and a single indicator (i.e., output
terminal) for outgoing frames. Additional /O terminals connected the LabVIEW Restbus
instance to the virtual |/Os, DIP Switch, Power-on and Reset signal arrays. When all
possible V-ECUs were 'powered-on’, in this configuration the execution overhead caused by
data-type conversions between LabVIEW and the C-coded simulator exceeded the maximum
allowable sampling time.

We required a trade-off analysis on the performance of memory transfer: LabVIEW or
C provide similar programming statements (e.g., for/while loops), but for our case study
we had to implement the loop statements in the C++ wrapper, encapsulating the whole set
of virtual nodes of a Restbus group behind a single LabVIEW call node. This reduced the
memory transfers which eventually showed to be faster than its LabVIEW loop counterpart,
but we sacrificed the composability offered by LabVIEW.

Restbus simulator under LabVIEW /Real-time

To integrate the Restbus simulator with the elevator simulator we have to adapt the
LabVIEW and native-libraries projects to the cRIO target. To realize the CAN ports, we
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Algorithm 1 Pseudo-code from the Restbus Simulator LabVIEW-RT Loop.

1: Initialize CAN and UDP Ports
2: for all Buses do

3 Read UDP messages // Commands from SGUI
4: Read CAN messages // From control system
5: Read DPRAM // Read model & FPGA 1/0

6: Call Restbus API // Sequential update

7: Write DPRAM // Write model & FPGA 1/0
8: Send CAN messages // To control system

0: Send UDP messages // Results to SGUI

10: end for

chose an NIRTL-compatible PEAK CAN interface. We selected a dual-CAN PEAK PCAN
USB Pro that can be plugged into one of the 2 USB ports of the cRIO. We cross-compiled
the Linux-driver and library provided by PEAK, using the NIRTL kernel source code and
the development environment from NI. As our implementation requires additional dynamic-
loadable libraries, we cross-compiled the source code for the Restbus database and the virtual
nodes, as we did for the PEAK library.

We adopted an object-oriented paradigm to write the LabVIEW code, using LabVIEW
classes (see Figure 8.15) to abstract the implementation of the simulator from the chosen
CAN device (Peak PCAN) and from the computing platform (desktop PC running Windows
OS or cRIO with Linux RT), since each driver and low-level function can be implemented
in subclasses with common interfaces. To implement the Restbus simulator in a cRIO-903x
controller we branched the LabVIEW project from the Windows desktop simulator. First we
included the cRIO-903x real-time target. LabVIEW inheritance relationship between classes
is declared in the parent class. An abstract VI from the parent links to every alternative
implementation from the derived classes. When LabVIEW links an application, the parent
LabVIEW class requires the deployment of all the child variants, even if these are not used.
As a consequence, we had to clone the shared source code from the parent classes to
prevent LabVIEW-RT from deploying incompatible components into the cRIO RTOS (e.g.,
deploying the support for CAN ports in Windows OS).

The final deployment step was the integration of the Restbus simulator with the real-
time HilL elevator simulator. The simulator in the cRIO" FPGA computes the position-
related signals for the elevator car and the doors, including the state of the limit switches,
encoder measurements, etc. It also publishes the instantaneous values computed for these
signals through a dual-port RAM (DPRAM) interface. The cRIO processor reads the
published values and retransmits them to the remote user interface. To integrate the Restbus
simulator, we connected the signals to the inputs of the EXT3 and EXT4 devices. Besides,
we monitor the execution time inside LabVIEW Timed Loops to check the timeliness and
computation of periodic tasks.

185



Chapter 8. Validation on Case Studies

"(¥20]q 91dind) Aseiqi| pateys snqisay NYD dYy1 01 S||ed
|errusnbas ainsus 03 pajqesip st dooT 04 9y} Jo uolndaxa [9|jeded ay | “(suod indino ‘9°1) siozedipur, sie 1sow-1ySu dy3
pue ‘(suod ndur “o'1) ,5/042u00, AFIACRT 248 S|EUIWLIDY ISOW-13| dY | “wesSelp 9yl ul 1ySu 01 Y3| Wwod) 903 A dY3 Ul
SJUSWId Y3 JO UOIINDAXd a3y | “(s¥20]q Mmo|jeA) J |V uoyikd e “'S'a ‘suoijedijdde uoljewone-1sal 4o JuUBID [\|H d10Wal
ay3 Joj} JonIds (N © pue ‘(weiSelp Yy JO J|ey Jomo| ay3 1 $320|q usaIS) Y9 Yl ul paandwiod 9dUeISUl [SPOW-IOIBAR|D
yoea 01 Sedepalul Ay Mod-lenp ‘(s300]q 98ueI0) SNq J9||0JIUOD-I0IBAS|D YOBS O} PaIIaUU0D SIDBLAIUI NYD Oy 3y}
03 ssaooe :uoljedlidde O[y> SWil-|eas aY3 Ul WIISASGNS JOIB|NWIS-SNG1ISaY dYl JO SUOIIDBUUOD Jauul 3y} Smoys aunSiy siy |

S37!H J01eAsja-|enp dY3 JOj JOIB|NWIS SNGISAY NYD Y3 wouy |A 91epdn ay3 jo wesSelp 3o0|q pAJIAGeT (GT'8 24nSi4

= =t

no Jou3

103E|NWIS J03eART TIH|
[DESLIEMT

F o e — EE‘E
J0LIFTAH 330UWBY proceed - iy T0LZIAH 20Way
BIUEISUITNH 2103y Lol BJUBISUITINH 310WEY
- 101N IﬂmtBE N7 S— JOLINYD
A7 100B|ALIS SNgisay, -
FIUESUINYD 3IUBISUINYD
10113'5n123 wva] LSS 10113'5N3
B3UBIEUISNDT FV&L% 2oUelsUrsna3 = Ke.11y Jojeinwis sngisay] o
5NQ-1534 NV
o1
N 3w pasdej3
*sng| Y2es Jo4
doo7 o4 I
N0 33Ul "SI01B|NLIS SNgJS3Y JO S3DUEJSU By} salepdn ur aouegsul

P!

186



8.2. Model and Code Re-use for a HiL Elevator Simulator

([2T+dVN] :24n0s) ‘s||ed siasn syl pualle 01 SJ9||0JIUOD JOIBAS|S SYl SSIBUIPIOO0D Jaydledsip Jljjel] e aiaym ‘A|Jusinduod
Suluuni siole|nwis-jenp |diynw Jo 1sisuod siolejnwis dnoi8-iojeas|3 (24n3iy ul umoys snq ANYD Suo Ajuo) uod NyD
91eJedas e 03 Pa1daUUOD WYY JO YOBd J0IB|NWIS SNQIsay NVYD Y3 Jo seoueisul g sjuswa|dwl Jossado.d 2100-13nw O[¥y2 3y |
"S9JBJI9IUI [041UOD pUB (/| 419yl PUB [9POW JOIBAS[D BY] JO SedURISUI g SazZIeal Y dH (O1Y2) Oy 1edwo)) sy1 aun3iy siy1 uj

SI2IASP [ENMIA SNQISaY NYD YHM Jojejnwis Jojend|d TiH O]y Y3 Jo main juswkojdaq 91°g 24nSi-

IA (now)
uogeoyddy
uogeoyjddy (8 o
J9|jou0) T# ANV NVO
ﬁw 10jens|3 ll 201800 O/
N7 «eoimap»

sow
«QUBWIUOJIAUB UORNBXE» | [e==eieececacaann HANY)=======eesccdeccccctoccccccccccannn NY)eeecccccccccdeccccccan

HNVYO

«80InepY

L# 19]108U0D J0}eAR|T
«a01nap»

«8oInepY

Z# 19]103U0D J0je Ad|T
«8oInapY

_ S$30IA30 TV

1S31 ¥3ANN WILSAS T
on ol €586 IN (LLHIN)
91480 O/ [ENMIA
«e01n8p»
sdl VOd4AT
@ «hieiqip
. S30IA3A VN LYIA
@ Joje|nuwiS SNQISeY NVO
{2} neo)y ; _ @oepB)U|
@ dl 19poouz @ 1A JEVEINE] @ 185 JojeInUIg
swnuny LNAT SMOpUIM SI
QUBWLOIAUS UORNOBXSN QUBWUOIIAUS UONNOEXSN
{ xnury swiy-jesy IN
(5 disoenaz «QuaLIOIIAUG UoyNoBXeN 1endwo) [euosied
«a0Inap»
vodd WOLV 133
«201n8p» «20I1nap»
6£06042 IN
«e01n8p»

187



Chapter 8. Validation on Case Studies

Remote simulator user interface

The Restbus simulator integrates a communication server to connect remote client
applications over Ethernet. The communication server implements a custom UDP protocol
that makes it possible to write test automation applications in other programming languages.
The server also provides a discovery service by cyclic broadcasts. The server expedites the
simultaneous writing of input values to the distributed system. This feature enhances the
repeatability of tests, that was formerly unattainable with separate real /O devices requiring
user actions (EXT1 or EXT2 devices). We developed a remote simulator graphical user-
interface (SGUI) application in LabVIEW to validate the Restbus simulator. At start-up,
the SGUI application scans the Ethernet network for available Restbus simulators. Upon
successful connection, the SGUI retrieves and updates the current power-on status of each
virtual device.

The SGUI emulates user-operated components to support automation and save physical
space, allowing the user to set the inputs and observe the outputs of the virtual devices (see
Figure 8.17). Push buttons and switches enable the test operator to simulate the power
on/off of a virtual device running in HiLES, configure the device identifier or call an elevator
from any level, while the LED outputs show the status of the call.

sw POWER

(a) User interface (b) Configuration interface

Figure 8.17: The SGUI front-end for virtual level-call devices (EXT1)
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8.2.6 Discussion

For our test application we tried out a single-model approach instead of a dual-model
development (i.e., a platform-independent specification model and a platform-specific
implementation model). The project team consisted of 3 people: a seasoned Simulink
user developed the bulk of the Simulink model, a developer with a mid-level background in
both Simulink and LabVIEW programming integrated the single-encoder cRI0-9082 variant,
and an FPGA expert with programming knowledge about cRIO controllers and LabVIEW
synthesized the dual-encoder cRIO-9039 variant. In both developments we achieved the
required real-time simulator performance. The FPGA provided the execution parallelism
to add new functions with virtually no interference in the operation of the rest of the HiL
simulator. The main advantages of preserving the function of the Hil test system as a set of
models were an improved communication across the project team, easier maintenance of the
test components and better portability throughout the heterogeneous computing platforms.

Currently we have 2 HilL simulator variants derived from the same Simulink model,
cR10-9082 (FPGA Xilinx Spartan-6 LX150) and cRIO-9039 (FPGA Xilinx Kintex-7
325T). Although the FPGA variants impose different timing constraints, by profiling the
transformation settings we got both implementations showing the same real-time behaviour.
Nowadays we can modify or enhance the features of the test system and initially validate
them by relying on the models of computation supported by the modelling environment.
Before, the maintenance and validation of former HiL elevator simulators was cumbersome,
time-consuming and error-prone: the real-time behaviour of the simulator was confronted
with the actual System Under Test (SUT), that was also under development and therefore
its software (SW) was unstable. Even worse, the constraints of a given HiL computing
platform limited the evolution of the test system, requiring at times a major overhauling.
We expect that in the mid-term the new HilL simulator will be more cost-effective than the
precedent HiL simulators.

First, we tested both the Windows and the cRIO CAN Restbus simulators by monitoring
the CAN bus and checking the timing and data contents of the synchronous NMT messages.
Table 8.9 shows the timing for NMT messages transmitted by the simulators when running
all the Extensions (see Table 8.7) on the cRIO HiLES. We measured similar timing results
for the Windows CAN Restbus simulator. We tested the Restbus simulator both in an open-
loop (“No HiL") and closed-loop (“HiL") configuration. The mean value of the cycle time is
shown together with the standard deviation (Std. Dev.). In the “No HiL" case, the Restbus
simulator is tested without elevator controller; in the “HiL" case the elevator controller is
used to close the control loop. The timing results obtained in the closed-loop configuration
are slightly degraded, possibly due to the extra traffic on the CAN bus generated by the
control system. The measured cycle time values in closed-loop configuration for the cRIO
variant met the timing specifications from Table 8.7 with a precision of 6.6%. These
results were considered satisfactory, since timing requirements are not tight, i.e., they are
approximations of the expected timing for real devices.
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Table 8.9: Measured NMT cycle times for the cRIO Restbus simulator.

No HilL HiL
Virtual Device Mean Value Std. Dev. Mean Value Std. Dev

EXT1 3.098 s 0.006 3.222s 0.70
EXT2 3.098 s 0.006 3.222 s 0.69
EXT3 3.098 s 0.006 3.222 s 0.73
EXT4.0 0.196 s 0.018 0.205 s 0.28
EXT4.1 3.098 s 0.006 3.222 s 0.74
EXT5 3.098 s 0.006 3222 s 0.75

The Restbus simulator update cycle time is 50ms, although the measured computation
time for updating 140 active virtual devices is 25ms, divided as follows: the CAN read and
write operations take 3ms and 1ms respectively; the DPRAM accesses are negligible in terms
of time; the call to the API that simulates the devices, i.e., the core of the Restbus simulator,
take 8ms per channel. Thus it would be feasible to run 2 virtual Restbuses sequentially in
the update loop.

After this preliminary test we included the elevator simulator and the elevator-control
system, as in the configuration shown in Figure 8.16, to check the consistency of the Restbus
simulator in a realistic scenario. The control system was able to communicate and recognize
all the simulated devices from EXT1 to EXT5 as if they were physical. No problems were
detected in extensive trials with the elevator simulator by employing simulated devices EXT1,
EXT2, EXT3, and EXT5 together with a physical version of EXT4. On the other hand,
the simulated version of EXT4 caused some problems, possibly due to the latency in the
processing system of the Restbus simulator (50ms) and of the USB to CAN converter (which
is non real-time). Indeed, when connected to a simulated EXT4, the control system is not
able to brake and stop the elevator before reaching the limits of the shaft.

8.2.7 Conclusion

The Elevator-Simulator Case Study demonstrates the application of our contributed model-
based development workflow to improve the re-usability of test artefacts from offline- to
real-time HiL simulations. We discussed some issues related to the portability of the Very
High-Speed Integrated Hardware Description Language (VHDL) description when deploying
the simulator to a cRIO variant, as well as how we tackled these platform-related problems.

Our case study shows that state-of-art COTS model-based development tools enable
designing and validating real-time test systems at an abstract level, while reliable automated
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translators provide deterministic real-time implementations for the Hil test system. However
precautions shall be observed from the beginning to avoid pitfalls in the model-to-code
transition: in an MBD environment like MathWorks or LabVIEW we can model a specified
function in different ways (e.g., using alternative modelling languages), but not necessarily
every possible choice would be translatable for each supported target. In order to minimize
development iterations we should constrain the modelling artefacts to certain options,
although the compliance to a subset of the modelling language would compromise the
readability of the models.

We expect future enhancements in MathWorks' modelling libraries that will enable a full-
scale simulation of mixed system components while increasing the set of artefacts supported
by the translators. As for NI LabVIEW, we expect an improved HDL import function (e.g.,
support for non-scalar signals) to improve the design readability and prevent errors while
linking the components manually. Anyhow, before adapting our baseline models we first will
re-assess the ability of model-to-code transformers (i.e., Simulink Coder, HDL Coder) to
translate the new model libraries into the real-time implementations for the HilL simulators.
Regarding the HiL encoder simulator, we plan to develop an extended encoder model with
integrated safety-related functions.

We also used this case-study for improving the testability of distributed systems by
re-using the embedded application code and by providing a para-virtualization of target
hardware devices to build a scalable Restbus simulator. We integrated our Restbus simulator
into an overall plant HiL simulator, where the virtual instances of the simulated nodes
were stimulated by CAN messages, timing events, signals computed by the plant model
and commands from a test-execution environment. The real-time Restbus HiL simulator
enabled a more thorough validation of real-time embedded controllers, as it is software-
reconfigurable, may reduce the overall cost of the testbench by replacing external hardware,
eases the insertion of node mutants, allows integration into a HiL test infrastructure and
enhances test automation. In the future we expect to complement the real-time testbench by
developing a completely virtual platform simulator that provides additional analysis features.

A future enhancement in the virtualization would be the integration of a Instruction-Set
Simulator (ISS) that would re-use the actual binary code of the simulated devices. As far
as we know, current technology limits the feasibility of a generic real-time ISS simulator,
yet we think this could be adapted for the simulation of multiple low-end devices in a HilL
environment.

Related Publications

The results presented herein appeared in [NAM+16, NAP+17].
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8.3 Safety Cases for Wind Turbine Controllers

This case study evaluates the relevance of the safety argument re-use approach to ease
the certification of Mixed-Criticality Product Lines (MCPLs) developed with the DREAMS
platform-based design. Certification of MCPLs is supported by an automated compilation
of product-specific Safety Cases (SCs), backed up by a machine-readable database of pre-
built modular safety cases, modelled as composable safety arguments and patterns in Goal
Structuring Notation (GSN).

8.3.1 Context

The system under consideration is a product line of supervision and control systems with
integrated safety-protection functions for off-shore wind turbines. Off-shore turbines operate
in a harsh environment, posing technological and maintainability challenges, while requiring
compliance with more stringent safety requirements than ashore turbines. Wind-turbine
manufacturers face the problem of handling the multiple variants of control and protection
systems required to each possible wind-turbine configuration.

A workaround to develop safe off-shore variants for the wind-turbine control system
is to add an additional protection loop with external devices. However, a more robust,
maintainable and flexible approach is desirable for a wind-turbine manufacturer. A platform-
based design rooted in a certifiable modular solution would provide such a simplification:
the DREAMS platform and toolset.

8.3.2 System Description

The Wind Turbine Controller Case Study (WTCCS) consists of a product line of mixed-
criticality Wind Turbine Controllers based on the DREAMS harmonized platform that should
be hypothetically certifiable according to the ISO 13849-1:2006 [ISO13849] safety standard
for machinery, that is rooted in the IEC 61508 functional safety standard.

Figure 8.18 sketches the scope of application of the DREAMS platform in the WTCCS.
A wind farm comprises a number of wind turbines. Each wind turbine is operated by a Wind
Turbine Control Unit (WTCU). The WTCUs in a wind farm are interconnected through
real-time and deterministic networks and are also linked to a central Wind Park Control
Center, that is a gateway between the wind farm and the remote SCADA center from the
utility company.

In the scenario represented in Figure 8.18 each WTCU manages a number of distributed
I/O nodes connected to a real-time EtherCAT network. The main functions of the WTCU
are executed in the GE Alstom GALILEO V4 platform. GALILEO is a real-time computing
platform to deploy the supervision and control system, though it may support other real-time
applications such as wind farm control. GALILEO V4 is based on commercial HW (APC910
industrial PC with a dual-core x86 processor) and customized SW and an RTOS.
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Figure 8.18: Application scope of the DREAMS platform in the Wind Turbine Controller
(adapted from [DRE721])
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The wind-turbine protection system is in charge of maintaining the wind turbine in a
safe state. The main functionality of the protection system is to assure that the design
limits of the wind turbine are not exceeded. The protection functions shall be activated as
a result of an error of the control function (running in the supervisory system) or of the
effects of an internal or external fault or dangerous event. It should be activated in cases
such as over-speed, generator overload or fault, excessive vibration, or an abnormal cable
twist due to nacelle rotation by yawing.

A possible deployment for the protection functions would be the DREAMS Harmonized
Platform. This is a heterogeneous computing platform based on the Xilinx ZYNQ-7000 SoC,
that integrates a Processing System (PS) featuring a dual-core ARM Cortex A9 processor
and a Programmable Logic (PL) subsystem (Artix-7 FPGA) in a single chip, as represented
in Figure 8.18. Synthetic components as processors (pBlaze) and TTNoCs support a variety
of alternative deployments for the protection functions. Complementary to the HW /
SW solutions offered by DREAMS, a number of Modular Safety Cases (MSCs) ease the
dependability assessment of the realized safety application.

8.3.3 Problem Statement

We aim at achieving a higher degree of integration between the supervisory system and the
protection system, thus making the overall solution more robust, maintainable, and flexible,
while satisfying the safety and non safety requirements.

The WTCU variability comes to the Safety Integrity Level (SIL) requirement: it is
desirable to have a customizable protection system to achieve upto a Safety Integrity Level
(SIL) of 3, which may require a varying safety structure to increase the hardware fault
tolerance (HFT). So we seek to combine GALILEO with a protection system deployed on
the DREAMS platform.

A feasible solution is to integrate the GALILEO platform and the harmonized platform via
PCle, while an EtherCAT field-bus connects the computing platforms to several | /O modules.
This solution could realize heterogeneous redundancy to achieve the specified HFT, where
the requirements for on-chip redundancy detailed in IEC-61508-2 Annex E [I[EC61508-2]
must be met in order to achieve certification. The resulting demonstrator should address
the assessment of the dependability of the WTCU product line and reuse as many as HW and
SW components from former controllers developed by GE Alstom. However, we identified
the following challenges ahead:

1. Assuming that the requirements for the MCPL of Wind Turbine Control Unit
(WTCU) are sufficiently specified, the DREAMS workflow runs an automated Design
Space Exploration (DSE) that optimizes the Mixed-Criticality Product Line (MCPL)
according to the requirements, building up a number of Mixed-Criticality Systems
(MCSs) from a library of DREAMS components and another library of manufacturer-
provided application components.
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Could we similarly build up the safety cases for each mixed-criticality system
upon the DREAMS modular safety-cases in an automated way?

2. Safety standards encourage development-process redundancy to reduce the likelihood
of systematic errors. This means that verification, validation and testing (VVT) would
be planned and developed concurrently and separately. However, due to the cost of
VVT tasks, many of these activities would be postponed until the DSE had analysed,
selected and assessed the set of presumably valid MCS product samples. Once built,
these products should later undergo several VVT phases that would contribute the
evidences to confirm the safety achievements. These incrementally gathered evidences
complete the Safety Case (SC), but at a later stage.

Could we incrementally integrate the newly available evidences supporting the
claims in the safety cases while avoiding extensive documentation rework?

3. The safety assessment for a product line of Wind Turbine Control Units (WTCUs) may
consider these as standalone systems, excluding the wind turbine itself. However, the
safety assessment of the final application would require a composed safety argument,
where the safety claims for the wind turbine builds on the WTCU safety cases.

Can we scale up the safety arguments to compile a safety case up to a whole
system application or even a system-of-systems?

8.3.4 DREAMS Architecture for the Wind Turbine Controller

The Wind Turbine Controller Case Study (WTCCS) consists of a product line of mixed-
criticality Wind Turbine Control Units based on the DREAMS harmonized platform, that
should be hypothetically certifiable according to the 1ISO 13849-1:2006 [ISO13849] safety
standard for machinery, which is rooted in the IEC 61508 functional safety standard. The
DREAMS hardware (HW) / software (SW) architecture for the WTCU is represented
in Figure 8.19, showing the supervision, control and protection units. According to the
IEC 61508 safety standard, these platforms can be considered as independent HW systems.

Furthermore, this system architecture supports the execution of functions with different
criticality levels (such as SIL-1 to 4 according to IEC 61508). The XtratuM hypervisor [XTR]
is used to split the CPUs of the PS and the soft-core(s) of the Programmable Logic (PL) into
partitions where the functionalities with different criticality are executed. The protection
unit shown in Figure 8.19 communicates with external sensors (e.g., wind speed sensor)
and actuators (e.g., safety relay) through a safe fieldbus protocol composed of a non-safe
fieldbus EtherCAT and a Safety Communication Layer (SCL) integrated on top of a Network-
on-Chip (NoC). The combination of the NoC and the SCL enables temporal and spatial
independences, depending on whether a shared memory is used to communicate between
the partitions or not. The NoC implemented in this case study is the STmicroelectronics’
NoC (STNoC), which is complemented with the NoC SCL cross-domain pattern. The SCL
guarantees a safe communication between the partitions.
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The AutoFOCUS 3 (AF3) toolset would carry out the preliminary safety assessment for
each feasible deployment using model libraries of HW components, logical components, as
well as safety compliance models (see Figure 8.20). ‘Logical components’ denote any kind
of SW or synthesizable IP (e.g., hypervisors, operating systems, executable applications,
bitstream files for programmable logic,etc.) that could be deployed in the system. In the
WTCU, the SW items typically represent complete SW stacks specific to a target processor.
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Figure 8.19: Possible deployments of the DREAMS Wind Turbine Control Unit
(adapted from [DRE721])
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Preliminary Work

Preliminary work consists of compiling in advance the technical data and the certification
argument fragments for the certifiable/pre-certified components to be considered later at the
DSE. For the sake of accessibility, the certification arguments would be stored in a database,
including the safety certificates (if available) and any safety-relevant information from the
safety manuals, e.g., assumptions to prove valid for a safe integration of the component.
The counterpart of the certification data is the component-properties database provided for
designing the mixed-criticality product line in the AF3 environment.

The Wind Power Demonstrator resembles an industrial-grade development of a mixed-
criticality safety product line, combining a variety of functional requirements of both safety-
critical (for possibly different integrity requirements) and non-safety-related kind. DREAMS
deliverable D 7.2.1 [DRE721] provides a detailed overview of the application and its safety
requirements. For certification purposes, a number of supportive evidences should be
generated beforehand at this stage (e.g., risk analysis results, FTA, FMEA, FMEDA). This
information constitutes the basis for eliciting the safety requirements for the system. Note
that the safety requirements as scoped in D 7.2.1 apply to the whole system (i.e., including
the wind turbine and its environment) and thus consider additional elements besides the
programmable electronics.

The top safety claims would be represented as GSN Goals while evidences would be
represented as GSN Solutions in the argumentation model. As safety analysis would normally
require using complementary techniques and formalisms. Ideally the evidence nodes, i.e.,
the solutions, will include references to the document outputs generated in this analysis
process.

Allocation of Safety Requirements to DREAMS platform

The next step consists of refining, decomposing and allocating the system safety
requirements to the parts of the system. For demonstration purposes, we focus on deriving a
set of safety requirements for the Programmable Electronics (PE) components of WTCCS,
limiting the scope to both the GALILEO controller and the DREAMS harmonized platform.
We will represent these safety requirements allocated to PE as top-level goals and context in
the GSN argumentation graph. The same target safety requirements shall also be declared in
the AF3 environment, alongside the permissible variation points for the system composition.

Variability Resolution and Product Line Optimization

During the optimization process at DSE, the DREAMS toolset benchmarks a number of
candidate product configurations against a set of properties that includes the maximum
achievable safety scores. The evaluation operates on a set of automatically generated models
of the system from which the DSE selects a Pareto-optimal product line configuration that,
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once validated by the Safety Compliance Constraints & Rules Checker (SCCRC) tool, is
presumed to satisfy the safety requirements. Variability resolution relies in three models:

» The ‘150 % model’ sums up all the selectable features of the MCPL, defining a set of
variability parameters for a "partial resolution" step, based on business decisions.

» The ‘125 % model’ is refined from the ‘150 % model’, by applying the business
choices of product features. ‘125 % models’ represent families of possible product
configurations implementing a given set of properties, leaving technical variability
features to be optimized by the DSE.

= A ‘100 % model’ derives from the ‘125 % model’ for a selection of technical features,
defining a single product on which a preliminary safety assessment will be carried out.

Building the ‘150 % model’

Herein we show how to build a ‘150 % model’ of the WTCU that includes a ‘Component
Pool" and bounds for the number of the replicas of one component (see §8.3.4). The
‘150 % model’ is built starting from an initial model with no variability (i.e., a ‘100 %
model"), which is iteratively extended until all possible variants are included in it.

The ‘150 % model’ bundles all the available safety functions into a single logical
architecture model. During the resolution of business variability, the DREAMS Base
Variability Resolution (BVR) derives concrete architectures by eliminating the components
of a subset of safety functions.

Figure 8.21 shows a ‘150 % model’ that contains two channels of the wind turbine’s
safety function. Each channel in Figure 8.21 consists of a logic component that represents
the actual safety function and a diagnostic unit that provides status information about the
logic component, but does not have a direct influence on triggering the safety relays of the
turbine. From this model the following architectures can be derived:

= A safety architecture with two independent channels (ARM and pBlaze), each channel
consisting of logic components deployed on separate hypervisor partitions, that in turn
execute in different processors (ARM / pBlaze). This configurations has HFT=1.

= A single-channel architecture (either ARM or pBlaze), by removing the unneeded
pair of logic and diagnostic components (e.g., ’SafetyProtectionARM’ and
’DiagnosticARM’). This configurations has HFT=0.

The ‘150 % model’ is modified to represent the technical variability, introducing abstract
placeholders for which functionally equivalent variants provide the concrete implementations.
In the example from Figure 8.21 ’DiagnosticMicroblaze’ and ’DiagnosticARM’ are
subsumed in the abstract ’Diagnostic’ component, while the safety protection functions
’SafetyProtectionMicroblaze’ and ’SafetyProtectionARM’ are represented by
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’SafetyProtection’. The resulting model supports the exploration of different safety
architectures by the DSE. Figure 8.22 depicts the model derived from Figure 8.21.

In addition, a set of candidate safety architectures available for each particular safety
function is provided separately. Hence, the safety-compliance model contains a list of
candidate architectures that now reference the abstract components (see Figure 8.23).

Deriving the ‘125 % model’

The ‘150 % model’ bundles all the possible features in the MCPL. The next step in
the DREAMS workflow consists of specifying the desired product-line features using the
AF3 environment. This triggers the BVR to resolve the business variability, generating
the ‘125 % model’ that only has technical variation points to be solved by the DSE when
seeking an optimal product configuration. If some products generated by BVR may only be
implemented with a subset of the safety architectures of a safety function, the disallowed
choices are removed in the resolution step that generates the ‘125 %’ safety-compliance
model that is consumed by the DSE.

Generation of the ‘100 % models’

After selecting the business features, the DREAMS user has to set the optimization goal for
the DSE, in order to resolve the technical variability . The DSE operates on the ‘125 %’
safety-compliance model to build ‘100 % models’, relying on an evolutionary search algorithm
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Figure 8.21: ‘150 % model’ architecture of the Wind Turbine Control Unit in AF3
(source: [DRE433])
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Figure 8.22: Updated ‘150 % model’ with abstract safety components
(source: [DRE433])

to select candidate product configurations. The safety properties of each configuration
picked by the DSE are evaluated by the SCCRC. Those component-to-execution unit
mappings positively assessed by SCCRC are added to the set of presumably valid MCPL
realisations. These valid ‘100 %" product models can be further processed by the DREAMS
toolset, e.g., to generate a DREAMS deployment model or configuration artefacts.

Figure 8.24 shows the generated component architecture of a safety compliant
deployment whose safety function has a ‘Ioo2’ safety architecture. It also consists
of diagnostic units that are not connected to the relays that trigger the actual safety
function of the wind turbine, but which can report malfunctions of the actual safety
protection components. Here, each channel of the safety function has its own diagnostic
unit. In this example each safety channel consists of a ’SafetyProtection - (1)’
and a ’Diagnostic - (1)’ component, which forward their calculation results to an
>I0S8erver’ component per channel. The components to realise this architecture of the
function instantiated from the ‘Component Pool. Hence, the channels of a safety function
can also use software diversity to increase the safety metrics of the system.

8.3.5 Safety Case Argumentation

The DREAMS SCCRC tool helps at DSE, verifying that eligible architectures and
deployments for safety functions do not contain errors that, from a safety perspective,
would eventually prevent the safety certification of the products. A certification process
according to a given standard requires a compliance argumentation that demonstrates
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Figure 8.23: ‘150 %' safety compliance model of an abstract safety function
(source: [DRE433])
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Figure 8.24: Generated ‘100 %' component model with a ‘1002’ safety function architecture
(source: [DRE433])

how standard recommendations have been followed. In this sense, a solid and coherent
argumentation of safety claims and pieces of safety evidence must be submitted to
certification authorities. The SCCRC argumentation module aims at partially automating
the compilation of arguments and evidences, while checking their validity. However, direct
use of the safety-check results as pieces of evidence in a certification process would require
the qualification of the SCCRC tool itself, which is a very costly process. A workaround is to
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demand SCCRC to produce a human readable document so that the certification authority
can review and verify the checks done by the tool, in an argued way.

To support the automated compilation of safety arguments, we adopted modular GSN
to describe the DREAMS MSCs. The pre-built arguments are stored in a Database
Management System (DBMS) system, from which the SCCRC retrieves the argument
models and then connects them with the safety-evaluation rationale elaborated at DSE,
for each product configuration.

The product-line approach followed in DREAMS also takes advantage of a development
process that relies on composition of modules (with their own proven safety argumentation)
to design the products, so that the final products reuse safety-assurance artefacts either at
subsystem or component levels.

Therefore, the SCCRC must also be able to automatically compose safety
argumentations of subsystems for a given product. Further, it must be able to automatically
produce at least part of the safety argumentation of any valid variant of the product line.
This is a cost-effective certification process that saves certification costs because it both
reuses already certified modules (e.g., a hypervisor or a COTS processors) and automatically
constructs the basis of an argumentation of the composed product (no need to construct a
complete argumentation from scratch for every variant). Moreover, a set of refined safety
rules enhances the error-detection capability of the safety tool. Particularly important during
the composition is the ability to check if usage constraints of reused sub-modules (expressed
in Safety Manuals as Usage Constraints) are met by the composed modules using them.
Argumentation must also document the fact that usage constraints are met. In summary,
the features of the SCCRC tool are:

= The automatic translation of safety constraints and rule checks into a GSN based
safety argumentation.

= The automatic composition of GSN based safety argumentations of sub-modules
following the GSN certification methodology proposed in Chapter 7.

= Safety rules enhancements as, for example, checking of submodules usage constraints.

As a DSE post-processing activity, a partial GSN argument model for certification is
automatically built for the resulting MCPL configuration. ‘Partial’ means that the argument
has to be completed with evidences to be produced in a subsequent phase of the safety
product realization (e.g., verification results from testing the actual PE). The certification
argument consists of five packages, as shown in Figure 8.25, namely:

1. Safety Argumentation for the Wind Turbine Demonstrator module: This top-level
package compiles the uppermost claims for the system, including the claim about the
satisfaction of the allocated safety requirements and all the relevant assumptions for
the system. This module is common to all the possible product configurations.
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Figure 8.25: Layered GSN modules for compiling the WTCU certification arguments
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2. Safety Argumentation for Wind Turbine Demonstrator in product sample module:
This intermediate module instantiates an argument specific to a product configuration.
It is initially composed at the SCCRC post-processing and is partially supported by
the generic safety arguments of the DREAMS heterogeneous platform.

3. Safety Argumentation for heterogeneous architecture: This is a set of pre-built
certification arguments for generic re-usable DREAMS platform components [DRE511,
DRE512, DRE513], according to the requirements of the IEC 61508:2010 safety
standard. It should eventually isolate the main product-line argument from a specific
component selection, thus easing component substitution (e.g., use of an alternate
safety hypervisor). Note that arguments of compliant development and integration
of a component shall be provided for each candidate variant (e.g., a valid safety
certificate for the component emitted by a certification body).

4. Safety Contracts: This is a set of pre-built certification arguments that details
how a specific component choice satisfies the assumptions of the generic safety
argumentation for re-usable DREAMS components.

5. DREAMS harmonized platform safety argumentation up to SlLx: This is a set
of pre-built the IEC 61508:2010 certification arguments for the specific re-usable
safety components provided by the DREAMS harmonized platform (i.e., Zynq COTS
processor, Xtratum hypervisor, STNoC and the TTEL). Some of these arguments are
detailed in deliverables D 5.1.1 [DRE511], D 5.1.2 [DRE512] and D 5.1.3 [DRE513].

Argumentation Check

The GSN modular extensions support modelling the variability in an abstract argumentation
graph [Kel07]. For the certification process, we have to instantiate this argumentation,
resolving all the options for the variants. Once we get a particular product sample, the
DREAMS SCCRC component performs sanity checks on the argumentation following these
rules:

= Concrete argumentation shall not contain optional elements.

= All the goals shall be supported by strategies.

= All the strategies shall be supported by other goals or solutions.

= At the final development stage, all the related goals, strategies and solutions shall be
developed and instantiated.
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Generated GSN Argument

The composition of a Safety Case argumentation begins once the DSE has found valid
deployments and valid safety architectures for the variants produced by the BVR. The
process consists of the steps enumerated below:

1. A pre-condition to run the Safety Case Generator is to provide a library of safety
arguments in a form so that they can be processed by a computer program. Therefore,
we populate a GSN argumentation-model repository stored in a relational database
by using the Enterprise Architect (EA) UML editor [EA]. This model library describes
the safety rationale of the DREAMS Modular Safety Cases (MSCs) [Larl7] for
the re-usable components in the DREAMS platform as a set of composable GSN
argumentation patterns.

2. The first step to generate a product SC is to import the required SC GSN
argumentation patterns from the DBMS to the AF3 project. In the example from
Figure 8.26 SCCRC created: (1) an empty Safety Argumentation Package to contain
the argumentation, (2) a ‘GSN Root’ diagram, (3) a ‘Safety Function Architecture’
diagram and (4) GSN diagrams for 1ool, 1oolD, 1002 and 1002D architectures.

3. Then, the DREAMS user sets the source and destination folders for the GSN
argumentation in the Safety Compliance Model, selects the root node in the Safety
Compliance Model and starts the argumentation process.

Figure 8.27 shows three of those generated GSN model fragments:

= The top fragment is the GSN root diagram ‘Safety Case Root’, which is an instance
of the source GSN Root pattern and does not contain uninstantiated nodes. The
bottom left node in this fragment (‘GO: Architecture ...") is an AwayGoal linking to
the GSN fragment in the middle of the Figure.

= The middle GSN fragment is a development of the safety argument that demonstrates
the capabilities of the DREAMS argumentation generator:

— As the original argumentation pattern declared that there may be multiple Safety
Functions, in this example the Safety Argument Generator splits the reasoning
into two safety argumentation lines.

— For each argumentation line, the generator continues by choosing the right
architecture node in the safety-compliance model (note the ‘I-out-of-n" option
node in the pattern). As this example has two Safety Functions, two lines are
opened, one for the SafetyProtectionOverSpeed function and the other for
the SafetyProtectionOverVoltage function.
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Figure 8.26: Imported GSN patterns and generated GSN arguments in AF3
(source: [DRE433])

— The parameters delimited with [« * %] in the GSN patterns are replaced by the
attributes from the instances, e.g., Safety Functions and Architecture Nodes
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specify their names, the SIL, the Systematic Capability and the HFT values.

As in the top fragment, bottom nodes in the middle GSN fragment are AwayGoals
linking to other two GSN diagrams, one per candidate architecture.

= The bottom GSN fragment shows the developed argumentation for the 1002D.

This process ends up linking the argument models to the re-usable DREAMS components
(e.g., Hypervisor, Safety Partitions, COTS Processors, etc.) for which DREAMS provides
libraries of MCSs as GSN models stored in the argumentation database (DB). This also
applies to application-specific components (e.g., a piece of SW) that had been previously
granted a safety qualification.

8.3.6 Preliminary Safety-Case Generation

SCCRC outputs a preliminary certification argument model after completion of DSE.
Besides, SCCRC features a reporting tool to dump the rationale of the certification
arguments into a suitable document template: the preliminary Safety-Case Report (SCR).
This way, each safety evaluation carried out by the SCCRC component will be detailed
in a format amenable to human review, which shall be a mandatory VVT activity. The
automated generation of the preliminary safety case helps to keep the overall documentation
synchronized and eases the completion of the argument with new safety-relevant information
collected at later development stages.

This post-processing SCCRC feature generates a detailed description of the safety
arguments in document form. To this end, SCCRC traverses the argumentation model
for the feasible product variants and writes a IATEX transcript with a pre-defined safety-
case template, adapted from [SCDMO06] (the SCR structure is described in Appendix §D.1).
Appendix E presents an example SCR generated by DREAMS SCCRC automatically from
a safety argumentation model.

Pre-certification Document Libraries

Across the development process, the certification argument model provided by SCCRC will be
piecewise completed with other independently developed arguments. Once all the required
evidences become available, the enhanced argumentation model eases the compilation of
pre-certification document libraries (including the available safety certificates for pre-certified
safety components,) through document links annotated in the modular arguments.

Post-DSE Completion of Safety Cases

A mandatory requirement for developing an MCS is to implement redundancy in the
development process itself, i.e., an independent VVT team shall plan, design and execute
a number of checks, analysis and tests to demonstrate the correctness of both the safety
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Figure 8.27: Refinement of a GSN safety argument for the DREAMS Controller

(source: [DRE433])
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product and the methodology. The outcome of these activities would be a set of evidences
sufficient to support the safety claims regarding the product.

The rationale about the quality of the planned VVT process and the credibility of the
resulting evidences (e.g., analysis of validity of test results) would be represented by an
additional GSN argumentation model. The VVT will afterwards interleave their claims and
evidences (or counter-evidences) with the GSN argumentation model resulting from the
DSE process. A careful review of the evidence strength shall be carried out, as to effectively
demonstrate the validity of the system with regard to the safety requirements.

By using the DREAMS tools and approach VVT activities shall provide evidences for,
at least, the following arguments:

1. Verification and Validation of Development Compliance: An independent verification
team shall develop an argumentation about the development-process compliance with
the safety-standard requirements, including the aptitude of the staff, satisfaction of
training requirements, tool qualification and usage, quality control processes, etc. This
argument fragments can be linked to the global safety argument for referencing and
reporting purposes.

2. Verification and Validation on a model or simulator of the MCS: Independently from
the DSE optimization, an independent VVT team shall plan, design and execute a
number of checks, analyses and tests targeting the system properties predicted by
the available system models. Ideally, the VVT team shall select techniques that
would allow re-checking the properties predicted by the models on the actual system,
to prevent systematic faults arising from incorrect/over-simplistic system models or
inexact model parameters.

3. Verification and Validation of the MCS Programmable Electronics: Similarly to the
VVT activities targeting the models, the bulk of safety evidences will arise from the
execution of verification activities on the actual system implementation. These again
can be linked to the global safety argument for traceability and reporting purposes.

Some of the above-mentioned evidences will be available in post-DSE phases. As a
consequence, the preliminary Safety-Case Report (SCR) would remain incomplete, or at
least, unsupported, until the VVT processes yield the required evidence items. Thanks to
the automated generation of SCRs, the certification documents can be rebuilt automatically
once the evidences are referred to within the GSN model, then replacing uninstantiated GSN
Solutions with the newly attached information.

8.3.7 Discussion

DREAMS certification aims at providing a coherent and global rationale about the safety
properties of a mixed-criticality product line. To achieve this objective, DREAMS relies on
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a global argumentation model that can be incrementally enhanced by different tools and
teams, starting from pre-built arguments for re-usable safety components.

The automated argument re-construction and reporting alleviate the huge manual
document rework that safety product lines would require otherwise.  For instance,
Figure 8.28 shows a product certification argument resulting from the composition of
the modular argument fragments for the components. Turquoise packages belong to
Safety Argumentation for Wind Turbine Demonstrator module, common to all the solution
space, while the purple packages, corresponding to Safety Argumentation for Wind Turbine
Demonstrator in product sample, are specific to a given product configuration. As the
certification argument model may grow up to a very complex structure and thus becomes
difficult to apprehend, a mapping shall be defined in order to divide the whole argument
into a number of manageable fragments, preserving a similar level of detail.

Figure 8.28: Hand-crafted wind turbine GSN certification argument (modules & contracts)
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The main challenge was handling an incomplete argumentation structure while splitting
and cross-referencing the information according to a sensible documentation structure that
shall be defined in the project Functional Safety Management (FSM) procedure which
was defined in [DRE561]. To document the safety cases, a mapping from the argument
fragments to the FSM documents is required.

To tackle the incremental completion of safety-related information, we could rely on
cross-references to existing documents, e.g., risks and faults analysis, or documents to be
provided at a later development stage, e.g., compilation of test results and their analysis. To
assemble the library of cross-referenced document artefacts we require a shared file system
or a configuration-management server, where digital versions of the evidences would be
stored as available. A relational DBMS system also provides a common storage point for
other development tools. While this suffices for low-complexity products, for higher complex
safety systems better scalability would be required. This could be attained by switching to
application interfaces enabling a loosely coupled tool framework, e.g., OSLC.

8.3.8 Conclusion

The DREAMS platform-based design supports re-using pre-certified components to deploy
mixed-criticality systems. These HW and SW elements enable a partially-automated design-
space exploration while easing the generation of the design-rationale documentation as is
required by the certification process. To this end, DREAMS provides a collection of safety
arguments as a foundation to argue about the satisfaction of the overall safety requirements.
The safety-case approach supports modularity for developing product lines where a per-
product safety analysis and the justification of compliance are required to certification.
Justification includes the linking analyses of the components, the freedom from interferences
between the components and the prevention of systematic errors in the development process.

A database of modular certification arguments provides a convenient information
arrangement to support the modular composition of safety arguments. Our work shows
how this can be even partially automated using the GSN to model the re-usable safety
arguments. As an example, we developed the safety arguments for a generic IEC 61508
compliant wind-turbine product line which consists of a DREAMS wind turbine product
sample composed of a set of commercial components. Furthermore, we identified several
variation points that may extend the modular argumentation database. Those variation
points include the variability of safety-related standards (i.e., DO 178C, ISO 26262) and the
integrity level of the components (i.e., SIL1 to 4 according to IEC 61508).

Future developments of the argumentation support would include additional attributes
to represent the credibility of a given argument. Those attributes will enable capturing the
subjective evaluation of the argumentation as done by a certification body. It is noteworthy
that gathering this information is a challenging task. However, based on previous safety
assessments and experiences with a certification body, a GSN model can represent a valuable
asset to detect in advance the weakest link in the argumentation chain before actually facing
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the certification process.

Related Publications

The results presented herein relate to the following publications: [NEL+17, LMN+17,
LPN+16, LAN+15].
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Conclusion

This chapter closes the dissertation with the conclusions drawn from the research work.
We examine the validity of the initial hypotheses, discuss the limitations of the proposed
approaches, and summarize the lessons learnt during the course of this thesis. Finally, we
end up posing possible future research paths.

9.1 Review

The product development process for safety-critical applications requires a thorough
verification of the system. Some authors identify the verification activities as the main
cost factor in many safety-related developments. An early verification process would reduce
the development cost by showing up ambiguities and errors in the specification before
implementing the actual system, thus avoiding costly iterations during the development.

Model-Based Engineering (MBE) sets the verification forward by building models of the
system for static and dynamic analyses. Analogously, Model-Based Testing (MBT) supports
the early design of test cases by using models of the system under test. Moreover, the test
suites represent a form of behavioural specification as they illustrate the expected behaviour
of the system by test cases. This is an advantage with regard to the enhancement of
comprehensibility, understandability and maintainability of the system during its life-cycle.
These test cases enable the examination of the candidate system design or implementation
by taking snapshots of its behaviour for a set of experiments.

Nowadays safety standards recommend MBE for the development of high-integrity
systems. MBE makes the design amenable to humans by abstracting, partitioning
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and layering the design. This constitutes a toolset to tackle with the complexity of
currently available electronic platforms. Model-Based Development (MBD) enables the
experimentation with a mathematical representation of the system. MBT enables the
description of test cases, test components and test architectures in a similar way than MBD
does for the system design. By sharing the same modelling language for MBD and MBT, we
enable interleaving (e.g., incremental iterative refinement) and model interchange between
design and testing. By developing the system and the testing architecture concurrently we
can unveil defects earlier and easier at the cross-reviews of the models.

Despite criticism about the feasibility of testing by simulation for complex architectures
due to its cost and the reliability of the models, we cannot avoid testing in practice.
Alternate approaches promote relying on completely predictable computing infrastructures
and programming constructs to achieve predictability, but currently these techniques are not
mainstream. Our research proposal focuses on the cost-efficiency of MBT of Dependable
Embedded Systems (DESs). We sought a structured verification process where models
evolve as we incorporate further details into our examination.

This thesis presented several re-use strategies that aim at reducing the overall cost for
verifying and certifying families of embedded dependable systems: (i) test specification re-
use by integrating an Automatic Test Executor (ATE) that resembles actual ATEs used
for real test-benches into modelling and simulation environments; (ii) model and code re-
use to recover the validation costs by using proven-in-use components to build the test
architectures; and, (iii) model-based framework to re-use certification arguments supporting
the design of certifiable mixed-criticality product lines based on the DREAMS harmonized
platforms. This section reviews the achievement of the Operative Goals, the validation of
the Hypotheses and the current limitations of the approaches.

9.1.1 Hypotheses Validation

Three hypotheses were formulated for this dissertation (see §4.2). They have been validated
with the design, implementation and validation of three contributed approaches: (i) an
integrated ATE to automate the validation of fault tolerance on models of safety-critical
embedded systems with a Time-Triggered (TT) architecture, (ii) a modelling framework and
workflow that yields test components for hardware-in-the-loop (HiL) test-benches, and (iii)
an argumentation framework supporting the re-use of Mixed-Criticality Systems (MCSs) and
an assisted compilation of Safety Cases (SCs). Herein we examine the actual achievements.

Hypothesis A argues that “An Automatic Test Executor (ATE) can be integrated in
simulation frameworks so that it (i) enables the early analysis of fault-tolerance
mechanisms in dependable systems with redundant structures at various levels of
abstraction, (ii) automates the simulation of fault-injection experiments, and (iii)
facilitates test re-use across system models at different levels of abstraction, and even
up to a real test-bench”.

218



0.1. Review

This thesis motivated the PS-TTM ATE, a synchronous Python interpreter integrated
in the Platform-Specific Time-Triggered Model (PS-TTM) modelling framework.
PS-TTM is used to build low-complexity executable models of TT safety-critical
systems at different abstraction levels, assuming that all the logical components
stick to Logical Execution Time (LET) / Executable Time-Triggered Model (E-TTM)
models of computation (MoCs). The PS-TTM simulation relies on the E-TTM
implementation [PNO+10, Per11], running on top of the SystemC simulation library.
The PS-TTM simulator also embeds the fault-injection library from [Ayel5], which is
wrapped in a Python Application Programming Interface (API) to the ATE. Additional
Python APIs let the ATE control the allocation of test points, as well as the definition
of timed sequences of test inputs, i.e., the stimuli.

When designing a dependable system with PS-TTM in a top-down approach, the first
step consists of defining a pure functional model: the Platform-Independent Model
(PIM). The PIM is an abstraction which aims at exercising the logical components
against a set of fault scenarios. The purpose of the fault scenarios is to predict the
behaviour of the system under the fault hypotheses elicited in the FMEA analysis.
A test script drives the simulation of fault scenarios in the ATE, which guarantees
repeatable test results, and also enables the chained execution of multiple simulations.

A second stage is the refinement of the dependable-system model as to resemble the
redundant structures used to increase the reliability of the safety system. This phase
comes up with a new model, the Platform-Specific Model (PSM), that incorporates
additional details (e.g., diversified logical components, cross-diagnostics, etc.). A
refined FMEA analysis yields an extended collection of possible faults. These are
transcribed into XML fault configurations, that the PS-TTM ATE loads to dynamically
insert signal saboteurs in the appropriate communication channels defined in the
PS-TTM model.

The experimental evaluation on the Railway Controller Case Study (§8.1) shows how
the simulation performance of the combined ATE-PS-TTM simulator achieves a time
acceleration of approximately 200x for PIMs, and 35x for PSMs. The automation
provided by the integrated Python ATE supported the simulation of fruitful simulated
fault-injection campaigns, that actually highlighted some weaknesses in the 2003
odometry system concept. This demonstrates the achievement of Operative Goal
A (8§4.3.1), which validates Hypothesis A (i) and (ii). However, (iii) was not feasible,
as the development of a realistic test-demonstrator and the cost of equipment required
for it were far beyond the possibilities of this research.

Hypothesis B argues that “Generic models of sensors and instruments can be designed and
validated in a Commercial-Off-The-Shelf (COTS) modelling environment, such that
these could be re-used to build real-time test components for a COTS heterogeneous
HiL system to verify dependable systems, in which the obtained test components may
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execute in parallel, keeping a strict timing synchronisation”.

The Elevator Simulator Case Study shows how Model of Computation (MoC)-agnostic
Simulink models can be designed, transformed, and synthesized on-demand to program
the Field-Programmable Gate Array (FPGA) of an heterogeneous HiL NI Compact
RIO (cRIO) platform. The parallel execution in the Programmable Logic (PL)
eased the augmentation of a progressively complex HilL elevator simulator, while
the proposed workflow supported a concurrent development by a team of people
with different computing backgrounds. The model-based test components included
position sensors, plants or special-purpose instruments that were first developed and
validated in simulation, using model test-harnesses.

For our test application we tried out a single-model approach instead of a dual-model
development (i.e., a platform-independent specification model and a platform-specific
implementation model). In both developments we achieved the required real-time
simulator performance. The FPGA provided the execution parallelism to add new
functions with virtually no interference with the operation of the rest of the HilL
simulator. The main advantages of preserving the function of the HilL test system
as a set of models were an improved communication across the project team, easier
maintenance of the test components, and better portability throughout heterogeneous
computing platforms.

Currently we have 2 HiL simulator variants derived from the same Simulink model:
cRI0-9082 (FPGA Xilinx Spartan-6 LX150), and cRIO-9039 (FPGA Xilinx Kintex-7
325T). Although the FPGA variants impose different timing constraints, by profiling
the transformation settings we got both implementations showing the same real-time
behaviour. Nowadays we can modify or enhance the features of the test system
and initially validate them by relying on the models of computation supported by
the modelling environment. Formerly, the maintenance and validation of former HiL
elevator simulators was cumbersome, time-consuming and error-prone: the real-time
behaviour of the simulator was confronted with the actual system-under-test that was
also under development (and therefore unstable) and, even worse, the constraints of
a given HiL computing platform limited the evolution of the test system, requiring at
times a major overhauling.

The experimental evaluation on the Elevator Simulator Case Study (§8.2) shows the
achievement of Operative Goal C (§4.3.1), which validates Hypothesis B.

Hypothesis C: argues that “The capabilities of current COTS Hil platforms support the
deployment of virtual replicas of nodes in a distributed dependable system, yielding
a versatile and cost-effective test architecture through re-using code from actual
devices”.

This research provided a light-weight platform para-virtualisation approach that
enables the code re-use of existing embedded application code to build a scalable
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Restbus simulator that could be integrated in a COTS Heterogeneous Computing
Platform (HCP) HiL. The approach was evaluated on a case-study for improving
the testability of an elevator distributed control system, where a Controller Area
Network (CAN) Restbus simulator replaced multiple remote |/O devices with virtual
replicas.

We integrated our Restbus simulator into an overall plant HiL simulator, where the
virtual instances of the simulated nodes were stimulated by CAN messages, timing
events, signals computed by the plant model and commands from a test execution
environment. The real-time Restbus HilL simulator enabled a more thorough validation
of real-time embedded controllers, as it is software-reconfigurable, reduces the overall
cost of the test-bench by replacing external hardware, eases the insertion of node-
mutants, allows integration into a HilL test infrastructure and improves the test
automation.

However, the proposed virtualisation approach has several shortcomings due to the pre-
requisites and assumptions regarding the coding and execution flow of the embedded
applications. Besides, the technique to share a single communication port between
several virtual devices cannot be generalized to every type of network and thus, won't
be useful for other kinds of distributed dependable systems, especially in case of using
HW-generated timestamps to guard the nodes against wrong message sequences.

The experimental evaluation on the Elevator Simulator Case Study (§8.2) shows the
achievement of Operative Goal D (§4.3.1). This only constitutes a partial validation
of Hypothesis C, due to the limited applicability of the technique.

Hypothesis D: argues that “A model-based argumentation framework enables the
compilation of interrelated sets of information to assist safety engineers in developing
safety cases for Mixed-Criticality Product Lines (MCPLs), following a platform-based
design (PBD) supported by a set of pre-built Modular Safety Cases (MSCs), and
where results from analysis, verification and testing activities can be incorporated to
the set of supporting evidences required to argue about the safety of a system”.

The experimental evaluation on the Wind-Turbine product line case study (§8.3) shows
that the the model-based DREAMS argumentation database supports the staged
completion of Safety Cases according to the safety requirements for each product
variant. The argument models enable the representation of the MCSs that conform
to the DREAMS platform support. Although DREAMS MSCs were designed to meet
the requirements of the IEC 61508 safety standard, alternative argumentation patterns
could be incrementally incorporated to the database, as to fulfil possible different styles
required by other safety application domains. The argumentation database provides
a fine-grained documentation of the safety properties of the used components.

The experimental evaluation on the Wind Turbine Case Study (§8.3) shows the
achievement of Operative Goal E (§4.3.1), which validates Hypothesis D.
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0.1.2 Limitations

The first re-use strategy is supported by the developed ATE adaptation to the modelling
and simulation environments.

1. Model Re-use Framework for Hil test-benches: Although FPGAs are gaining
acceptance for computing-intensive applications, the implementation of floating-point
arithmetic IPs in an FPGA is still very area- and resource-consuming, and also increases
the critical timing paths. As a consequence, in many cases it is needed to rely on
fixed-point arithmetic replacements which operand bit-lengths and computation time
varying with the value ranges for the inputs and outputs. This has the drawback
that the fixed-point optimizations eventually depend on the whole computation chain,
i.e., each time a signal / parameter-value range potentially affecting the computation
chain is modified the fixed-point conversion should be re-worked. Current automated
model-to-code transformation technology for FPGA targets still do require an assisted
adaptation of models including arithmetic operations, which actually yields a second
variant of fixed-point models, which would complicate the evolution and maintenance
of the model libraries. A possible workaround for Simulink model libraries is to
have a MoC-agnostic model library (as in the style used in Ptolemy Il), i.e., a
library of models where the signal data-types and value ranges are inherited from
a container model. Container models for desktop simulations would rely on floating-
point arithmetic, and would minimize toolbox-dependencies. Container models
for HiL/FPGA implementations would incorporate fixed-point data-types that the
hardware description language (HDL) Coder will propagate throughout the MoC-
agnostic reference mode. Optimizations specific to the FPGA, like pipe-lining or the
selection of the register bit-lengths for computation Intellectual Propertys (IPs) will
then be applied on the FPGA-specific model. This model should be touched-up on
range modifications or when deploying to a different FPGA.

2. Issues of Hil device virtualisation for other networking technologies: In the elevator
system case study, the para-virtualisation with code re-use enabled the replacement
of multiple slave 1/O nodes with a CAN Restbus simulator using a single standard
CAN port. In our approach, the illusion of multiple devices communicating through
a CAN bus was achieved with an algorithm that re-ordered the queue of outgoing
messages according to their priority. However, this is not generalizable to every possible
networking technology. In particular, some DES integrate safety communications that
incorporate T T-networks, redundant channels, or buses with HW-timestamps, and
these cannot be replicated this way.

3. Lack of semantic interpretation of safety-certification arguments: The current version
of the DREAMS AutoFOCUS 3 (AF3) toolset has no semantic checking of the re-
usable argument models stored in the database (DB). Except for some completeness
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checks, the quality of the Goal Structuring Notation (GSN) models eventually depends
on the information put in the database by component designers and safety engineers.

0.2 Lessons Learned

The experimentation with the proposed re-use approaches herein yielded these lessons:

Re-usable test models ease cross-domain collaboration: For the elevator HilL test
application we tried out a single-model approach instead of a dual-model
development (i.e., a platform-independent specification model and a platform-specific
implementation model). The project team consisted of 3 people: a seasoned
Simulink user developed the bulk of the Simulink model, a developer with a mid-
level background in both Simulink and LabVIEW programming integrated the single-
encoder cRIO-9082 variant, and an FPGA expert with programming knowledge about
cRIO controllers and LabVIEW synthesized the dual-encoder cRIO-9039 variant. In
both developments we achieved the required real-time simulator performance. The
FPGA provided the execution parallelism to add new functions with virtually no
interference in the operation of the rest of the HiL simulator. The main advantages of
preserving the function of the Hil test system as a set of models were: an improved
communication across the project team, easier maintenance of the test components,
and better portability throughout heterogeneous computing platforms.

Portable para-virtualisation economizes development effort: We  integrated  our
Restbus simulator into an overall plant HiL simulator, where the virtual instances
of the simulated nodes were stimulated by CAN messages, timing events, signals
computed by the plant model and commands from a test execution environment.
The real-time Restbus HiL simulator enabled a more thorough validation of real-time
embedded controllers, as it is software-reconfigurable, may reduce the overall cost of
the test-bench by replacing external hardware, eases the insertion of node-mutants,
allows integration into a HiL test infrastructure and enhances test automation.
Moreover, after completing the initial CAN Restbus simulator, the software (SW) was
branched to support the development of a replacement for a legacy communication
library that had to be integrated in a different device. The SW modifications
were extensively tested using the simulator, this time using the elevator controller
as a part of the test environment. In this phase no In-Circuit Emulator (ICE)
or special instrumentation HW was initially required: the desktop simulator was
the prototyping platform and the original test setup consisted of actual elevator
components interoperable with the system under development. Once validated, the
new library release was compiled for the target Micro-controller Unit (MCU) and
underwent integration testing: at this stage virtually no problems were detected,
actually reducing the integration effort to one fifth of the initially foreseen workload.
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Enforcing argumentation models improves knowledge-sharing across a team:
Building Mixed-Criticality Systems on top of modular platforms like the DREAMS
heterogeneous HW / SW is hindered by the complexity of the possible interactions,
the number of developers involved, the required compliance with a predefined
Functional Safety Management (FSM) protocol, and the exhaustive documentation
required by the certification processes. Modular Safety Cases (MSCs) provide
re-usable arguments to support the safety claims in a range of diverse applications.
To that purpose, the MSC has to be tailored, i.e., instantiated, to suit the safety
requirements for a product configuration. Then, the particularized MSC is merged
into a connected chain of reasoning to argue about the validity of the safety claims.
Argument models provide an infrastructure to compose MSCs with complementary
information.

The GSN modelling language is currently accepted by several certification bodies as
a technique to structure the argumentation. The safety argumentation integrates
all the information about the product itself, but also about how it was developed,
how it was validated and verified, etc. Thus a product safety case derives from
a connected information network provided by possibly independent sources: the
project management, the application experts, the developers and the verification
and validation staff. In this context, the enforcement of argumentation patterns to
support a partial automation of the Design Space Exploration (DSE) also benefits the
development: defined boundaries between argument modules, abstractions (e.g., to
be instantiated, undeveloped), and a clear structure to support or challenge a claim
iteratively enable the completion of the argument as information becomes available.

In the DREAMS project we opted for a relational database server to store these re-
usable assets. Without loss of generality, we completed an Unified Modelling Language
(UML) meta-model extension to design modular GSN models using a standardized
HMI front-end: Enterprise Architect from Sparx Systems. A distinctive feature of EA
is that it supports Database Management System (DBMS) storage of models. This
also improves usability and enables a concurrent completion of the GSN models.

A fully automated model-based safety documentation is challenging: Although
some researchers propose using GSN models for the formal analysis of arguments, in
the safety domain there are somehow subjective criteria, e.g., “expert judgement”,
that can be hardly expressed mathematically. In some application domains
position papers and explanatory guidelines aim at addressing ambiguities,
e.g., [CAP760, CAST, TR50506-2, IEC62741].  However, an automated safety
reporting process does not guarantee the readability of the generated documents: this
relates to an ‘adequate’ level of detail, as well as a ‘reasonable’ partitioning of the
information that ultimately depend on the subjective criteria of the documentation
reviewers. Due to this, the DREAMS argumentation framework sought a limited
automation at generating product safety-cases. Instead, it provides basic sanity
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checks that support the extraction of snapshots to show the actual progress and the
pending evidences and a programmable safety-case documentation tool that could be
tailored to suit the safety-documentation structure defined in the FSM procedures.

9.3 Future Work

The contribution from this dissertation could be further extended in future research
directions, such as:

» Integration of Virtual Testing and Virtual Platforms on PS-TTM: Virtual platform
simulators can reproduce the functional and timing behaviour of HW / SW systems
by exercising the intended SW against models of the HW components. Platform
simulators like OVP [OVP] or QEMU [QEMU] provide libraries of models for different
processors and peripherals, which developers can exploit to analyse the system
feasibility at different levels of abstraction and simulation accuracy. Virtualisation of a
complex system including HCPs may include cross-platform Instruction-Set Simulators
(ISSs) and custom models of peripherals and interconnects (e.g., SystemC models).
On one hand, developers can exercise an unmodified SW-stack of a target system, even
for mixed-processor architectures, using the ISSs simulator as a debugging platform
to accelerate the development. On the other hand, the test engineers can customize
HW-models to perform fault injection at low abstraction levels. Some safety-MCUs
integrate fault-injection to assess the fault tolerance of the dependable system. This
increases the potential to re-use test artefacts, as the same fault-injection tests could
be likely exercised on either the platform simulator or on the actual HW.

= Integration of cross-platform Instruction-Set Simulators (ISSs) in real-time (RT) HilL
environments: A common feature of Virtual Platform Simulators is the virtualisation
of the memory. Memory virtualisation provides separate execution contexts for each
instance of the virtual processor. The execution of a SW stack by an ISS becomes
immune to the memory usage in the hosted application, overcoming the limitations of
the lightweight para-virtualisation approach. The integration of ISSs within the HiL
platform would ease the re-use of validated SWcomponents to build real-time test
systems, while maintaning the versatility of a SW-defined Restbus simulator.

» Parallel PS-TTM simulator: The Railway Controller case-study served as a benchmark
for the simulation times for Platform Independent Time-Triggered Model (PI-TTM)
and PSM models. The PS-TTM model mimics the redundant structure of the system,
increasing both, the computation burden and the number of possible fault scenarios to
examine. This reduces the time-acceleration factor, lengthening the time to complete
a fault-simulation campaign. Simulation time gets even longer in case of including
components modelled at an RTL level of detail, for which a single-threaded SystemC
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simulation would become impractical. An improved PS-TTM would rely on a parallel-
SystemC engine [ECC+09,SLP+10,DCH+11], exploiting the multi-core architectures
to increase simulation performance and reduce the validation costs.

= Parallel Python testing: Functional testing of dependable platforms usually requires
the synchronous observation and correlation of multiple inputs in the test architecture
to evaluate the actual performance of a given implementation under test. Conventional
testing relies on sequential programming to define the test procedures, but complex
test architectures would require the coordinated operation of multiple processors,
which also have to be programmed. From a maintenance perspective it is desirable
to keep a homogeneous test programming environment. The Python language has
been adopted for Big Data analysis, yielding parallel Python implementations that
also could be adapted to control functional test-benches [Hin07, PMD16].

» Stateless Simulink models to customize parallelism in Programmable Logic:
Heterogeneous Computing Platforms for hardware-in-the-loop (HiL) test systems ease
the execution of test components at different sampling rates, typically deploying low-
frequency logic on computing cores while the high-frequency elements get synthesized
in Programmable Logic (PL). Sometimes the HilL plant model requires multiple
instances of a subsystem model in the PL. Instantiation is straightforward when the
subsystem model is transformed to sequential code and deployed in a conventional
processor or core, as by using dynamic memory allocation the number of component
instances is defined at run-time (provided that computing power and memory resources
suffice). However, when the component model targets the PL there are a number of
challenges:

— Each instance of a subsystem model translates to HDL code that will end-up
owning computational resources. Thus, the higher the number of instances, the
more PL area will be required by the plant model. While this is optimal for timing
performance, it could be disadvantageous for arithmetic-intensive subsystems, as
the number of available FPGA resources is constrained (e.g., DSPs), eventually
limiting the maximum number of feasible subsystem instances.

— Simulink (SL) library models favour data encapsulation to preserve the model
abstraction and enhance the model comprehensibility. But data encapsulation
implicitly adds internal memory registers to store the state of each block /
subsystem instance (e.g., as in a unit-delay block). The hidden memory registers
in SL blocks make the customization of parallelism in PL implementations
difficult, as there is no direct control on the memory resources owned by
each subsystem instance. Therefore conventional Simulink blocks may hinder
the parallelization of the subsystem computations using alternative scheduling
algorithms (e.g., with some C/C++ to HDL translators we can customize the
parallelism of loops).
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In some test scenarios the effective sampling rate of multiple-instance subsystems
could be relaxed (i.e., when the required sampling time is several times the propagation
time of the critical path in the FPGA). This was the case in the Hardware-in-the-
Loop Elevator Simulator (HiLES) simulator, where the number of instances that could
be deployed in a single FPGA was constrained by the allocation of Digital Signal
Processor (DSP) blocks to the computation IP, while there was a surplus of unused
memory blocks. Stateless SL models would enable an optimized trade-off between
the usage of DSP and memory resources in the FPGA, by extracting all state memory
to a R/W external register. Instantiation would be realized by switching the external
memory at each update cycle and sampling and holding the /O registers to preserve
the time semantics. With this structure, a reduced number of arithmetic IPs would be
required, freeing DSP resources that could be reserved for a future scaling-up of the
plant model. Stateless models would preserve artefact re-usability from model-in-the-
loop (MiL) to HiL test configurations, and offer additional customization to optimize
resource usage in the HiL platform

Extended argumentation framework for other safety standards: This dissertation
contributed an argumentation framework to derive product safety-cases from a library
of Modular Safety Cases (MSCs) compliant to the IEC 61508 safety standard. The
adaptation and re-use of the MSCs library is straightforward for domain-specific safety
standards rooted in IEC 61508, like ISO 26262 (automotive), EN 5012X (railway) or
ISO 13849 (machinery). However, safety standards from other application domains
(e.g., DO-178C for airborne systems) would require different argumentation models
and a specific documentation structure. Future work may extend the argument
database with additional argument fragments suited for those safety-standards.

Extended argumentation framework to other safety-related aspects: While safety aims
at protecting a system against unintended hazards, security aims at protecting a system
against intended threats. Nowadays security is a requirement for safety-systems,
specially for Mixed-Criticality Systems (MCSs) where non-safety components can
connect to uncertain environments. In the security domain we find a modular approach
similar to the safety case: the security case. Currently the re-usable argumentation
framework supports the compilation of partial safety arguments to elaborate safety
cases. A future extension to the argumentation framework can also incorporate
security cases as GSN argumentation models [WLG07, AHK11], where the shared
database approach enables linking safety arguments to security arguments. This eases
the analysis and documentation of a complete chain of safety and security arguments
resulting from the composition of a complex MCS.
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The PS-TTM Modelling Framework

This appendix recalls the PS-TTM modelling framework contributed by |. Ayestaran [Ayel5].

A.1 Fault Injection Libraries

Test engineers may inject faults by selecting the desired fault effects in the fault-configuration
XML file. The ATE pre-processes the PS-TTM model of the system, then automatically
extends the original model to include the pre-built fault injectors as specified in the fault
configuration. The Fault-Injection Unit (FIU) component of the ATE includes the libraries
of executable fault models for both platform-independent and platform-specific models.

A.1.1 Fault Library for Platform-Independent Models

Platform-independent models abstract from aspects related to the target platform in
PS-TTM, thus the library of faults focuses on faults at signal level. This fault library
draws on the failure mode functions (FMFs) defined in the MOGENTES project [MOG31].
These failure modes represent the “effects of faults / errors that would lead to a failure in
a system”.

Table A.1 summarizes the fault models for platform independent models currently
provided by the library. The fault library for PIMs natively provided by the PS-TTM ATE
for Platform-Independent Model (PIM) models covers a wide range of failures that are likely
to occur in systems and provides a straightforward way to simulate them at a platform-
independent level. The PIM fault library defines faults for signals of boolean, integer and
floating-point datatypes, which are intended to simulate the scenarios listed below:
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= Amplification: The Amplification fault effect can simulate a number of faults,

e.g., erroneous sensor positioning and / or orientation, wrong parametrization of
components, bugs due to misunderstanding of parameter units, etc.

Amplification Range: The purpose of the Amplification Range fault effect is to
introduce noise in integer- or continuous-range signals.

Constant: This fault effect can be used to simulate several different situations, such
as a broken encoder that keeps providing a constant value to the system, a faulty

Table A.1: Fault library for PI-TTM models

(source: [ANP+14d]).

Fault effect Configuration Description
parameters
Invert - Boolean value is inverted.
Stuck At stuck_value Signal gets stuck at a given value.
Stuck - Signal gets stuck at the current value.
S  Stuck If stuck_value, Signal gets stuck at {stuck_value} if a given
% condition {condition} holds.
<3
@ Open Circuit - Wire is disconnected, signal takes an arbitrary
value (noise)
Delay delay Signal is delayed by an amount of time.
Constant constant_value Signal gets stuck at a given constant value.
Amplification ampl_value Signal is amplified by fixed value.
Amplification min_amp_value, Signal is amplified by a randomly selected value
Range max_ampl_value (between given max. and min. values)
Drift drift_value At each time stepc, the signal drifts away from its
nominal value by a given value
-
8  Offset offset_value A given fixed offset is added to the signal.
™
> Offset Range min_offset_value, A randomly selected offset value is added to the
§° max_offset_value signal (between given max. and min. values).
-
£ Stuck - Signal gets stuck at the actual value.
Random min_value, Signal takes an arbitrary value (between given
max_value max. and min. values).
Delay delay Signal is delayed by an amount of time.
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sensor measuring a constant value, or a rotational component that is blocked by an
external object.

» Delay: The Delay fault effect can be used to simulate lags introduced by a data-
traffic overhead in a communication system or by the excessive length of wires in the
propagation of a signal.

= Drift: This effect is used to simulate incremental faults in components, such as
a failure in a counter that causes it to count more events than it should at each
iteration.

= Inversion: This fault effect can be used to simulate bit flips in memory cells, such as
Single Event Upsets (SEUs) induced by energetic particles.

= Offset: This fault effect can be used to reproduce situations in which a sensor has
not been correctly calibrated.

» Offset Range: This fault effect is mainly used to introduce noise in signals.

= Open Circuit: This fault effect is used to simulate different situations in which a
signal can get a random value, such as a broken wire, a defective connection or a
communication through a very noisy environment.

= Random: This fault effect is used to reproduce situations in which a signal can get a
random value, such as a broken wire or a defective electrical connection.

= Stuck: This fault effect can be used to simulate several different situations, such as
a broken encoder that keeps providing a constant value to the system, a faulty sensor
measuring a constant value, or a rotational component that is blocked by an external
object.

= Stuck At: The Stuck At fault effect is used to reproduce a failure in a memory cell
or connector that provokes a given data to stuck at a constant value.

= Stuck: The Stuck fault effect can reproduce a communication loss between two
components, what would result in keeping the value of the variable unaltered.

= Stuck If: The Stuck If can be used to simulate different phenomena also reproduced
by the Stuck or Stuck At effects, but adding a pre-condition to fire the fault effect.

A.1.2 Fault Library for Platform Specific Models

In our modeling approach the platform specific models of the PS-TTM represent the HW
components at a high abstraction level. Hence, the fault library for PSMs is composed by
the observable high-level effects of HW-related faults.
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The ATE emulates faulty HW components by sabotaging all their outgoing signals
according to the fault effect specified in the fault configuration, i.e., from the perspective
of the PS-TTM ATE, a faulty HW component is a black box whose push activities are all
sabotaged, thus giving the illusion of being a faulty component. This approach provides
an equivalent effect to modifying the HW component models to simulate an erroneous
behaviour, but having the advantage of its non-intrusiveness, as it does not require to apply
modifications to the model of the System Under Test (SUT), such as replacing a correct
component by an erroneous one (mutant based fault injection).

The PSM fault library adds the four fault effects listed in Table A.2, where HW-related
fault effects are reproduced by fault injection during the communication phases of the
simulation. The intended usages of the HW-related fault effects are:

= Corruption: This fault effect enables to reproduce a situation in which the
functionality of the hardware component performs incorrectly. Thus, it can be used to
simulate different situations that can provoke a faulty behavior in the value domain,
such as noisy environments or defective electrical connections.

= No execution: This fault effect can be used to simulate errors caused by faults in
power supplies, cuts in wires, or misbehaviors of HW components due to corrupted or
incorrect data.

» QOut of time: The Out of Time fault effect can be used to introduce a delay in the
response of a HW component, which reproduces the effect of a number of anomalies in
the system, such as an overload of the CPU, an excess of traffic in the communication
system, or any other timing-related error caused by a misbehavior of a component.

= Babbling This fault effect can be used to simulate environments with very unfavorable

Table A.2: Fault library extensions for PS-TTM models

(source: [ANP+14d]).

Fault effect Configuration Description
parameters

Corruption - The functionality is performed incorrectly. The data
provided by the output interface is corrupted.

No execution - The functionality is not executed. No information is
provided as a result.

Out of time  delay_value Time bounds of the functionality are not respected.
Data is provided later than expected.

Babbling delay_value Information at the interface is erroneous both in content
and time.
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conditions, such as those including high levels of noise (which would lead to corruption
of data) and overhead of data-traffic in communications (which would cause the
system to miss required deadlines).

A.2 Symmetric and Asymmetric Fault Injection

In a PS-TTM model where a signal provided by a job is forwarded to more than one
component, the signal has to be replicated in different channels. In case of a fault in
such a signal, the consistency between the values read by the receiving components might
be compromised. When the incorrect service is equally perceived by all the consumers, the
failure is considered consistent; on the contrary, if some of the receivers perceive differences in
the incorrect service, the failure is called an inconsistent failure or ‘byzantine failure’ [LSP82].
Byzantine failures are difficult to handle, since they have the potential to confuse the correct
components. In extreme cases a receiver might classify the failing component as erroneous
whereas another receiver might identify it as correct, thus leading to an inconsistent view
of the failed component among the correct components [Kop11].

Safety systems typically rely on redundant structures where functionally equivalent
components may interchange information for cross-checking the behaviour of each other.
This cross-monitoring may be compromised by a byzantine fault, and it should be assessed
that a candidate design of a DES detects and reacts properly in such fault context. As the
FIU of the PS-TTM ATE can inject faults in any signal of the system under test, the test
engineers can straightforwardly perform both symmetric and asymmetric fault injection on
the PIM / PSM models, depending on if the fault is injected at the instant in which a signal
is being sent or when it is being received, as sketched in Figure A.1.

FAULT A

COMPONENT COMPONENT FAULT COMPONENT
COMPONENT COMPONENT

FAULT FAULT B

l l o

(a) Asymmetric Fault Injection (b) Asymmetric Fault Injection  (c) Symmetric Fault Injection
(Inconsistent  classification of (Inconsistent classification of
erroneous component) failure)

Figure A.1: Symmetric and Asymmetric Fault Injection
(source: [Ayel5])

Figure A.2 shows the generic UML meta-model of the Fault Injection Configuration files.
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A.3 The Simulated Fault Injection Unit (FIU)

The Fault-Injection Unit (FIU) is the PS-TTM subsystem that provides simulated fault
injection capabilities to the ATE. FIU supports two different fault modes: transient and
permanent. Permanent faults will remain active from their activation specified by the trigger
time until the end of the simulation. However, transient faults are temporary misbehaviours,
so their configuration requires to specify a duration in addition the triggering instant. Once
the injection of a transient fault is finished, the signal affected by the fault returns back to
a non-faulty state.

Fault campaigns are optional: if omitted, the ATE will run a fault-free simulation. The
fault-injection campaigns are structured in three blocks:

1. Fault configuration with fault sets: The fault configuration may include one or more
fault sets. Each fault set, defined by the FaultSet tag, specifies a name, a fault mode,
a triggering instant, and references to one or more faults. The fault mode must be
specified either as >TRANSIENT’ or >PERMANENT’. Therefore, in case the fault mode is
set to *TRANSIENT’ the fault set must also specify a duration for the fault in addition
to the rest of the configuration parameters. A fault set might be defined in the Faults
block.

2. Faults: Each fault must specify a unique id, a name, a fault effect from the fault
libraries (see section A.1) and a set of attributes that depend on the specific effect of
the fault. When the fault configuration is edited and saved with the fault editor, the
XML generator automatically sets the unique id of each fault to prevent duplicates.

3. Locations: The Locations block specifies a set of locations where the faults might be
injected. Each location shall be defined by a unique id and the hierarchical location
of the component that must simulate a faulty behaviour. In the case of faults from
the PIM library which are related to signals, the name of the entity to be sabotaged
and its port type (input or output) must also be specified.

The XML schema for the definition of fault-injection campaigns was derived from
the ASAM AE HIL 1.0.0 standard for HiL testing. Although the aim of this work is to
perform fault-injection experiments in model / software-in-the-loop configurations, close
adherence to the standard eases the forward reuse of the fault-injection campaigns in the
final prototyping phase, provided that fault injecting equipment is available. Listing A.1
shows an example of a fault configuration file for a PIMs model, whereas Listing A.2
shows an example XML specification of a permanent timeout HW-fault. As opposite to
the fault specifications for PIMs, this fault specification ommits the Port Type and an Entity
attributes, that become meaningless for the considered HW abstraction.
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Listing A.1: Example of an XML fault configuration file for the FIU module

<FaultConfiguration>
<FaultSet>
<Name>FC4</Name>
<FaultMode>TRANSIENT</FaultMode>
<Duration>4.0</Duration>
<TriggerInstant>86.0</TriggerInstant>
<Fault ref= />
</FaultSet>
</FaultConfiguration>
<Faults>
<Fault id= >
<Name>i4</Name>
<Location ref= />
<FaultEffect>Integer_Constant</FaultEffect>
<ConstantValue>600</ConstantValue>
</Fault>
</Faults>
<Locations>
<Location id= >
<Component>system_railwayss.das_superv.das_odo.job_odo</Component>
<PortType>Input</PortType>
<Entity>DAS_ODO_ENCODER1</Entity>
</Location>
</Locations>
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Listing A.2: Example of a FIU configuration file for an ‘Out of time” HW-fault

<FaultConfiguration>
<FaultSet>
<Name>FC37</Name >
<FaultMode>PERMANENT</FaultMode>
<Duration></Duration>
<TriggerInstant>120.0</TriggerInstant>
<Fault ref= />
</FaultSet>
</FaultConfiguration>
<Faults>
<Fault id= >
<Name>outoftime6</Name>
<Location ref= />
<FaultEffect>HW_OutOfTime</FaultEffect>
<Delay>0.50</Delay>
</Fault>
</Faults>
<Locations>
<Location id= >
<Component>system_railwayss.clrail.nodeevcC.procevc.coreA</Component>
<PortType></PortType>
<Entity></Entity>
</Location>
</Locations>
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A.3.1 The PS-TTM toolset and workflow

The PS-TTM simulation engine derives from the standard SystemC library, extended with
a set of macros and mechanisms to help the designers in the definition of the platform-
independent and platform-specific models. In addition, a set of auxiliary SW applications
assist the designers during the development and testing processes of the systems [Ayel5]:

SFI Configuration Tool: This is an editor to select and configure fault effects for the FIU
subsystem from Pl / PS-TTM simulator, according to the fault meta-model described
in the Appendix §A.1. This application supports the definition of comprehensive
Simulated fault-injection campaigns, generating FIU configuration files compliant with
pre-defined FIU XML schemas.

Test Case Generator: The Test-Case Generator retrieves output data obtained from a
MATLAB / Simulink simulation, and converts them to timed sequences of input
signals in a PS-TTM-compliant XML file. This application converts signal traces
recorded in other simulation environments into test vectors optimized for the Test-
Case Interpreter (TCl) component of the PS-TTM simulator.

Test Result Interpreter: In order to assess the behaviour of the model under test, the
Test Point Manager of the PS-TTM ATE outputs the results of the simulations as a
value-change-dump file (*.vcd). The VCD format is intended for storing waveforms
captured by instruments in a standard format, and the test user can use specific
viewer applications to retrieve and examine the information contained in VCD files.
However, if the assessment of the system requires sophisticated data analysis, then it
is convenient to export data to other COTS environments. Comma-Separated-Values
files (*.csv) are commonly supported for data transfer between several applications.
The Test Result Interpreter provides a vcd-to-csv file translator, easing the analysis
the simulation results provided by the PS-TTM ATE.

Graphical Modeling Tool (alpha version): Manually typing a time-triggered system
model in plain text is error-prone and might become a tedious work, particularly for
complex systems with many interconnections. A graphical design front-end enhances
the comprehension of the design for the users, presenting the model structure as a set
of diagrams. A preliminary Graphical Modeling Tool was contributed by [Ayel5],
including graphical modeling capabilities for both PIM and PSM models. PIM
models are built hierarchically, by composing Systems, DASes and jobs, which are
represented as blocks.

To build a PSM model, the tool guides the user through these steps:

1. First the user must define the target platform.
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Appendix A. The PS-TTM Modelling Framework

2. Afterwards the tool recalculates the temporal properties of jobs, based on the
specifications contained in the PIM. These temporal properties of jobs might
be modified by users if necessary.

3. The user specifies the deployment model, allocating the functional assemblies
from the PIM to the platform components in the PSM.

4. Finally, an integrated code generator generates the source files for both PIM and
PSM models. Once compiled and linked with the E-TTM SystemC engine, the
PS-TTM simulator is ready to simulate the fault-injection experiments for the
verification of fault-tolerance properties on the system model, at PIM and PSM
abstraction levels.

Figure A.3 shows how the previously described tools are integrated into the workflow
specified by the PS-TTM approach.

As the figure shows, the design of the system should start with the specification of
the functional and non-functional requirements with a dedicated requirement management
tool. Once the requirements have been identified, the testing teams can use the graphical
SFI campaign designer tool to define their SFI campaigns, and generate the necessary
environmental models with Simulink. When these tasks are finished, the SFI XML code
generator and test-case generator script will automatically generate the corresponding XML
files for the evaluation of the system.

Simultaneously, the system designers can start the design of the PIM with the graphical
modeling tool, and generate the textual PIM with the automatic code generator. The
PS-TTM ATE will take the SFI campaign, test cases and test-point configuration file
(developed manually), and perform the specified simulations by means of the PI-TTM
execution engine.

The results of the simulation can then be immediately translated into CSV files by means
of the vcd-to-csv translator. The test designers might then use any csv-compliant software
to analyse and validate the results, and suggest any modification to the system in case the
system does not fulfil any of the requirements.

If the PIM model is considered correct, it is deployed into the platform model by means
of the graphical tool, and automatically generate the textual version of the PSM. The
PS-TTM ATE can then be used to execute the model against the test campaigns defined
from the functional and non-functional requirements, and the test developers can again use
the vcd-to-csv translator in order to validate the results with their favourite csv-compliant
software.
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Deployment

SFI

Prototype

Figure A.3: Integration of tools in the PS-TTM workflow
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Re-using Virtual Devices for Virtual Testing

This dissertation contributed a light-weight para-virtualization approach to provide more
versatile test architectures for verifying distributed Dependable Embedded System (DES)
integrating remote Input/Output (I/O) nodes. When the remote I/O nodes are not
considered as parts of the System Under Test (SUT), then these devices are included
amongst the components of the test-bench. When the test requirements for the SUT
impose test cases with different layouts of the distributed DES (e.g., variable number of
I/O nodes, alternative network topology, etc.), then the overall cost of testing with actual
devices may increase, due to the effort spent in re-configuring the test setup.

Figure B.1 shows an example of a simple test architecture of an Automatic Test Executor
(ATE) that operates an SUT consisting of a single device: the Device Under Test (DUT).
The ATE integrates a Python interpreter to run the test scripts that interact with the DUT
through Controller Area Network (CAN)-networked /O devices. The slave |/O devices have
|/Os paired with those of the DUT. The ATE, the SUT and the |/O devices communicate
using a CAN bus. The SUT and the embedded 1/O devices rely on their integrated CAN
ports, while the ATE computer accesses a communication interface via PCl or USB. In the
configuration depicted in Fig. B.1 the ATE uses an IXXAT CAN interface, where the VCI
component represents the vendor drivers specific to the CAN adapter and the test computer
configuration. To abstract the test specification (e.g., a test sequence programmed in
Python) from dependencies on the test platform, a layered structure of software (SW)
components encapsulates the platform-dependent features:

= PyDevProxy is a Python class that exposes the remote 1/O devices as proxies to the
test scripts, hiding the native implementation of the communication library.
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TEST ARCHITECTURE

. Distributed I/ O :
Personal Computer Python ATE test components .
.’ VA i System Under Test
«execution environment» H ' y
MS Windows : ( SU T)
«execution environment» - V ‘
Python ) LTI ~
«device» i DEVICE UNDER TEST (DUT) \
«deployment spec» 1/0 Device ' ]
T:::gz:,,t «devic(?» caton E i 1/0 cabling. E «device.» 3
1/O Device v ' 1/0 Device ]
1 o casine— ;
«device» q E ' Her @ H
cation H i ECU Application 1
PyDevProxy @ 1/0 Device n Ly’ bli : (Mcu) 3
(Python Class) —I/ Oc E— ;
ECU Applicati ]
% (Mcu) !
PyCDevProxy @ """""""""
(Python extension) |
CAN CAN CAN : CAN
CAN_IXXAT @
vcl IXXAT
@ —USB / PCHH CAN
<. .
---------- ATE interface
to the CAN bus

Figure B.1: A distributed test architecture for automated functional verification

In this example the DUT is also an I/O device, where a new application developed for the DUT target

undergoes testing. In this scenario the remote /O nodes and the DUT may exhibit different behaviours.

» PyCDevProxy is a Python extension programmed in C/C++, implementing the
communication protocols to connect the ATE to either the SUT or the remote
/O nodes. It is intended to re-use available application C code to realize the
communication with the remote 1/O devices. It accesses the CAN port through a
standardized Application Programming Interface (API) interface.

= CAN_IXXAT is an optional abstraction layer to provide a generic API for the CAN
interface, to prevent the upper ATE SW layers from the vendor-specific dependencies.
It is an interface adapter to the selected CAN programming support (in the figure we
show the IXXAT VClI library).

The para-virtualization enables the partial re-use of the actual source from the 1/0
device application, preserving the platform-independent functionality but replacing the low-
level interfaces (e.g. inputs, outputs, communication ports,...) with replicas suited for the
interfaces required in a X-in-the-loop simulator: memory |/O interfaces replace the physical
|/Os, while message queues replace the communication ports integrated the real device.
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For some real-time networks (e.g. CAN bus), multiple virtual devices can share a single
communication port linking to the SUT, which ultimately could replace most of the slave
devices by a special test component: a Restbus simulator. In a real-time hardware-in-the-
loop (HiL) test setup like the Hardware-in-the-Loop Elevator Simulator (HIiLES) the HiL
computing platform provides enough computing performance to emulate hundreds of slave
I/O nodes in soft real-time.

Recalling the test scenario depicted in Figure B.1, the Restbus simulator enables the
replacement of physical I/O nodes, where the test architecture could be simplified as shown
in Figure B.2. In this configuration we re-use the original ATE system unmodified, therefore

! Python ATE TEST ARCHITECTURE b

: «device» i . . «device»

| Personal Computer Vlrtl':la/ I/O ConneCtlons PersonaIEComputer

E «execution environment»;" «execution ei\vironment»
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: Y : ‘

h «execution environment» «execution environment»

E Python V PtolemyEll

E «deployment spec» «fmu» <<fmu:5> «fmu» a

! Python Connections [—1/0 cabling—  CAN Restbus l—can— CAN Port

' Test Script ' (OMNeT++)

: PyDevP k
i (P:ﬂ:,‘:, ,;,0:;) El CAN RESTbus Simulator El
: I i VIRTUALIDEVICES oG
; | b DEVICE UNDER TEST

i Pycoeverory ] i R
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: Shared CAN port . >r ]
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Figure B.2: Partial virtualization of a test architecture using a RESTBUS simulator
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it requires a real CAN network to interact with the virtualized nodes. The virtual components
are deployed in a separate execution context hosted in an additional computer with a shared
CAN interface. To improve composability, a the Restbus simulator is encapsulated in a
Functional Mock-up Unit (FMU) [FMI], such that it can be instantiated from a simulation
environment (e.g. Ptolemy Il [Ptolemyll]), or even another Python interpreter using the
PyFMI adapter [PyFMI].

The virtualization can be further extended to the ATE itself as shown in Figure B.3.
Here a bus simulator (e.g. an OMNeT-++ model) replaces the real CAN network. As a

Personal Computer

Python ATE «device»

. M « ti i ity [
 Virtual I/O Connections ™ s widows Res d_’ us sim ulator
_______ Yo eeeemmemmmmaesben e e e eeeeeeeee £ CONfiguration and
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Figure B.3: Virtual Testing: Full virtualization of a test architecture
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consequence, the CAN abstraction layer in the Python ATE is replaced by an OMNeT++
adapter, but the test scripts remain unmodified. Moreover, the Python interpreter for the
ATE is adapted to be synchronized with the virtual 1/O devices and the virtual DUT. An
FMU encapsulation of the ATE eases the composition of a pure virtual test architecture from
the selected simulation environment. In this configuration all the virtualized components
can run in virtual time, which enables a synchronization that could better reproduce the
temporal behaviour of the original test architecture depicted in B.1.

The resulting test infrastructure is well suited for a pure Virtual Testing approach,
where the test specifications can be exercised against virtual equivalents of hardware (HW)
components, yet enables the functional verification of the SW components, and makes test
re-use and test validation more cost-effective.
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A Primer on GSN Notation

This appendix introduces the Goal Structuring Notation (GSN) notation used in the GSN
diagrams included in this document, compiling information from Eurocontrol’'s Safety Case
Development Manual [SCDMO06], the GSN standard [GSN] and the publication from Habli
and Kelly [HK10].

C.1 GSN Basic Notation

Table C.1 lists the basic GSN stereotypes.

C.2 GSN Modular Extensions

GSN modular extensions support the development of modular and compositional safety
cases [HK10], reducing the effort of the reassessment of a safety case after system
modifications. Using the modular extensions listed in Table C.2 we can partition the
argumentation into a set of scoped argument modules whose composition defines the system
safety case. Argument packages include Argument Modules and Contract Modules. Each
argument module is specified by an interface comprising the goals, context and evidence
contained in the module and the references to elements from other modules supporting the
module arguments. Inter-module dependencies state the reliance on assumptions, context,
goals and evidences, i.e., solutions, found in other modules.
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Table C.1: GSN Entities and Relationships

Graphical depiction

Description

Goal

Argument

Assumption

Assumption

Context

Context from other
{Module}

Justification

Why a claim might
be appropiate

Solution

Evidence (e.g.
test report)

A Goal presents an argument or claim that should take the form of
a simple predicate, i.e., a statement that can be shown to be only
true or false. Goals can be decomposed into lower-level arguments.
For a logical argumentation structure to be sufficient, it is mandatory
that at each level of decomposition: 1) The set of arguments covers
everything needed to show that the parent claim is true, and 2) there
is no valid counter-argument that would undermine the parent claim.

An Assumption is a statement whose validity has to be relied upon in
order to make an Argument. Assumptions may be attached to other
GSN elements, including Strategies and Solutions (evidences).

Context provides information needed to understand or specify an
Argument or other GSN element. Context may include a statement
which limits the scope of an argument in some way.

A Justification is used to give a rationale for the use or satisfaction of
a particular argument or Strategy. More generally it can be used to
justify the change that is the subject of a safety case.

A Solution represents the evidence to support the claims. To consider
that an argument structure is complete, every branch must terminate
in a reference to the item of evidence that supports the argument
to which it is attached. Evidence must be: 1) appropriate to and
necessary to support the related Argument. Spurious evidences should
be avoided in the logical structure for the sake of comprehension and
2) sufficient to support the related Argument (inadequate evidence
undermines the related Argument), as well as all the higher levels of
the structure relying on the latter.

SupportedBy, rendered as a line with a solid arrowhead, states a
relationship of inferential type (i.e., declares an inference between goals
in the argument) or evidence type (i.e., links a goal to the evidence
used to substantiate it).

InContextOf, rendered as a line with a hollow arrowhead declares a
contextual relationship.
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C.2. GSN Modular Extensions

Table C.2: GSN modular extensions to support the development of safety cases.

Graphical depiction

Description

module

Module

Collection of
argument fragments

contract

Contract

Collection of
argument fragments

-

( Away Context )

Context from other
{Module}

F——7in Module

Away Goal

Claim from other {Module

[=—in Module

Public Goal

B

An exported claim -to be
referenced from other
modules

Away Solutio

Evidence from other
{Module}

[F—yin Module |

Argument Modules contain the safety arguments, built upon
Assumptions, Contexts, Goals, Solutions, and their connections,
expressed as InContext0f and SupportedBy relationships.

Contract Modules specify interrelationships between the public
elements of the argument modules. Argument contracts aim at
preserving the overall integrity of the modular safety-case, minimizing
the impact of change between interrelated safety-case modules. The
contract links the goals to be supported (in the generic argumentation)
with the supporting Goals (in the specific argumentation). Essentially,
a safety-case contract captures a ‘rely-guarantee’ relationship between
two argument modules.

An Away Context is a reference to contextual information contained
in another Argument Module.

An Away Goal is a Goal reference that is used to support or provide
contextual backing for an argument presented in one module. However,
the argument supporting that goal is presented in another module
(hence creating interdependencies between the safety-case modules).

A Public Goal is a Goal exported for reference from arguments in other
modules or contracts.

An Away Solution is a reference to a Solution presented in another
Module that is used to support or provide contextual backing for an
argument presented in the module containing the Away Solution
reference.
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C.3 GSN Pattern Extensions

GSN Pattern Extensions were introduced to model reusable patterns for safety-cases [HK10].
To this end, GSN was extended with structural abstractions for linking the modules and
entity abstractions, supporting in turn the generalisation/specialisation of GSN elements

(see Table C.3).

Table C.3: GSN pattern extensions to support the abstraction of arguments.

Graphical depiction

Description

Undeveloped Goal

Claim to be further
developed

<

Uninstantiated
Solution

(evidence to be
provided)

m-of-n

+>

{multiplicity}

+>

{multiplicity}

4O_|>
4O_>

A hollow diamond attached to an entity (e.g., Goal) denotes an
Undeveloped Entity that is a placeholder for an element requiring
further development. At some later stages, the entity shall be
decomposed and supported by sub-entities.

A hollow triangle attached to an entity (e.g., Goal, Solution) denotes
an Uninstantiated Entity that is an ‘abstract’ element that shall be
replaced (i.e., instantiated) with a concrete instance.

A solid diamond indicates a Choice amongst several possible
alternatives to satisfy the relationship (InContextOf or
SupportedBy). It can represent a I-of-n or m-of-n selection.
Choices are used while developing an argument to show a decision
point. However, they must be resolved and removed before completing
a safety argument.

A solid ball indicates that there may be many (meaning zero or more)
instances of the relationship (i.e., InContext0Of or SupportedBy).
The multiplicity label indicates the cardinality of the relationship.

A hollow ball indicates that the relationship (i.e., InContextOf,
SupportedBy) is optional (meaning zero or one).
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Safety Cases

This annex presents some safety-case documentation structures currently in use for railway
signalling and European Air Traffic Management (EATM) applications. For the latter, we
also review the issues found to automatically generate ‘quality’ safety cases, according to
the guidelines defined by Eurocontrol.

D.1 Example Safety-Case Structures

This section recalls three safety-case documentation structures: (a) the EN50129 safety-
case guideline for railway signalling applications CLC/TR 50506-2 [TR50506-2], (b) the
Safety-Case Development Manual (SCDM) for European Air Traffic Management (EATM)
from Eurocontrol [SCDMO06], and (c) the IEC 62741:2015 standard for Dependability Cases

D.1.1 IEC 62741:2015 Dependability Cases

Closely related to Safety Cases, in 2015 the International Electrotechnical Commission (IEC)
published the IEC 62741:2015 [IEC62741], a standard guideline to prepare dependability
cases. This standard gives guidance on the content and application of a dependability case
and establishes general principles for the preparation of a dependability case.

In order to achieve dependability of a system, dependability requirements should be
established, the risks of not meeting them identified and a suitable set of activities developed
to meet and demonstrate the requirements and manage the risks. A dependability case
provides a convenient and convincing means of recording the output of these activities in
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a single location and presenting an argument, supported by evidence, that risks have been
treated and that the necessary dependability has been or will be achieved and will continue
to be achieved over time.

Dependability cases serve as the main means of communication on dependability among
customers, suppliers and other stakeholders and promotes cooperation among them. This
is essential for dependability achievement and providing assurance. Certification bodies and
regulators may examine a submitted dependability case to support their decisions and users
of the system may update/expand the case, particularly where they use the system for a
different purpose.

Preparing a dependability case can also improve dependability through the actions taken
to prepare and develop the argument within the dependability case. It can improve the cost
effectiveness of a dependability programme because if an activity does not provide evidence
to support the case, this may indicate that the activity is not necessary.

Therefore, the scope and aim from the certification approach presented in Chapter 7 are
aligned with the general principles found in standard IEC 62741:2015. This standard could
provide the foundation for an alternative argumentation structure to organize and collate the
different safety evidences generated in the development of Mixed-Criticality Systems (MCSs)
by application of the contributed framework.

D.1.2 Safety Case Structure for EN 50129

The IEC 61508:2010 safety standard does not provide specific guidelines to develop safety
cases. However, the related EN 50129 [EN50129] safety standard for railway applications
defines a standardized safety-case template, published as technical report CLC/TR 50506-2.
The safety-case information is structured as a set of inter-related documents, summarized in
Table D.1 (see [TR50506-2] for a detailed overview). This report also addresses the safety
cases modularity and cross-project re-use of certified components, considering the following
three layers of safety cases:

1. Generic Product Safety Case (GPSC): Safety case for a component used in generic
applications, possibly containing more supportive hardware (HW) and software (SW)
Commercial-Off-The-Shelf (COTS) products.

2. Generic Application Safety Case (GASC): Safety case for standard developments
shared across multiple projects. These safety cases may rely on GPSCs.

3. Specific Application Safety Case (SASC): Safety case specific to a project, addressing
particular data configuration and installation. Complex safety cases may rely on other
Safety Cases.
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Table D.1: EN 50129 Safety Case documentation structure for railway applications
(adapted from [TR50506-2])

Section Section Contents

System Definition This section shall include the system description and general issues.

Quality Management This section shall compile the evidences of Quality Management throughout
Report the entire life cycle of the system under consideration.

Safety Management | The Safety Management Report shall demonstrate that the project has been
Report defined, developed and produced in accordance with a safety management
process compliant with EN 50126-1 standard, and that the organisational
structure satisfies the requirements of EN 50129:2003.

Technical Safety Summary of the safety principles, the extent of safety measures and the list of
Report (TSR) reference standards relevant to the considered system, subsystem, equipment.
The TSR shall include the following sections:
Introduction
Assurance of Shall demonstrate that the correct operation under fault-

Correct Operation  free normal conditions and to describe how safety
requirements are fulfilled.

Effects of Faults Shall demonstrate that safety requirements continue to
be met in the event of random hardware faults.

Operation with Shall provide evidences of operation according to the
External Influences requirements of the safety standard.

Safety-related Compilation of exported assumptions and contextual

application information, generated by safety analysis at each level of

conditions (SRAC)  the project. For Generic Products or a Generic
Applications these constraints shall be explicitly listed in
the corresponding Safety Case, so that they can be
exported and taken into account by the specific
application using the generic ones.

Safety Qualification Shall demonstrate that the specified operational
Tests requirements can be fulfilled by the system / subsystem /
equipment under real operating conditions.

Related Safety Cases| When the current Safety Case relies on other Safety Cases these should be
referred in this section —e.g., GPSCs.

Conclusion Sums up the evaluation on the safety element stating that:

the system is suitable for its intended use,

the Quality / Management Process is controlled and no quality issues
are open,

the Safety Management Process is controlled and all safety issues are
closed or forwarded to the system’s SRACs,

the requested safety target has been reached,

the system’s SRACs are defined,

the SRACs of the related Safety Cases are closed or forwarded to the

system’s SRACs.
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D.1.3 Eurocontrol Safety Case Structure for EATM

Safety Cases (SCs) represented as Goal Structuring Notation (GSN) models have been used
This is covered by the SCDM guideline, which
we adopted to build the prototype DREAMS SCCRC Safety-Case Report (SCR) generator.
Table D.2 reproduces the format and structure to document a safety case as described in
the Safety-Case Development Manual (SCDM) [SCDMO06] from EUROCONTROL, intended

for a while in Air Traffic Management.

for air-traffic operations (see examples in [NEFAB, ACDM16]).

Table D.2: Eurocontrol defined Safety Case template for ATM applications

(adapted from [SCDMO06])

Section Section Contents

The Executive Summary presents guidance on the Safety Case layout.

Executive Summary

Introduction

The Introduction should provide the reader with an overview of what the
Safety Case is about, what it is trying to show and for whom, a summary of
the conclusions and caveats (see below) and recommendations (if any).

This section should include:

Background ~ An outline of, for example, the circumstances which led to the
need for, and development of, the Safety Case;

Aim A simple statement of the aim —i.e., what the Safety Case
seeks to demonstrate. It should be related directly to the top-
level Claim;

Purpose The purpose of the Safety Case —i.e., why, and for whom, it
has been produced;

Scope The scope and boundary of the Safety Case. It is important to
explain what is included and what is not included;

Layout The purpose of each of the sections of the document. In

general, the main part of the document should be structured
along the lines of the Safety Argument.

Service / System
Description

Provide a description of the system to which the Safety Case applies,
including its operational environment, interfaces and boundaries of

responsibility.

Overall Safety
Argument

This section should describe and explain the highest levels of the Safety
Argument structure, including:

Claim
Criteria
Context

Justification

The Claim —i.e., the top-level statement which asserts that the
service / system (etc) is safe;

The Safety Criteria which define what is meant by safe in the
context of the Claim;

A description of the operational context to which the Safety
Case applies;

When the Safety Case applies to a system modification, this
section shall provide the justification for the change, where
the Safety Case addresses a change to a service and/or system
that is not being made mainly for reasons of improving safety,
and therefore potentially for incurring some risk;
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Table D.2: Eurocontrol defined Safety Case template for ATM applications

(continued)
Principal The principal Safety Arguments —i.e., the first level of
Safety decomposition of the top-level Claim — these should be

Arguments reasoned and well structured, showing how the Safety Criteria
are satisfied and the rationale for the approach taken in the
decomposition;

High-level The key Assumptions on which the highest levels of the Safety

Assumptions Argument critically depend —e.g., the level of risk prior to the
introduction of a change is acceptable.

Other Assumptions, applicable to the lower levels of the
Safety Argument structure should be included in the
Assumptions section.

Safety Argument These sections should present each of the principal Safety Arguments in turn,
and Evidence together with the supporting Evidence which shows that each of the
sections Arguments is valid.

It is recommend that, where applicable, each section be structured as follows:

Objective (of the section) —related directly to the principal Safety
Argument;

Strategy (breakdown of the principal Safety Argument into lower-
level arguments);

Rationale (for the Strategy);

Lower-level Arguments / Evidence;

Conclusions (of section).

Assumptions Present directly, and/or by reference, all the Assumptions on which the Safety
Case depends, including the high-level Assumptions mentioned above.
Assumptions usually relate to matters outside of the direct control of the
organisation responsible for the Safety Case but which are essential to the
completeness and/or correctness of the Safety Case. Each Assumption must
be shown to be valid or at least reasonable according to the circumstances.

Issues List any outstanding safety issues that must be resolved before the Claim can
be considered to be valid, together with the responsibilities and timescales
for clearing them.

Limitations State and explain any limitations or restrictions that need to be placed on the
deployment and / or operation of the system.

Conclusions The main conclusion should refer to the original Claim and, if applicable,
reassert its validity, subject to the following caveats:

the Scope —especially what the Safety Case does not cover;

the operational Context to which the Safety Case applies;

the Assumptions that have had to be made;

the outstanding Issues;

any limitation placed on the deployment and/or operation of the
service / system.
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Table D.2: Eurocontrol defined Safety Case template for ATM applications

(continued)

Section Section Contents

Recommendations | Recommendations are not mandatory and any that are made should not be
temporary in nature. For example, it might be appropriate to make
recommendations on the use of the Safety Case by its recipients, but not
concerning its approval.

Recommendations must not contain any statements that would undermine,
or add further caveats to, the Conclusions.

D.2 Issues in Automated Verification of Safety Cases

This section examines some of the difficulties arising when attempting to automatically
generate quality Safety-Case Reports (SCRs) to describe the safety rationale justifying the
safety claims.

Before attempting the certification of a safety system by using safety cases, it is advisable
to check several aspects of the documentation to be presented to a certification body,
ranging from the format and the logical structure to the semantics of the contents. Safety
cases have been in use for several years in the Air Navigation domain. As a result, the
European Organization for the Safety of Air Navigation published a safety-case development
manual [SCDMO06]. Although this guideline targets systems and process for Air Traffic
Management, most of the recommendations would also be applicable to the development
of other types of certifiable safety systems, in particular the subject of DREAMS project:
the production of safety cases for Mixed-Criticality Product Line (MCPL).

Table D.3 recalls the check rules enumerated in [SCDMO06], where subjective terms
are written in italics on a distinctive background colour, and also identifies which rules
are susceptible of automated checking. It should be recalled that the purpose of a safety
case is to present the information in a way amenable to examination by humans, and
noticeably most of the rules contain subjective qualifiers (e.g., ‘actually’, ‘appropriate’,
‘clear’, ‘correctly’) and therefore are not suited to automated processing by a tool as
DREAMS Safety Compliance Constraints & Rules Checker (SCCRC).
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D.2. Issues in Automated Verification of Safety Cases

Table D.3: Safety Case check rules and verification roles
(adapted from [SCDMO6])

Verifiable by™

Property to check Expert

SCCRC .
Reviewer

Safety Case Presentation: General

Is the aim of the Safety Case explained and clear?

Is the purpose of the Safety Case explained and clear?

Is the scope of the Safety Case explained and clear?

Is a justification given as to why the subject of the Safety Case is
necessary?

Are the ‘system’ and its environment completely and correctly
described and bounded?

Is the operational concept described?

Is the regulatory context described?

Is the Safety Case structured along the lines of the Argument?

Is the Argument structure apparent in the layout of each of the core
sections?

HWIN|-

[63]

[(oR N NN e

Argument Structure

10 |Isthe overall Claim a single, clear and unambiguous statement of
what the Safety Case is trying to demonstrate?

11 |Isthe Claim expressed in a positive way — ie does it accept the
“burden of proof”?

12 |Is the context clear?

13 | Are the criteria for being ‘acceptably safe’ appropriate and
adequately specified?

14 | Are the initial assumptions explicitly stated? ’
15 |Is the decomposition of the Argument structure adequately explained
by “Strategies”?

16 |Is the level of decomposition appropriate to the complexity of the -
Safety Case and/or Evidence?

17 |lIs each level of decomposition necessary and sufficient to show that
the parent Argument is true?

18 |Is each Argument set out as a simple predicate? @
19 |Isthe Argument structure free of negative and inconclusive
Arguments? [Lack of evidence of risk # Evidence of lack of risk]
20 | Does the Argument structure appear to be immune to possible °
counter Arguments which could undermine the top-level Claim?
21 |lIs the distinction between product- and process-based Arguments

[ ]
clear?
22 | Are Arguments supposedly related to the observable properties of
the related product (i.e. Direct Arguments) actually addressing the [ ]

outputs of a process?

23 | Are Arguments supposedly related to the observable properties of
the related processes which generated that product (i.e. Backing
Arguments) actually addressing the process?

12 Legend: b- Partially achievable; @ = reasible
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Table D.3: Safety Case check rules and verification roles

(continued)

Verifiable by

Property to check Expert

SCCRC .
Reviewer

24 | Are Direct Arguments and Evidence supported by enough Backing

Arguments and Evidence to give sufficient confidence in the former? b

25 | Where process-based Arguments are used as Direct Arguments, is °
this appropriate?

26 | ls each branch of the Safety Argument structure terminated in
Evidence?
Evidence

27 |ls all the presented Evidence necessary to support the Argument to -
which it relates?

28 | Are all the presented Evidences clear, objective, relevant and °
conclusive in showing the related Argument to be true?

29 |Is the rigour of the Evidence appropriate to the associated risk —i.e. is °
it to the required level of assurance?

30 |Has the Evidence been produced from following an accepted and °
recognised methodology?

31 |Is the underlying safety analysis sound? [ J

32 | Does the safety analysis address both the desired and undesired -
behaviour of the ‘system’?

33 | Are the various possible types of Evidence —design, test, previous °

usage, etc.— used appropriately?

34 | Where Evidence is contained in appendices or external documents, is
an adequate summary presented in the body of the Safety Case L]
alongside the related Argument?

35 | Where Evidence is based on compliance with standards, is its usage

appropriate and justified? ¢
36 |Does the Evidence actually relate to the system / configuration under a
consideration?
Caveats
37 |Have all the Assumptions been clearly stated and validated, or °
responsibilities for validation been stated?
38 | Have all the outstanding Issues been cleared, or responsibilities for
clearing them been stated? e
39 |Have Limitations on the scope of the analysis been clearly stated? [ J
40 |Have Limitations on the deployment / operation of the ‘system’ been PY
clearly stated?
Conclusions
41 |Is there a clear statement of what the Safety Case concludes, which °

relates to the initial, overall Claim?
42 |Is it made clear that the conclusions are subject to the stated Caveats
(see above)?

2 Legend: B- Partially achievable; @ = reasible
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DREAMS Preliminary Safety Case Report

This annex presents an example of a preliminary Safety-Case Report (SCR) generated using
the DREAMS toolset described in Chapter 7. The SCR is the transcription of the rationale
implicit to the automated safety validation carried out by the Safety Compliance Constraints
& Rules Checker (SCCRC) component. The SCR documents the safety argumentation for a
single product sample in the Mixed-Criticality Product Line (MCPL), making it amenable to
human review by safety certification bodies. The overall safety argumentation for a whole
MCPL would consist of a collection of product-specific SCRs. When using the DREAMS
workflow to develop an MCPL, the product line can be refined using the Design Space
Exploration (DSE) tool. The DSE calls the SCCRC twice:

1. The first pass corresponds to the DSE optimization phase, when the SCCRC examines
the satisfiability of the safety requirements by each design under examination,
according to the IEC 61508 safety standard recommendations. This involves several
rounds of safety evaluations for candidate product samples, for which the SCCRC
feeds back a PASS / FAIL verdict.

2. The second pass corresponds to the SCR documentation phase, when SCCRC re-
visits the safety assessment for a previously validated product configuration, this time
in verbose mode, generating a IATEX transcript justifying the design validity.

The SCR included herein was generated for the Wind Turbine Controller Case Study (see
§8.3). 'TODO' markers are reminders of unavailable information in the GSN argumentation
model when generating the report, to be completed later. SCCRC instantiates a product-
specific GSN model each time eventually linking to the DREAMS Modular Safety Cases
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(MSCs), and could refer to other available evidence sources, e.g., analysis and testing
results.
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Chapter 1
Executive Summary

This should provide the reader with an overview of what the Safety Case is
about, what it is trying to show and for whom, a summary of the conclusions
and caveats (sce below) and recommendations (if any).

This Safety Case layout follows the proposal described in the Safety Case De
opment Manual (Edition : 2.2, Edition Date : 13 Nov 2006, Document Identifi
DAP/SSH/091) developed by EATM (European Air Traffic Management).
amples, relating to EATM can be found in the EUROCONTROL Pre- and
Post-Implementation Safety Cases for RVSM:

1 The EUR RVSM Pre-Implementation Safety Case, Edition 2.0, 14 August

2001

2 The EUR RVSM Post-Tmplementation Safety Case, Edition 2.0, 28 July
2004

TODO: Add content
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Chapter 2

Introduction

2.1 Background

TODO: Background should include an outline of, for example, the circumstances
which led to the need for, and development of, the Safety Case.

2.2 Aim

TODO: Aim should include a simple statement of the aim ie what the Safety
Case seeks to demonstrate. Tt should be related directly to the top-level Claim
(see below).

2.3 Purpose

TODO: Purpose should include the purpose of the Safety Case ic why, and
for whom, it has been produced.

2.4 Scope

TODO: Scope should include the scope and boundary of the Safety Case. It is

important to explain what is included and what is not included.

2.5 Layout

TODO: Layout should include the purpose of each of the sections of the doc-
ument. Tn general, the main part of the document should be structured along
the lines of the Safety Argument.

Chapter 3
System Description

Provide a description of the system to which the Safety Case applies, including
its operational interfaces and boundaries of ibi

TODO: Add content

3.1 Main System Description

This section provides a description of the system from the safety point of view,
including:

o System Safety Requirements Specification

em Safety Functions Requirements Specification

em Safety Functions Software Safety Requirements

o System Safety Usage Constraints

3.1.1 (SSR) System Safety Requirements Specification

This section |

o SSR: SSR1 - When Speed Sensor Value >= 100% => activate

SafetyRelays in less than 50 ms
- SIL3
~ LowDemandMode

~ Response Time 50ms

— Traceability - This requirement is provided by system Safety
Function Software Safety Requirement SSFSWR: SafetyProtection

 SSR: SSR2 - When Vibration Sensor Value >= 100% => activate
SafetyRelays in less than 50 ms

— SIL3
~ LowDemandMode
~ Response Time 50ms

— Traceability - This requirement is provided by system Safety
Function Software Safety Requi SSFSWR: SafetyProtection

 SSR: SSR3 - When Voltage PT Sensor Value >= 100% => activate
SafetyRelays in less than 50 ms

- SIL3
~ LowDemandMode
~ Response Time 50ms

— Traceability - This requirement is provided by system Safety
Function Software Safety Requirement SSFSWR: SafetyProtection

3.1.2 (SSFR) System Safety Functions Requirements Spec-
ification

This section provides the list of functional specification of the System Safety

Functions Requirements capable of being performed by the system. These
functions are the following:

o SSFR: SafetyProtection - Function activating Safety Relays when
Excesive Speed, Vibration or Voltage is detected
— Traceability - This function is provided by
Software Safety Requirement SSFSW’

tem Safety Function
: SafetyProtection

3.1.3 (SSFSWR) System Safety Functions Software Safety
Requirements
This section provides the list of the System Safety Functions Software
Safety Requirements that provide the System Safety Functions Require-
ments of the system. These software function requirements are the following:
* SSFSWR: SafetyProtection - Function activating Safety Relays when
Excesive Speed, Vibration or Voltage is detected

3.1.4 System Safety Usage Constraints

3.2 System/Subsystems Description

This section provides a description of the system/subsystems clements that
compose the system from the safety point of view, including:

stem Safety Compliant SW/HW Ttems

~ Safety SW Components
— Safety HW Platform Architecture

~ Safety SW Hypervisors/Partitions

For each system/subsystem the following information is detailed:

o System Safety Requirements
— System Safety Requirements Specification

~ System Safety Functions Requirements Specification

tem Saf

y Functions Software Safety Requirements

Usage Constraints
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Chapter 4

Overall Safety
Argumentation

This section describes and explains the highest levels of the Safety Argument
structure, including;

o the Claim - ie the top-level statement which asserts that the service /
system (ete) is safe;

o the Safety Criteria which define what is meant by safe in the context of
the Claim; a description of the operational context to which the Safety
Case applics:

o the Contes
Safety Case

ic a description of the operational context to which the
pplies;

o the justification for the change, where the Safety Case addr
to a servi i i inly for re:
improving safety, and therefore potentially for incurring some risk;

o the principal Safety Arguments - ic the first level of decomposition of the
top-level Claim - these should be reasoned and well structured, showing
how the Safety Criteria are satisfied and the rationale for the approach
taken in the decomposition;

o the key Assumptions on which the highest levels of the Safety Argument
critically depend - for example, the level of risk prior to the introduction of
a change is acceptable. Other Assumptions, applicable to the lower levels
of the Safety Argument structure should be included in the Assumptions
section.

4.1 Claim

TODO:

4.2 Safety Criteria

TODO:

4.3 Context

TODO:

4.4 Justification

TODO:

4.5 Main Safety Argument

TODO:

4.6 Key Assumptions

TODO:

Chapter 5

Safety Argument and
Evidence Sections

sse sections presents each of the principal Safety Argument Modules in turn,
together with the supporting Evidence which shows that each of the Arguments
is valid. Each argument module is structured as follows

 Root Claim related directly to the principal Safety Argument;

o Strategy (breakdown of the principal Safety Argument into lower-level
arguments);

o Rationale (for the Strategy):

o Lower-level Arguments / Evidence;

5.1 Safety Case: Safety Case
5.1.1 Argument Module: GSN Root
Goal: GO-Root

Claim:

o System Control Electronic is Safe

Supported By:
 Goal: G1-Root - HS/SW Architetcure Design is Sensible
* Goal: G2-Root - V&V Tests done

In Context Of:

 Assumption: Al - IEC 61508 FMS is applied

11

Goal: G1-Root
Claim:
* HS/SW Architetcure Design is Sensible

Supported By:

o Away Goal: GO-UsageConstraints - System’s Usage Constraints
all Usage Constraints of sbSytems. System’s Usage Const
are:

[

SystemListUsageConstraints|

o Away Goal: GO - Architecture Style of all Safety Functions SFi justify
SIL/SC/HFT Reqs

In Context Of:

* No InContextOf nodes defined

Goal: G2-Root
Claim:

© V&V Tests done
Supported By:

 TODO: Unsupported claim - No solution has been defined to support the
claim

In Contest Of:
« No InContextOf nodes defined
Assumption: Al
Claim:
o IEC 61508 FMS is applied
Away Goal: G0-UsageConstraints
Claim:

all Usage Constraints of Safety Susb-

s are:

SystemListUsageConstraints|
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Away Goal: GO

Claim

o Architecture Style of all Safety Functions SFi justify SIL/SC/HFT Reqs

5.2 Safety Case: Safety Case

5.2.1 Argument Module: SfRule-TEC61508—2—Check—JustiableSILfro|
Goal: GO
Claim:

o Architecture Style of all Safety Functions SFi justify SIL/SC/HFT Reqs
Supported By

o Goal: GI - Safety Function SafetyProtection justififies SIL2/SC3/HFT—0
Regs

In Context Of:

o Context: C000 - IEC 61508 arquitectures lool, loolD, 1002, 1002D are
described in TEC61508 Part 6

o Justification: J000 - If each Safety Function complies with
Goal: G1
Claim:
o Safety Function SafetyProtection justififies SIL2/SC3/HFT—0 Reqs
Supported By

 Away Goal: GOAL-loolD - Safety Function SafetyProtection follows
1001D and justifies SIL2/SC3/HFT—0

In Context Of:

 Assumption: A000 - looX[D] architcture is followed by Safety Functions
Context: C000
Claim:

o IEC 61508 arquitectures 1ool, 1001D, 1002, 1002D are described in IEC61508
Part 6

Justification: J000
Claim:
o If each Safety Function complies with
Away Goal: GOAL-1001D
Claim:
o Safety Function SafetyProtection follows 1oo1D and justifies SIL2/SC3/HFT—0
Assumption: A000
Claim:

o 100X[D)] architcture is followed by Safety Functions

5.3 Safety Case: Safety Case
5.3.1 Argument Module: SfRule—IEC61508—2—Check—JustiableSILfro|
Goal: GOAL-1001D
Claim:

o Safety Function SafetyProtection follows LoolD and justifies SIL2/SC3/HFT—0
Supported By:

o Strategy: ST1 - Argument that loolD requirements are met according to
1EC 61508

In Contest Of:
 No InContextOf nodes defined
Strategy: ST1
Claim:
o Argument that 10o1D requirements are met according to IEC 61508
Supported By:

« TODO: Unsupported claim - No solution has been defined to support the
claim

In Contert Of:

* No InContextOf nodes defined

5.4 Safety Case: Safety Case

5.4.1 Argument Module: SfRule—Check—UsageConstraints
Goal: GO-UsageConstraints
Claim:

o System’s Usage Constraints covers all Usage Constraints of Safety Susb-
Sytems. System’s Usage Constraints are: LISTA

Supported By

o Goal: G1-UsageConstraints—Components - System’s Usage Constraints
covers all Usage Constraints of Components

In Context Of:

* No InContextOf nodes defined

Goal: G1-UsageConstraints—Components
Claim:

o System’s Usage Constraints covers all Usage Constraints of Components
Supported By

 Goal: G1.1-UsageConstraints—Components - Component SafetyProtec-
tionMicroBlaze Usage Constraints ~RANGE in [-25.0 .. 60.0]~VERSION
>= 3.0are covered

o Goal: G1.1-UsageConstraints—Components - Component DiagnosticMi-
croBlaze Usage Constraints Usage Constraints defined for this compo-
nent.are covered

In Context Of:

« No InContextOf nodes defined

Goal: G1.1-UsageConstraints—Components
Claim:

« Component SafetyProtectionMicroBlaze Usage Constraints —~RANGE in
[-25.0 .. 60.0]—VERSION >= 3.0are covered

Supported By

o Solution: S1.1.1-UsageConstraints—Components - Usage Constraints are
covered are Covered by Parent’s Usage Constraints

In Context Of:

« No InContextOf nodes defined

Goal: G1.1-UsageConstraints—Components
Claim:

o Component DiagnosticMicroBlaze Usage Constraints Usage Constraints
defined for this component.are covered

Supported By:

o Solution: $1.1.1~UsageConstraints—Components - Usage Constraints are
covered are Covered by Parent’s Usage Constraints

In Conteat Of:

o No InContextOf nodes defined

Solution: S1.1.1-UsageConstraints—Components
Claim:

o Usage Constraints are covered are Covered by Parent’s Usage Constraints
Supported By:

 TODO: Unsupported claim - No solution has been defined to support the
claim

In Contest Of:

. J1.1.1-UsageConstraints—Co; - Usage Constraints
are covered as follows: ~RANGE in [-25.0 . 60.0] is covered by TEMP—~RANGE
in [25.0 .. 60.0]~VERSION >= 3.0 is covered by OS—VERSION >= 3.0

J1.1.1-UsageCons o - Usage Constraints
are covered as follows: Usage Constraints defined for this component.

Solution: S1.1.1-UsageConstraints—Components
Claim:

o Usage Constraints are covered are Covered by Parent’s Usage Constraints
Supported By:

 TODO: Unsupported claim - No solution has been defined to support the
claim
In Context Of:

. fon: J1.1.1-UsageConstraints—C - Usage Constraints
mecovﬂeddﬂollowa ~RANGE in [25.0 . 60.0] is covered by TEMP~RANGE
in [25.0 .. 60.0]~VERSION >= 3.0 is covered by OS—VERSION >= 3.0
J11.1-UsageConstraints—C
are covered as follow

- Usage Constraints
Jsage Constraints defined for this component

16
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J1.1.1- UsageC ints—Cor

Claim

age Constraints are covered as follows: —~RANGE in [-25.0 .. 60.0]
covered by TEMP—RANGE in [-25.0 .. 60.0]~VERSION >= 3.0 is
covered by OS—VERSION >= 3.0

J1.1.1-UsageC ints—C

Claim:

o Usage Constraints are covered as follows: Usage Constraints defined for
this component

J1.1.1-UsageC; i o

Claim

e Usage Constraints are covered as follows: —RANGE in [-25.0 .. 60.0]
is covered by TEMP—RANGE in [ 60.0]-VERSION >= 3.0 is
covered by OS—VERSION >= 3.0

J1.1.1-UsageC; i o
Claim

e Usage Constraints are covered as follows: Usage Constraints defined for
this component

Chapter 6

Assumptions

This section presents dircctly, and/or by reference, all the Assumptions on which
the Safety Case depends, including the high-level Assumptions mentioned abov
Assumptions usually relate to matters outside of the direct control of the organi-
sation responsible for the Safety Case but which are essential to the completeness
and/or correctness of the Safety Case. Each Assumption must be shown to be

valid or at least according to the sta

roDo:

Chapter 7
Issues

This section lists any outstanding safety issues that must be resolved before
the Claim can be considered to be valid, together with the responsibilities and
timescales for clearing them,

TODO

Chapter 8
Limitations

any Limitations or restrictions that need to be
tem

This section states and explain
placed on the deployment and/or operation of the

TODO:

20
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Chapter 9
Conclusions

TODO:

This section should not merely repeat the conclusions from each section here.
The main conclusion should refer to the original Claim and, if applicable, re-
assert its validity, subject to the follo

ing caveats

o the Scope - especially what the Safety Case does not cover:
o the operational Context to which the Safety Case applies:;
o the Assumptions that have had to be made;

o the outstanding Issues:

 any Limitations placed on the deployment and/or operation of the
service / system.

Chapter 10

Recommendations

Recommendations are not mandatory and any that are made should not be
temporary in nature. For example, it might be appropriate to make recommen-
dations on the use of the Safety Case by its recipients, but not concerning its
approval

Recommendations must not contain any statements that would undermine, or
add further caveats to, the Conclusions.

TODO:

Chapter 11

Annex A - Template usage
guide.

DRE!
ing information contained

S WP4 tools generate this basic skeleton of Safety Case Report collect-
the models of the product, particularly from the

Safety model and the GSN argumentation generated from the model

The present document represents the generated basic skeleton of Safety Case
Report for a given product. This document must be completed manually ac-
cording to the following rules:

® Texi

s in Black must be kept as-is, therefore cannot be modified.

 Texts in Blue represent suggestions/recommendations that explain the
nature and purpose of the chapter/section in which they appear. These
texts in blue must be eliminated from the final Safety Case Report

o Texts in Red represent a TODO section. This section must be written
manually by the authors of the Safety Case Report

IMPORTANT: This Anne itself must be eliminated from the final Safety Case
Report.
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