
 
biblioteka@mondragon.edu 

 

 

 

 

 

 

 

This is an Accepted Manuscript version of the following article, accepted for publication 
in: 

J. Olaizola et al., "Integral Design and Manufacturing Methodology of a Reduced-Scale 
Servo Press," in IEEE/ASME Transactions on Mechatronics, vol. 26, no. 5, pp. 2418-
2428, Oct. 2021. 

. 

DOI: https://doi.org/10.1109/TMECH.2020.3039678  

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

https://doi.org/10.1109/TMECH.2020.3039678


IEEE/ASME TRANSACTIONS ON MECHATRONICS 1

Integral Design and Manufacturing Methodology of
a Reduced-Scale Servo Press

Jon Olaizola, Ekaitz Esteban, Javier Trinidad, Aitzol Iturrospe, Lander Galdos, Jose Manuel Abete and
Eneko Saenz de Argandoña.

Abstract—In a context where industrial production boosts both
the society and the economy of a country, improvements in
industrial processes are key factors for efficient and reliable
development of goods and products. New industrial processes
and machines must be evaluated before deployment at large
production scales. This paper proposes a new optimized design
and manufacturing methodology to develop scaled test benches
under predefined design requirements and constraints. The main
contribution of this paper is the integral scaling methodology
based on an optimized dimensional analysis and a similitude
metric that eases the design of a test bench. Thus, the search for
the optimal physical magnitudes of the test bench is accelerated
and the inability to design non-proportional components is
solved avoiding distortion. The first step of the methodology is
definition of scaling laws through the Buckingham’s π theorem.
The second step is to employ a constrained optimization to
determine the physical magnitudes of the test bench, based on
the scaling laws defined earlier. The third step is to calculate
the parameter activities and to set the design tolerances of the
scaled components, so that the components are designed more
freely while dealing with non-proportional ratios obtained due
to arbitrary constraints. The methodology was used to construct
a test bench of a servo press that retains the kinematics and
dynamics of an industrial servo press. Experimental assessment
of the dynamic and kinematic similitudes showed a less than 5%
deviation from the industrial servo press’s force/angular position
ratio.

Index Terms—Test bench, Buckingham’s π, Kinematic and
dynamic scaling, Optimization, Activity analysis, Servo press,
Electromechanics.

I. INTRODUCTION

SCALED test benches that keep a dynamic and kinematic
similitude with the original system allow the testing of

multiple machine configurations and experiments as if they
were tested in the original machine [1]. Scaled systems save
time and money since the original machine does not need
to be stopped to carry out a set of new experiments. The
development of such scaled machines can be part of a more
generalized integrated design framework where several iter-
ations are carried out in order to obtain the final product
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or machine as stated by Zhang et al. [2]. New monitoring
and control strategies can be also applied in a straightforward
manner in scaled test benches before they are deployed in
actual industrial machines. Using this strategy, Brennan and
Alleyne designed and evaluated a scaled test bench of a vehicle
and roadway for safe and economic testing of a vehicle control
application [3]. The scaled vehicle and the roadway kept
dynamic and kinematic similitude with the original vehicle and
roadway, thereby providing a means to attempt several control
strategies before adopting one for full-sized vehicles. Recently,
Esteban et al. presented a scaled elevator system for testing
different electrical and mechanical configurations in controlled
lab conditions [4]. The purpose of that study was to develop an
elevator test bench that could emulate the original elevator’s
dynamics to allow testing of condition-monitoring algorithms.

According to Coutinho et al. [5], authors have mainly used
two methods during the last decades to design and manufacture
mechanical systems based on similitude theory: the differential
equations method and dimensional analysis. The similitude
theory states the necessary and minimum conditions of similar-
ity that a new system or machine must retain with the original
system so that its dynamics and kinematics are representative
of the original system. Both methods take advantage of the
system’s magnitudes, as expressed in a model equation that
explains the dynamic behavior of the system. Unlike the
differential equation method, which simulates the dynamic
model to carry out the scaling of a test bench, dimensional
analysis does not employ the model equation but only the
model magnitudes.

A dynamic model equation is described by state variables,
inputs and parameters [6], [7]. State variables and inputs are
variable magnitudes that represent the state of the system and
the perturbations to which the system is subjected respectively.
The parameters are invariant (or slowly varying) magnitudes
that describe the characteristic or condition of the system
components, such as mass, inertia and elastic constant.

Dimensional analysis is the simplest scaling method. Unlike
the differential equations method, where dynamic and kine-
matic similitude are assessed by trial-and-error, dimensional
analysis evaluates similitude by non-dimensional relationships
among system magnitudes [5]. Dimensional analysis elab-
orates scaling laws based on the Buckingham’s π method
proposed by Vaschy [8].

The Buckingham’s π theorem gathers a system’s physical
magnitudes in the so-called π-groups/terms, which derive in
scaling laws. A physical magnitude is a property of a physical
process or system that can be measured and defined with a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMECH.2020.3039678

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE/ASME TRANSACTIONS ON MECHATRONICS 2

number and a unit. Length, mass, voltage etc. are examples
of physical magnitudes. The π-groups are formulated so their
product yields a dimensionless result. To guarantee a perfect
dynamic and kinematic similitude between the scaled system
and the original, the π-groups must yield the same numerical
result.

Dimension analysis has been widely applied to scale test
benches in several engineering areas. For example, Simitses
and Rezaeepazhand applied dimensional analysis to design
scaled laminated beam-plates [9]. They assumed that the
physical properties of both the original and the scaled beam-
plate were the same, which eases the definition of the rest of
the physical magnitudes based on the formulated π-groups.
Nonetheless, they also pointed out that changing the scale
factors of some magnitudes would derive a complete new set
of magnitude values, which would have to be recalculated.
Similarly, Verma et al. developed a scaled vehicle whose lon-
gitudinal and power-train dynamics kept a dynamic similitude
with a full-size, high-mobility multipurpose wheeled vehicle
[10]. The authors guaranteed the dynamic similitude of both
vehicles by modifying both vehicles (the test bench and the
full-scale one) and introducing distorted scaling laws [11] to
compensate for unfeasible combinations of magnitudes.

Distortion is a widely used mechanism when unfeasible
characteristics of components or material are obtained from
the scaling laws. Distortion is simply a corrective factor that
has to be multiplied to the scaling laws to ensure that dynamic
similitude is met. Recently, Esteban et al. presented a design
methodology of a scaled elevator system for fault detection
and diagnosis [4]. Due to the infinite optimal combinations
of the scaled physical magnitudes that could be established
by means of the defined scaling laws, those authors settled
a design specification sheet and conducted a least squares-
based optimization. Nevertheless, the authors had to perform
numerous optimization runs before providing a scaled elevator
with suitable size/capabilities specifications. The authors also
had to distort the scaling laws concerning the power-train
and the guiding system of the scaled test bench due to the
unfeasible geometric proportions they obtained from their
scaling procedure.

Luo et al. also employed the Buckingham’s π-based dimen-
sional analysis to design and manufacture a test bench with
different models of blade-integrated disks (blisks) [12]. Those
authors also had to use distorted scaling laws to replicate the
dynamics of the different models of blisks that are extensively
used in different applications, such as gas turbines, steam
turbines or aero engines. The reader can find more examples
of dimensional analysis scaling with distorted scaling laws in
[13]–[15].

Zhou and Li proposed to overcome the similitude distortion
introduced by distorted scaling laws by use of the so-called
equivalent similar method to scale the dynamic characteristics
of stiffened cylindrical shells [16]. Before defining the scaling
laws, the authors carried out a process of equivalence by
interrelating the different magnitudes that participate in the
model equations based on their dependence on each other.
Thus, they were able to design the components of their use
case more freely. Although their methodology successfully

improves the limitation of distorted test bench designs, the
method has two handicaps. One is that the equivalent method
includes an integration of the system parameters that makes
simplifying assumptions in order to reduce the amount of
parameters involved in the model equation. The removal
of parameters from dynamic model equations in motional
systems is unfeasible as they contribute to the kinematics of
the system. The second limitation is that all the independent
parameters are mainly fixed to preset values; therefore, they
cannot evaluate whether the scaling of the system is optimal.

The present paper proposes a design and manufacturing
methodology for developing a scaled test bench that is able
to reproduce the dynamics and kinematics of the original
system, based on the dimensional analysis. The methodology
overcomes the limitations found in the literature by applying
static optimization and tolerance-based design approaches. The
physical magnitudes included in the dynamic model equation
of the system are optimally defined through the optimiza-
tion approach conducted based on the constraints and de-
sign variables formulated from requirements. The constrained
optimization solves the multiple iterations involved in the
definition of the system magnitudes. The similitude distortion
derived from practical design limitations is also addressed by
carrying out an activity-based analysis [1] to identify param-
eters with negligible contribution to the system dynamics.
Hence, no distortion of scaling laws is required and some
components of the test bench can be designed more freely. The
proposed integrated design and manufacturing methodology is
significantly different from the concurrent integrated design
methodologies by use of optimization techniques, e.g. [17] in
that they cannot solve the scaled design problem.

The rest of the paper is organized as follows. Section II
presents the proposed design and manufacturing methodology
for the kinematic and dynamic scaling of test benches. Section
III describes the dynamic model equation of an industrial servo
press and shows the application of the methodology to design
and manufacture a scaled version of an industrial servo press.
Section IV shows the experimental results of the manufactured
test bench and compares the dynamics and kinematics of the
test bench and the original servo press. Finally, section V
gathers some conclusions and suggests future lines of research.

II. METHODOLOGY

Similitude-based scaling arises from the basic theorem of
dimensional analysis, also known as Buckingham’s π theorem
[18], [19]. This theorem provides a methodology for formulat-
ing dimensionless scaling laws from a system’s magnitudes.
The obtained scaling laws must yield the same results using
the physical magnitudes of the original system and the scaled
magnitudes of the test bench to keep the dynamic simili-
tude between both systems. Buckingham’s π theorem does
not concern the proportions of the physical magnitudes of
components, but it guarantees that the dynamic behavior of the
scaled machine will be similar to that of the original system.

Formulated scaling laws offer the possibility of scaling
the test bench in multiple ways. In this study, the size and
characteristics of the scaled test bench are limited by assessing
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those scaling laws in a static optimization framework to obtain
optimal values of magnitudes according to the predefined
requirements and constraints.

When designing the components of the test bench, as
established by the optimal physical magnitudes, the designer
may encounter difficulties due to unfeasible characteristics of
the components. This limitation is overcome by proposing
design tolerances based on the importance of the parameters
in the performance of the test bench’s dynamic behavior.
The importance of the parameters is measured in the activity
analysis.

A. Buckingham’s π formulation

Let us assume a dimensional expression (1) that includes U
physical magnitudes s of the analyzed dynamic system.

z = g(su) u = 1, 2, .., U (1)

Physical magnitudes are formed by fundamental dimensions
denoted as M = mass, L = length and T = time. Some
physical magnitudes such as the mass m(kg) = M , have
one fundamental dimension, while others such as the linear
acceleration a(m/s2) = LT−2, have more than one. Let us
define Q as the number of fundamental dimensions among
all the physical magnitudes su. Buckingham’s π theorem then
determines that the U magnitudes can be arranged in (U −Q)
dimensionless equations known as π-groups.

The π-groups are constructed using as many repeating
magnitudes j as Q, each one including at least one of the
fundamental dimensions. The most frequently chosen repeat-
ing magnitudes are those that are a-priori known or easily
measurable. Thus, a π-group is represented as in (2).

πn = sn(j1)α1(j2)α2 ...(jq)
αq

n = 1, 2, ..(U −Q) q = 1, 2, ..Q
(2)

where α1, α2, αq are chosen to ensure each πn-group is
non-dimensional. These π-groups can be used to define scaling
laws λ for each scaled magnitude of the system as expressed
in (3).

λn =
πnt

πno

λsu =
sut

suo

(3)

where sub-indexes t and o stand for the test bench and the
original system respectively.

B. Optimization of the scaled system’s physical magnitudes

Unlike for an ideal scaling framework, where the system’s
magnitudes can be scaled faithfully according to the estab-
lished requirements, sometimes the design of the scaled system
is subjected to constraints, such as geometric constraints that
have to do with the kinematics of scaled system, dynamic
constraints related to the dynamic behavior or operational
constraints that limit the maximum and minimum operation
ranges of the mechatronic system. In this context, achieving
the required scaling of the system may be tedious. To over-
come this difficulty a static convex optimization approach is

proposed, which provides optimal values for the test bench’s
magnitudes keeping the dynamic and kinematic similitude
with the original system. The optimization must also satisfy
some operational and geometric requirements and constraints.

The optimization approach is stated as a minimization of a
cost function f(λsu) defined from the design requirements
and subject to constraints. A design requirement can be
any operational specification that the scaled test bench must
guarantee, keeping at the same time the dynamic and kinematic
similitude with the original system, e.g. a proportional torque
to rotate a scaled servomotor at the same constant speed as
the original servomotor. The constraints are usually given by
geometric specifications and operational limits h(λsu) of the
scaled system, such as length, width, mass, maximum and
minimum speed, voltage, force, pressure and so on.

Some of the scaling laws obtained from the Buckingham’s π
formulation are used as design variables, whilst others are used
as constraints of the scaled system. Maximum and minimum
values of the test bench’s magnitude ratios are also used as
boundaries to delimit the capabilities of the test bench. The
optimization problem is expressed as in (4).

min
λs

f(λs) λs ∈ Λs

s.t. hi(λs) = 0 i = 1, ..., I

λsumin
6 λsu 6 λsumax

(4)

where λsumin
and λsumax

represent the minimum and
maximum values the physical magnitude ratios can take in the
optimization approach, based on the maximum and minimum
values of their corresponding physical magnitudes.

The optimization algorithm is executed until Karush-Kuhn-
Tucker (KKT) optimality conditions [20] are satisfied in a
local or global minimum. The optimized values of the system’s
magnitudes describe a scaled system that keeps the dynamic
and kinematic similitude with the original system.

C. Definition of design tolerances

Some physical magnitudes included in the scaling method-
ology, such as masses, inertia and geometric characteristics
of components, are known as system static parameters, since
they do not change during the working cycle of the system. On
occasion, the constrained optimization of the physical magni-
tudes can yield values that are difficult or even impossible to
obtain when designing a component. Deviations introduced in
the design of the components and in their manufacturing may
affect, to some degree, the dynamics and kinematics of the test
bench. Quantifying the effect these inevitable deviations will
cause in the dynamics of the systems is therefore important, as
is determining the impact of each parameter on the dynamics
of the system. This determination will allow relaxation of
the specifications of components parameters with less activity,
easing the design of the test bench components.

Some parameters have a greater impact than others on the
dynamic behavior; therefore, their tolerance with respect to the
optimized values should be lower to keep the kinematic and
dynamic similitude. On the contrary, deviations in parameters
that have less impact on the dynamic behavior produce a
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minor change in the dynamics of the system. The influence
of a system’s parameters is determined by analyzing each
parameter’s activity, which is a measurement of the amount
of energy a parameter of the system consumes and generates
over a specified time window T . The activity sheds light on
the sensitivity of a parameter on the dynamic behavior of the
system. Activity is defined as in (5).

Ax =

∫ T

t=0

|Px(t)|dt x = 1, 2, ..., X (5)

Here |Px(t)| is the absolute value of the parameter’s power
over the time window T and X is the number of parameters
p of the system.

According to the activity analysis, the parameters with
the smallest activities tolerate a larger deviation from the
optimized values without significantly altering the dynamic
behavior of the test bench to be manufactured. The toler-
ance of the parameters’ values is specified by the grade of
similitude required by the designer and is calculated based
on the sensitivity Ω of the analyzed parameter as in (6). The
sensitivity measures the percentage by which the activity of
a parameter changes due to its deviation (∆sx ) with respect
to a benchmark. The benchmark is the activity of a parameter
calculated for the value obtained in the optimization.

Ωx =
Ax(∆sx )∑X
x=1Ax

× 100 (6)

This methodology leads to a more flexible design and man-
ufacturing procedure for scaled test benches. The definition of
tolerances based on the activity and sensitivity analysis also
allows a reduction in manufacturing costs while keeping a high
degree of dynamic and kinematic similitude with the original
system. Fig. 1 describes the three stages of the methodology,
along with the tasks carried out within each of the stages.

Fig. 1. Stages and of the proposed design and manufacturing methodology.

III. APPLICATION OF THE METHODOLOGY FOR THE
DESIGN AND MANUFACTURING OF A REDUCED SCALE

SERVO PRESS TEST BENCH

The proposed methodology has been used to construct a
reduced scale test bench of an industrial servo press, providing
it the ability of emulating the dynamic and kinematic behaviors
of the original system. The purpose of manufacturing the
test bench is to provide a means of testing different machine
conditions and experiments as if they were conducted in the
original servo press. The test bench will also be useful for
predicting the behavior of the industrial servo press before the

new manufacturing processes are implemented in the industrial
production line.

A. Model of the servo press

As presented in [21], a servo press is a mechatronic sys-
tem composed of an electric servomotor and a mechanical
kinematic chain that transforms the torque transmitted by
the servomotor into process force. This process force is the
magnitude that shapes the produced part by means of a die.

The mechanical kinematic chain of the analyzed servo press
is formed by a gearbox, a crankshaft, two connecting rods and
a ram, as illustrated in Fig 2. The ram slides through a guiding
system that maintains the parallelism of the ram with respect
to the bed of the servo press. The bed of the press is installed
on the bolster, which also supports the frame of the servo
press. A load balancer counteracts the weight of the ram, so
the servomotor does not have to produce an excessive torque
to move the ram. The load balancer is a pressured chamber
whose force depends directly on the inner pressure of the air
and the area of the chamber.

Fig. 2. Common components of metal forming press (Courtesy of Fagor
Arrasate).

The dynamic model equation of the servo press is shown
in (7), whose physical magnitudes are listed in Table I.
Three magnitudes of Table I are excluded from the scaling
methodology for different reasons. The scaling of the gearbox
is excluded from the dimensional analysis. Since the gearbox
(as well as the servomotor) is a commercial device, it will be
selected based on the torque and the speed obtained from the
optimization step. Therefore, the value of η will be implicit
in τe for the dynamic analysis, which actuates directly over
the crankshaft. Likewise, the friction torque cannot be scaled,
since it will depend on factors that cannot be scaled, such as
lubrication, the finishing of the manufactured components or
the assembly of the system. The load balancer has not been
taken into account either, since its selection wholly depends
on the mass of the ram, and it will therefore be selected once
the ram is designed.
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M(θ)θ̈ +N(θ)θ̇2 +G(θ) =τeη − τfric − (Fms + Flb)

r sin θ

(
1 +

r cos θ

c

)
(7)

where M(θ), N(θ) and G(θ) are defined in (8), (9) and
(10) respectively,

M(θ)=

I1+m1ŕ
2+

I2r
2cos2θ

c2
+

(
l − ĺ

)2

l2
m2r

2cos2θ

+sin2θ

m2r
2

(
rĺ cos θ+lc

)2

l2c2
+m3r

2 (r cos θ+c)2

c2


+I4+I5η

2
4 +I6 (η4η5)2+I7 (η4η5η6)2


(8)

N(θ)=
1

2

(
2I2r

4 cos3 θ sin θ

c4
− 2I2r

2 cos θ sin θ

c2

−
2m2r

2 cos θ sin θ
(
l − ĺ

)2

l2
+ 2 sin θ cos θm2r

2

(
rĺ cos θ + lc

)2

l2c2
+m3r

2 (r cos θ + c)2

c2


+2sin2θ

m2r
3 ĺ sin θ

(
rĺ cos θ + lc

)
(r cos θ − c)

l2c4

(r cos θ+c)

l2c4
+
m3r

3 sinθ(r cos θ+c)2(r cos θ − c)
c4

))

(9)

G(θ)=g

(
sin θ (m1ŕ +m2r +m3r) + sin θ cos θ(
m2r

2 ĺ

lc
+
m3r

2

c

)) (10)

and c =
√
l2 − r2 sin2θ.

TABLE I
SYMBOLS OF SERVO PRESS MODEL

States

θ, θ̇, θ̈
(
rad, rads ,

rad
s2

) Angular position, speed and
acceleration of the crankshaft

Parameters
g = 9.81ms2 Gravitational acceleration constant

I1 = 80.72kgm2 Inertia of the crankshaft
m1 = 424kg Mass of the crankshaft

I2 = 132.72kgm2 Inertia of the connecting rods
m2 = 424kg Mass of the connecting rods
m3 = 11600kg Mass of the ram
r = 0.2m Radius of the crank

ŕ = 0.0762m
Distance between the axis

of the crank and its center mass
l = 1.05m Length of the connecting rod

ĺ = 0.327m
Distance between the connecting

rod’s axis and its center mass

I4 = 105.77kgm2 Inertia of the 1st gear
of the gearbox

I5 = 19.007kgm2 Inertia of the 2nd gear
of the gearbox

I6 = 3.58kgm2 Inertia of the 3rd gear
of the gearbox

I7 = 7.38kgm2 Inertia of the servomotor’s
rotor

η4 = 60/17
Reduction ratio of the 1st

gear of the gearbox

η5 = 60/17
Reduction ratio of the 2nd

gear of the gearbox

η6 = 71/18
Reduction ratio of the 3rd

gear of the gearbox
η = η4η5η6 Reduction ratio of the gearbox

Inputs
Fms(N) Force of the process
Flb(N) Force of the load balancer
τe(Nm) Electric torque of the servomotor
τfric(Nm) Friction torque

B. Application of the methodology

The magnitudes to be scaled are included in the dimensional
expression, as shown in (11).

z = g(τe, θ, θ̇, θ̈, r, ŕ, l, ĺ, I1,m1, I2,m2,m3, Fms, ξ, x) (11)

where the symbols that have not been already defined in
the previous subsection are ξ and x, representing the elastic
coefficient and the linear deformation of the servo press’s
structure, respectively. These two magnitudes are implicitly
included in the process force, since they define the force that
the servo press structure exerts against the formed workpiece
(Fms = ξx). Fms denotes the maximum process force value
of the servo press, which will be the main design requirement.
Equation (11) shows U = 16 scalable magnitudes, whose
fundamental dimensions are listed in Table II.

TABLE II
FUNDAMENTAL DIMENSIONS OF SERVO PRESS MAGNITUDES

Magnitude Dimension Magnitude Dimension

τe ML2T−2 (I1, I2) ML2

θ none (m1,m2,m3) M

θ̇ T−1 Fms MLT−2

θ̈ T−2 ξ MT−2

(r, ŕ, l, ĺ) L x L

The dimensional analysis of the magnitudes gathered in
Table II show Q = 3 fundamental dimensions (M ,L and
T ). Thus, (U − Q) = 13 non-dimensional π-groups can be
formulated by means of Q repeating magnitudes selected by
convenience. The selected repeating magnitudes are j1 = Fms,
j2 = m3 and j3 = r, since they can be easily measured in the
original servo press. The π-groups are shown in Table III. The
π1-group calculation procedure is demonstrated in Appendix
A.
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TABLE III
π-GROUPS FORMED BY SERVO PRESS’S MAGNITUDES

π1
τe

Fmsr
(π8, π9)

(I1,I2)

m3r2

π2 θ (π10, π11)
(m1,m2)
m3

π3 θ̇
√

m3r
Fms

π12 ξ r
F

π4 θ̈m3r
Fms

π13
x
r

(π5, π6, π7)
(ŕ,l,ĺ)
r

The π-groups lead to the formulation of the scaling laws
λn, which describe the ratio between the physical magnitudes
of the original system and the scaled test bench. The scaling
law constructed from π1 is shown in (12). Scaling laws are
grouped as in the Table IV.

π1 →
τeo

Fmsoro
=

τet
Fmstrt

→

Fmstrt
Fmsoro

=
τet
τeo
→λFmsλr = λτe

(12)

TABLE IV
π-GROUPS FORMED BY SERVO PRESS’S MAGNITUDES

π1 λFms
λr = λτe (π8, π9) λ(I1,I2) = λm3

λ2
r

π2 λθ = 1 (π10, π11) λ(m1,m2) = λm3

π3 λθ̇ =
λ
1/2
Fms

λ
1/2
m3

λ
1/2
r

π12 λξ =
λFms

λr

π4 λθ̈ =
λFms

λm3λr
π13 λx = λr

(π5, π6, π7) λ(ŕ,l,ĺ) = λr

The obtained scaling laws are used in a static sequential
quadratic programming (SQP) algorithm executed in MAT-
LAB using the fmincon function. The fmincon function in-
cludes constraints and a single design variable-based cost func-
tion. The cost function is defined by the squared error between
the objective maximum force ratio (λFms

) and the optimal
maximum force ratio (λ̄Fmsi

) provided by the optimization
algorithm at each i iteration. Therefore, the cost function has
no units. The optimization problem and the cost function are
expressed in (13) and (14) respectively.

min
λFms

f (λFms) (13)

f (λFms) =
(
λFms − λ̄Fmsi

)2
λ̄Fmsi

= λ̄ξi λ̄ri
(14)

At each i iteration, the optimization algorithm proposes
values for λ̄ξi and λ̄ri to obtain the optimal maximum force
ratio λ̄Fmsi

until the KKT optimality conditions are met for
the cost function, either in a local or global optimum. The
rest of the scaling laws are introduced in the algorithm as
non-linear equality constraints hn(ceqn), as in (15). There is
the possibility that this problem is not convex because the
equality constraint condition is not affine function. Then, the
optimal solution depends on the initial conditions. Thus, the
scaled physical magnitudes of the test bench must yield the
same π-group values as the original system’s magnitudes do,
which guarantees retention of the kinematics and dynamics.

The design variables and constraints are provided to the
optimization algorithm as inputs. In this case, the targeted
design objective is that the test bench must carry out at least
a process force up to Fms = 1000kgf , which corresponds to
a 1:400 scaled maximum force compared to the original servo
press. The maximum size of the test bench is also defined as a
boundary constraint by means of the displacement of the ram.
The displacement of the ram d, which is given by d = 2r is
bounded by [0.03, 0.04]m.

ceq1 =

(
λτe

λFmsλr
− 1

)
ceq2 =

(
λθ̇λ

1/2
m3 λ

1/2
r

λ
1/2
Fms

− 1

)

ceq3 =

(
λθ̈λm3λr
λFms

− 1

)
ceq(4,5,6) =

(
λ(ŕ,l,ĺ)

λr
− 1

)

ceq(7,8) =

(
λ(I1,I2)

λm3λ
2
r

− 1

)
ceq(9,10) =

(
λ(m1,m2)

λm3

− 1

)

ceq11 =

(
λξλr
λFms

− 1

)
ceq12 =

(
λx
λr
− 1

)
(15)

All the scaling laws are initialized to 1 so that the SQP
begins the search from the original servo press magnitudes.
The SQP takes 14 iterations (with a priori undefined number
of runs at each iteration) to obtain the optimal values of the
scaling laws with the given initial conditions, yielding the min-
imum value of the cost function of 5.625×10−5. The optimized
values shown in Table V, are those that guarantee the dynamic
and kinematic similitude. In regards to the optimized θ̇ and θ̈,
note that they represented the factors with which the speed
and acceleration of the crankshaft must be increased in the
test bench to keep the dynamic similitude with the industrial
machine during the whole working cycle. These two factors
compensate the non-proportional scaling of the magnitudes of
components such as the mass and the inertia of connecting
rods and the crankshaft, and they mainly contribute to the
torque consumed during the whole working cycle of the press
in moving the kinematic chain, so that λτe is kept constant.

TABLE V
ORIGINAL AND OPTIMIZED PHYSICAL MAGNITUDES’ VALUES

Mag Or Val Opt val λsu

τe 9.081× 104Nm 22.70Nm 2.5× 10−4

θ (−)rad (−)rad 1

θ̇ (X)rad/s 2.19(X)rad/s 2.19

θ̈ (X)rad/s2 4.82(X)rad/s2 4.82
r 0.2m 0.02m 0.1
ŕ 0.076m 0.00762m 0.1
l 1.05m 0.105m 0.1

ĺ 0.3270m 0.0327m 0.1
I1 80.92kgm2 0.0045kgm2 5.5× 10−5

m1 424kg 2.35kg 5.5× 10−3

I2 132.72kgm2 0.0073kgm2 5.5× 10−5

m2 825.86kg 4.57kg 5.5× 10−3

m3 11600kg 64.21kg 5.5× 10−3

Fms 400000kgf 1000kgf 2.5× 10−3

ξ 1.35× 109N/m 3.375× 107N/m 2.5× 10−2

x 0.0025m 0.00025m 0.1
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The values obtained solving the π-groups for both the orig-
inal system and the test bench, reveal an identical kinematic
and dynamic similitude of the test bench according to the
Buckingham’s π theorem. Results are shown in Table VI.
Therefore, π-groups reveal that the test bench’s magnitudes
are optimally scaled.

TABLE VI
π VALUES OF THE ORIGINAL AND OPTIMIZED PHYSICAL MAGNITUDES

π-groups Original values Optimized values

π1 1.1351 1.1351
π2 1 1
π3 0.0762 0.0762
π4 0.0058 0.0058
π5 0.3811 0.3811
π6 5.25 5.25
π7 1.6351 1.6351
π8 0.174 0.174
π9 0.286 0.286
π10 0.0366 0.0366
π11 0.0712 0.0712
π12 675 675
π13 0.0125 0.0125

Difficulties may arise in designing the components specified
by the optimized physical magnitudes; therefore, a procedure
based on parameter activities and sensitivities is carried out
in the third step of the methodology. Safety issues can make
the designer consider a component too weak if designed
under the specified optimal parameters, as in the case of the
connecting rods. The designer of the test bench will define
some ranges for the parameter values based on a tolerance
defined by means of the sensitivity of parameters. A smaller
tolerance defined for the test bench component parameters
with respect to the optimal values, will result in a higher
similitude with the dynamics and kinematics of the original
servo press. At the same time, smaller tolerances can also
imply higher manufacturing costs, since the required properties
of the components, such as the weight and inertia, can be also
more difficult to obtain.

The parameters of the test bench are m1, m2, m3, I1, I2 and
ξ, which define the condition of the test bench’s components.
Analytical expressions of the parameters’ power are shown in
Appendix B. Parameter activities are expressed in the set of
equations (16).

Am1
=

∫ T

t=0

|Pm1
(t)|dt Am2

=

∫ T

t=0

|Pm2
(t)|dt

Am3
=

∫ T

t=0

|Pm3
(t)|dt AI1 =

∫ T

t=0

|PI1(t)|dt

AI2 =

∫ T

t=0

|PI2(t)|dt Aξ =

∫ T

t=0

|Pξ(t)|dt

(16)

Optimized parameter activities are calculated numerically
using the analytical expression of parameter power and the

crankshaft’s angular position θ as inputs for the calculation of
power. The crankshaft’s angular position is depicted in Fig. 3.
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Fig. 3. The angular position of the crankshaft.

The activity values and their percentage of the total activity
are shown in Table VII.

TABLE VII
PARAMETERS’ ACTIVITIES

Parameters Activity Activity percentage

m1 0.7014J 1.23%
m2 3.59J 6.31%
m3 50.35J 88.6%
I1 0.088J 0.15%
I2 6.81× 10−4J 0.002%
ξ 2.11J 3.71%

Total 56.84× 105J 100%

Fig. 4 shows the evolution of activities during the working
cycle. The activity analysis reveals that a deviation in the
ram’s mass will have a greater impact on the kinematic and
dynamic behavior of the system than will a deviation in other
parameters, since the ram activity is 88.6% of the total activity.
The activity of m3 implies that the dynamic and kinematic
behavior of the entire system are highly dependent on the mass
of the ram.
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Fig. 4. Activities of parameters during a single cycle of the servo press.
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Regarding the design and manufacturing of the scaled test
bench, a tolerance of 2% in the parameter activities is set,
which contributes to the definition of more relaxed design
specifications of the components. Some components, such as
the cranks and the connecting rods, would otherwise be much
more expensive and difficult to manufacture due to the inertia,
masses and lengths obtained in the optimization. The ranges
of the parameters are shown in Table VIII. These ranges are
calculated based on the sensitivity equation presented in (6),
where Ωx is replaced by the 2% tolerance, and the parameter
values that generate that 2% of deviation are calculated. Table
VIII also shows the actual values obtained after the design and
manufacturing. For parameters with small activity percentages
(less than 3%), values equal to or higher than the optimized
values have been proposed, since components with smaller
values were more difficult and expensive to manufacture due
to the characteristics of the manufacturing material required.
According to Table VIII, the obtained parameter values after
the manufacturing process lie between the established mini-
mum and maximum values.

TABLE VIII
PARAMETERS’ MANUFACTURING RANGES

Par Range After manufacturing
Actual value Activity %

m1 [2.35, 7.16] kg 6.058kg 3.09%
m2 [3.24, 8.58] kg 7.24kg 8.76%
m3 [42.23, 73.2] kg 60.12kg 85.33%
I1 [0.0045, 0.1523] kgm2 0.0101kgm2 0.154%
I2 [0.0073, 2.4] kgm2 0.0410kgm2 0.006%
ξ

[
2.66×107, 4.76×107

]
N/m 3.06×107N/m 2.66%

The entire test bench was manufactured by means of a
machining process and is shown in Fig. 5. The servomotor that
drives the operation of the press is OMRON’s model R88M-
1M1K020C-S2(Q), which is able to exert up to 4.77Nm
in continuous operation, and it is controlled by means of
OMRON’s NJ301-1100 controller. The servomotor is attached
to the crankshaft through APEX DYNAMICS’s PEIIR090-
I7 elbowed gearbox with a reduction ratio of η = 7. Thus,
the assembly formed by the servomotor and the gearbox can
exert up to 33.39Nm in the absence of inefficiencies in the
kinematic chain.

Fig. 5. The manufactured test bench.

Since the commercial assembly formed by the servomotor
and the gearbox was selected to fulfill the maximum torque
obtained in the optimization step, differences exit between the
reduction ratio and the inertia of the different gears placed
within the gearbox of the original servo press and the gearbox
of the test bench. The industrial machine has three different
reduction stages with the inertia values described by I4, I5
and I6 shown in Table I. By contrast, the gearbox of the test
bench has an inertia of Igb = 2.24×10−4kgm2. The reduction
ratios of both gearboxes also differ, at η = 49.13 and η = 7
for the industrial machine and the test bench respectively.
Nonetheless, despite these differences, the contribution of
the gearbox to the dynamics of the servo press allows the
kinematic and dynamic scaling of the test bench.

IV. EXPERIMENTAL RESULTS OF THE MANUFACTURED
TEST BENCH

The dynamic and kinematic behavior of the test bench were
compared with those of the original servo press. The dynamic
behavior of the original servo press was monitored using two
different force level strokes performed against two cylinders
of rigid steel placed under each connecting rod, as shown in
image A of Fig. 6. The two force levels were achieved by
placing two rigid steel foils of different thicknesses on the
rigid cylinders. The process force was measured using two
piezoelectric sensors, each one installed in their respective
connecting rod, and measuring the force signal at 1ksps.
The two maximum forces applied in both experiments were
then λFms

proportionally replicated in the scaled test bench,
using foils of different thicknesses placed on a rigid cylinder
equipped with a load cell, as illustrated in image B of Fig. 6.
Measurements were also carried out at 1ksps.

Fig. 6. Experimental set-up of the original servo press and the test bench.

Fig. 7 shows the two force profiles measured in the orig-
inal servo press and the scaled test bench. The proportional
force of the scaled test bench and the force of the original
servo press in experiment A and experiment B, result in
a similar force curve for the same angular position of the
crankshaft, with a root-mean-square error (RMSE) value of
7.33t and 19.13t, respectively. Comparing these RMSE values
with the maximum force applied in both experiments, 182t
in experiment A and 351t in experiment B, the obtained
relative errors are 4.03% and 5.45% in experiment A and
experiment B respectively, which yield an average value of
4.74% for the relative error. Therefore, the obtained relative
error demonstrates the dynamic and kinematic similitude of
the test bench with the original servo press.
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Fig. 7. Force profiles achieved in the original servo press and in the test
bench, drawn throughout the angular position of the crankshaft.

Fig. 8 illustrates the curves for a force vs the linear position
of the ram obtained in both experiments. The two curves in
the test bench have a similar slope to those obtained in the
industrial servo press. The differences noted at the beginning
of the slope (around 2.5×10−3m and 1.5×10−3m in experiment
A and around 3×10−3m and 2.5×10−3m in experiment B) are
due to the differences in the dynamics of the load balancers
of the test bench and industrial servo press.
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Fig. 8. Force profiles achieved in the original servo press and in the test
bench, drawn throughout the linear displacement of the ram.

Fig. 9 shows the torque signals exerted by the servomotors
of the industrial servo press and the test bench to generate the
two force profiles illustrated in Fig. 7 in experiments A and B.
The RMSE values for the portion of signal where the stroke
is performed are, respectively, 1304.41Nm and 4346.9Nm in
experiment A and B. Comparing the RMSE values with the
peak to peak torque values of both experiments (41323.58Nm
in experiment A and 97643.53Nm in experiment B), the
obtained relative errors are 3.16% and 4.45%, respectively.
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Fig. 9. Torque profiles achieved in the original servo press and in the test
bench, drawn throughout the angular position of the crankshaft.

Fig. 10 illustrates the two speed profiles drawn by the
crankshaft of the test bench and the original servo press in
the two experiments shown in Fig. 7. As the reader may
notice, slight deviations occur in the slopes of the speed
profiles produced by the test bench and the industrial servo
press. These differences are due to the different controllers
and different non-proportional inertia of the kinematic chains
that the servomotors have to move. The RMSEs of both
experiments are also shown in the corresponding graphs for
the two experiments; the RMSE are 3.12◦/s and 3.44◦/s for
experiments A and B, respectively. Comparing these RMSE
values with the maximum speed applied in both experiments,
60◦/s, the obtained relative errors are 5.2% and 5.73% in
experiments A and B respectively.
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Fig. 10. Crankshaft speed profiles achieved in the original servo press and
in the test bench, drawn throughout a complete working cycle.

V. CONCLUSION

The proposed design and manufacturing methodology pro-
vided a complete similitude-based scaling approach for build-
ing a scaled test bench that can emulate the dynamic and kine-
matic behavior of an original system. The proposed method-
ology goes beyond the conventional Buckingham’s π scaling
procedure, as it addresses integral design and manufacturing
based on the optimization and activity analysis of physical
magnitudes of the system. The optimization stage of the
methodology eases the definition of the test bench’s physical
magnitudes, since the magnitude values are obtained according
to the designer’s requirements and constraints. The activity
analysis sheds light on the relevance of each component in
the dynamic behavior of the system, allowing a definition
of the tolerances to ease the design and manufacturing of
those components without creating significant alterations in
the dynamic similitude.

The methodology was applied to construct a reduced scale
test bench of an industrial servo press. The manufactured servo
press test bench kept the dynamic similitude with the industrial
servo press with a mean deviation of 4.74% in the emulated
force profiles.

The methodology could also be improved to avoid possible
distortion scenarios in the optimization step. Moreover, the
scaling methodology proposed in this paper could be adopted
for optimal scaling of other industrial machines while keeping
the dynamic similitude with the original system. In addition,
the parameter activity analysis may be useful in the design and
manufacture of scaled test benches that can retain an efficient
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and optimal energy consumption of their components for the
required process. This may contribute to a savings in terms of
the system’s energy consumption.

APPENDIX A
CALCULATION OF A π-GROUP

This appendix addresses the calculation of a π-group formed
by τe and the primary magnitudes Fms, m3 and r. The terms
of (2) are replaced as in (17).

π1 = τeF
α1
msm

α2
3 rα3 →

M0L0T 0 = ML2T−2(MLT−2)α1Mα2Lα3
(17)

Developing the above expression, values of α1, α2 and α3

are obtained so that a dimensionless π1-group is formed as in
(18).

M0L0T 0 = M1+α1+α2L2+α1+α3 + T−2−2α1

0 = 1 + α1 + α2 α2 = 0

0 = 2 + α1 + α3 α3 = −1

0 = −2− 2α1 α1 = −1

π1 = τeF
−1
msr

−1 =
τe

Fmsr

(18)

APPENDIX B
ANALYTIC EQUATIONS OF PARAMETERS’ POWER

This section of gathers the analytical expression of the
power of servo press’s parameters defined as in 19.

Px =
d

dt
Ex x = 1, 2, ...X (19)

The analytical expressions of the parameter power are
defined on the basis of the angular position of the crankshaft
θ(t). Analytical expressions of the power of the servo press
parameters are shown in the set of equations (20-25), where
θ(t), θ̇(t) and θ̈(t) are defined as θ, θ̇ and θ̈ respectively for
the sake of simplicity.

PI1 =I1θ̈θ̇ (20)

PI2 =I2θ̈θ̇c
2 (21)

Pξ =ξxẋ (22)

Pm1 =gm1ŕθ̇ sin θ (23)

Pm2 =
m2(l− ĺ)2r2θ̈θ̇cos2θ

l2
−
m2

(
l − ĺ

)2

r2θ̇3cosθ sinθ

l2

+m2

(
−rθ sin θ− ĺr

2θ cos θ sin θ

lc

)(
−rθ̈ sin θ

−rθ̇2 cos θ − ĺr2θ̈ cos θ sin θ

lc
+
ĺr2θ̇2 sin2θ

lc

− ĺr
4θ̇2 cos2θ sin2θ

lc3
− ĺr2θ̇2 cos2θ

lc

)

− gm2

(
−rθ̇ sin θ − ĺr2θ̇ cos θ sin θ

lc

)
(24)

Pm3
=m3

(
−rθ̇ sin θ− r

2θ̇ cos θ sin θ

c

)(
− rθ̈ sin θ

−rθ̇2cos θ − r2θ̈ cos θ sin θ

c
+
r2θ̇2 sin2 θ

c

−r
4θ̇2 cos2 θ sin2 θ

c3
− r2θ̇2 cos θ2

c

)
− gm3(

−rθ̇ sin θ − r2θ̇2 sin θ cos θ2

c

)
(25)
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