
Journal of Manufacturing Systems 71 (2023) 172–187

A
0
l

Contents lists available at ScienceDirect

Journal of Manufacturing Systems

journal homepage: www.elsevier.com/locate/jmansys

PLC orchestration automation to enhance human–machine integration in
adaptive manufacturing systems
Fan Mo a,1,∗, Miriam Ugarte Querejeta b,1, Joseph Hellewell a, Hamood Ur Rehman a,c,
Miren Illarramendi Rezabal b, Jack C. Chaplin a, David Sanderson a, Svetan Ratchev a

a Institute for Advanced Manufacturing, University of Nottingham, Nottingham, Nottinghamshire, NG8 1BB, United Kingdom
b Mondragon Unibertsitatea, Arrasate-Mondragon, 20500, Spain
c TQC Automation Ltd., Nottingham, Nottinghamshire, NG3 2NJ, United Kingdom

A R T I C L E I N F O

Keywords:
PLC
Automatic program generation
Structural testing
Adaptive manufacturing systems
Industry 4.0
Knowledge graph
Graph neural network

A B S T R A C T

Current approaches to manufacturing must evolve to respond to increasing demands for short product life
cycles and customised products. Adaptive manufacturing systems integrate advanced technologies, automation,
and data-driven methodologies to develop adaptable, efficient, and responsive production processes. Central
to this concept is the emphasis on human involvement and fostering synergy between human operators and
the manufacturing system. Significant changes to the system’s controller are required to achieve adaptivity,
with programmable logic controllers (PLCs) being a common controller type. After the necessary changes
to the configuration of the manufacturing system, the PLC should be reconfigured to orchestrate the new
required behaviour. Automated reconfiguration is vital to rapidly responding to change, but some changes
cannot be entirely achieved without human input in collaboration with automated methods. Conventional
practices in PLC programming include manual, repetitive coding practices subject to errors. As a result, to
ensure operational safety, the changes must be tested before being deployed to operations, ensuring it is error-
free. This paper presents a methodology to automatically reconfigure the simulation environment and controller
in response to a new product request. We automate the PLC code generation and testing practices to support
and free up the operators when performing repetitive manufacturing reconfiguration tasks. The methodology
is based on human learning, software automation, customised program development, knowledge graphs,
and Graph Neural Networks (GNNs). The presented solution is a generic, vendor-agnostic, and interoperable
solution that facilitates information exchange among multiple heterogeneous environments. Lastly, we have
validated the methodology as a proof of concept at an adaptive assembly cell at the University of Nottingham
in the United Kingdom.
1. Introduction

Modern manufacturing companies are facing increasing variability
in market demands and uncertainty in supply chains. A competitive
global market is forcing manufacturing companies to respond quickly
to customer requirements and to produce high-quality products with
shorter product life cycles and higher levels of customisation [1–3].
These key factors require a high degree of flexibility in manufacturing
processes.

Humans are flexible by nature, and they represent an opportunity to
enhance the flexibility of manufacturing systems by being creative and
being able to operate with different tools and equipment. A worker can
handle a non-standard situation where an automated resource would
fail. As a result, the integration of human decision-making and expertise

∗ Corresponding author.
E-mail address: fan.mo@nottingham.ac.uk (F. Mo).

1 These authors contributed equally to this work.

increases the flexibility and adaptability of manufacturing systems.
Humans can coexist with machines, but they should use their cogni-
tive capabilities and flexibility to perform complex activities, whereas
routine manual tasks and number crunching should be automated by
machines [4].

Adaptive Manufacturing Systems (AMS) are manufacturing systems
equipped with flexible and reconfigurable manufacturing capabilities
to cope with dynamically changing demands. AMS refers to production
systems that are defined as ‘‘adaptive’’, and emphasises the importance
of human processes, human decisions, and specific user requirements
[5–8]. These systems are complex systems capable of continuously
monitoring the values and trends of the external environment or inter-
nal variables, maximising their objectives based on particular response
vailable online 19 September 2023
278-6125/© 2023 The Author(s). Published by Elsevier Ltd on behalf of The Socie
icense (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jmsy.2023.07.015
Received 25 April 2023; Received in revised form 11 July 2023; Accepted 25 July
ty of Manufacturing Engineers. This is an open access article under the CC BY

2023

https://www.elsevier.com/locate/jmansys
http://www.elsevier.com/locate/jmansys
mailto:fan.mo@nottingham.ac.uk
https://doi.org/10.1016/j.jmsy.2023.07.015
https://doi.org/10.1016/j.jmsy.2023.07.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2023.07.015&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
rules, and altering their behaviour to achieve their goals, while RMSs
are more concerned with the physical layout and production planning
changes [5].

Controller devices are utilised to achieve the adaptivity and re-
configurability of AMSs [9,10]. Due to their reliability and durability,
Programmable Logic Controllers (PLCs) are an industry standard for
low-level control and automation. Engineers can program Human–
Machine Interfaces (HMIs) to enable human workers to interact with,
control, and monitor the activities of a PLC [11]. HMIs and PLCs
enable humans and machines to work together to monitor and con-
trol manufacturing equipment. Building an agile PLC orchestration
environment that suits both machine and human input is crucial to
dynamically adapt existing equipment behaviour to new environmental
changes or customer needs. This requires seamlessly reconfiguring,
testing, and validating the PLC code whenever a new change is inserted
in the layout, as the increasing frequency of product or process change
increases the likelihood of an error being made.

This paper presents a methodology to automate manufacturing
system reconfiguration in the context of AMS, focusing on the controller
as the orchestrator of the manufacturing processes. The PLC must be re-
programmed to address new process requests, which currently require
manual intervention. This leads to a significant investment of time and
effort, but also an increased likelihood of errors, all of which increase
in adaptive environments. We have therefore developed a dynamic PLC
code generation and testing approach to automate the orchestration of
the manufacturing system when handling new requests. The proposed
methodology aims at automating error-prone manual programming
tasks to reduce errors and shorten commissioning time while letting
humans focus on the most complex and flexible tasks. Humans will
therefore coexist with automated machines in a continuously adaptive
environment. This way, humans will have a distinctive role in which
they might be able to focus on novel PLC challenges rather than
repetitive programming and monotonous practices.

The remainder of this paper is organised as follows. Section 2
reviews PLC code formats and standards, PLC modelling, PLC code test-
ing, dynamic software reconfiguration, Graph Neural Network (GNN),
human–machine role and coexistence in manufacturing and the existing
gaps. Section 3 describes the methodology of automating PLC code
reconfiguration, generation, and testing in AMSs. Section 4 provides
a case study in the aerospace industry which utilises our proposed
methodology. Section 5 describes our conclusions and outlines future
work.

2. Literature review

The work presented in this paper focuses on enabling AMSs to adapt
to changing customer needs seamlessly. This requires both hardware
and software adaptation, and typical applications require large volumes
of repetitive code and configuration changes that slow down the speed
of adaptation, and introduce opportunities for error [12,13]. To enable
the automatic generation of PLC code to accelerate and simplify the
adoption of adaptive manufacturing systems, as well as to allow human
workers to focus on novel and interesting challenges, several new or
emerging technologies are used, which will be detailed in the next
sections.

2.1. Control architecture

In traditional manufacturing systems, the control architecture is
centralised, which means it lacks the capability to respond to failures
or disruptions in the system effectively. Consequently, decentralised
control approaches have been implemented to address failures and
adapt to the dynamic environment, such as multi-agent systems [14]
or holonic manufacturing systems [15]. The concept of decentralisation
pertains to the degree of autonomy that individual entities or modules
possess to control themselves or make independent decisions [16].
173
The extent of decentralisation is determined based on whether there
are any specific requirements or tasks that need centralised control.
According to Trentesaux et al. [16], the control architecture can be
categorised as follows:

• Class 0: centralised control systems.
• Class I: fully hierarchical control systems.
• Class II: semi-heterarchical control systems, integrating both hi-

erarchical and heterarchical relationships.
• Class III: fully heterarchical control systems.

Regarding the control architecture of PLCs, the IEC 61499 stan-
dard [17] was introduced to facilitate the design of distributed archi-
tectures in industrial automation systems. However, the IEC 61131-3
standard [18] remains predominant in the field, as there are essential
processes that still require hierarchical centralisation.

2.2. PLC code formats and standards

PLCs are a standard industrial control method, especially in Industry
3.0-era systems. However, given the multi-vendor nature of the sector,
there exists a wide range of proprietary programming languages and
data formats. The internal details and operation of PLCs are often
proprietary, and interoperability among different vendor solutions is
typically a major challenge.

A common framework for programming PLCs is defined by the IEC
61131-3 standard, which specifies the number of programming formats,
including Function Block Diagrams (FBDs). Structured Text (ST) is an
advanced PLC programming language established in the IEC 61131-3
standard, also known as Structured Control Language (SCL) in Siemens
software [19]. The use of these standard in the industrial control field
provides a common programming interface, which allows people with
different backgrounds and expertise in different vendor solutions to
create different parts of an automation project during different phases
of the development life cycle [20].

PLC code logic is typically programmed manually. Several re-
searchers have therefore proposed frameworks to generate FBD code
from state chart diagrams. For example, Vogel-Heuser et al. [21]
described the automatic generation of PLC code from UML diagrams.
The generated code was programmed in ST and SFC language, making
reconfiguration more challenging as adding or removing functions is
more difficult. Similarly, Hametner et al. [22] described a model-to-
model transformation process based on UML state charts. However, this
adds complexity as models must be first mapped, resulting in a loss of
information.

The majority of PLC suppliers have varying degrees of compliance
with IEC 61131 standard. However – even with IEC 61131-3 – users
cannot always share their program, libraries, and projects between PLC
brands or development environments due to variability in file formats,
development environments, and additional features not represented in
the standards [23].

The international organisation PLCopen has proposed an open XML
interface based on the IEC 61131-3 standard to facilitate tool interop-
erability and code reuse [24]. PLCopen XML is a markup language that
specifies all the textual and visual notations used in the PLC languages
as specified by IEC 61131-3 [25], including FBDs. PLCopen XML defines
a common representation of the information exchanged by tools during
the different phases as well as supporting the transformations between
such representation and each tool [20].

2.3. Semantics for PLC modelling

The increasing dynamism of modern manufacturing challenges re-
quires PLCs to be reprogrammed and reconfigured by human workers
at an increasingly regular rate. This is complex, time-consuming, and
repetitive. To remove this repetition, code reuse can be implemented,



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
which takes previously developed code and adapts it where possible
for new situations. Ontology models can be used to describe the char-
acteristics and concepts of PLCs [26]. An ontology model is a structured
representation of knowledge within a specific domain designed to facil-
itate information sharing and enable reasoning about that domain. It is
often used in artificial intelligence, the semantic web, and knowledge
management systems to provide a proper and shared understanding of
a particular subject area [27–29]. Skill and capability models are two
important areas for understanding the characteristics and concepts of
PLCs. In manufacturing equipment, the skill model focuses on machines
or systems’ specific abilities and functions. It represents the tasks or
operations that equipment can perform, such as cutting, welding, or
assembly. The skill model helps in resource allocation, process op-
timisation, and system integration, ensuring efficient and productive
manufacturing. This capability model concerns the overall capacities,
performance, and functionalities of machines, equipment, or systems in
a manufacturing setting. It provides a holistic view of each machine or
equipment’s attributes, such as processing types, speed, accuracy, and
other factors contributing to the manufacturing process. The capability
model aids in planning, resource allocation, and optimising production
processes based on available capabilities.

The PLC domain knowledge is built by considering PLC domain
characteristics and by designing a layered ontology [30]. Domain
knowledge is the technical understanding and expertise in a particular
subject area, encompassing its concepts, terminology, principles, theo-
ries, and practices. Domain characteristics are a subject area’s defining
features and attributes, shaping its scope and nature and influencing the
methods used within that field. Layered ontology organises knowledge
in a hierarchical structure with multiple levels or layers. Each layer
represents a different level of abstraction, where higher layers contain
more general concepts, and lower layers include more specific details.
This organisation helps in managing complexity and enables efficient
knowledge representation and reasoning.

The development of such models, however, requires a high degree
of expertise in semantic technologies. In conventional automation en-
gineering workflows, such models would have been created manually,
which is an error-prone and time-consuming task.

Given the need to automate the process of model creation in contin-
uously adaptive systems, Industry 4.0 promotes skill and capabilities-
based modelling to share information in dynamic engineering [31].
In this way, already-defined skills can be reused when needed. New
production tasks can be dynamically assigned by invoking a given
product’s required sequence of skills. For example, Köcher et al. [32]
described an approach to automatically create skill models from IEC
61131-3 code; however, it is limited to IEC 61131-3.

2.4. PLC code testing

The manual nature of most PLC programming leaves PLC code
open to error, especially if the code is being changed rapidly, or
if the changes are repetitive. In terms of testing FBD programs, the
industry mainly relies on manually conducting functional tests from
requirements [33], known as functional testing. This is a tedious task,
as it takes considerable time and effort. Moreover, functional testing
is not effective enough at detecting implementation errors, as it does
not take into account the internal design or the structure of the FBDs.
Automated structural testing of PLC programs is therefore a question
of great interest in industrial automation. In this context, Reinhard
et al. [34] described a dynamic test case generation approach based on
UML state charts on IEC 61499 standard. The automation model was
generated automatically through the model-to-model transformation
process. Similarly, Wu et al. [25] and Enoiu et al. [35] presented an
approach to automatically generate test data for FBDs from intermedi-
ate data models such as UPPAAL (an integrated model checking tool for
timed automata) following traditional software engineering techniques.
174

This requires converting FBDs to intermediate data models first, which
does not accurately represent some key aspects of PLC code, such as
cyclic execution.

Existing research recognises the critical role played by automated
test generation for FBDs. Jee et al. introduced a new test generation
approach directly applied to FBD diagrams without the need for any
further conversion; they proposed Basic Coverage (BC), Input Condition
Coverage (ICC), and Complex Condition Coverage (CCC) metrics for
structural coverage testing [36] based on FBD data path conditions.
Recently, KAIST university did further research on automated test data
generation for cyclic FBDs [37]. However, the industry has not yet
applied and validated these approaches.

Mutation testing is also a widely used technique for fault detection
in software engineering [38,39]. To this end, Enoiu et al. [40] and
Liu et al. [41] successively proposed mutation-based test generation
approaches for FBD programs. According to Liu et al. Mutation-based
test generation showed promising results in terms of effectiveness.
However, there are still gaps in the current research that need to be
addressed in future studies, such as reducing time and cost associated
with these techniques, as well as knowledge transfer to real industrial
applications.

Fernandez et al. [42] have been developing the automation and
testing of PLC programs for their unified industrial control system
framework. They analysed formal algorithmic verification and auto-
matic testing for PLC validation and testing, where data is exchanged
via SCADA. However, the interaction with SCADA interfaces depends
on the communication protocol. Therefore, a more recent study pro-
posed an alternative approach that relies on OPC UA [43]. The pre-
sented method focused on continuous integration, considered one of
the key elements in supporting agile software development and testing
environment [44].

On this basis, Talkhestani et al. [45,46] described the use of a
digital twin as an agile technology to enable automatic control code
generation for the newly added machines based on the Anchor Point
Method. This method mainly focuses on the digital twin’s automated
change detection and model adjustment to enable an automated PLC
code generation via Siemens TIA Portal. Likewise, Koziorek et al. [47]
suggested TIA Portal as a tool for automating the generation of the
PLC code and testing activities. However, these solutions are Siemens-
specific, and there is no vendor-agnostic solution yet in the market that
offers an open and seamless PLC code generation and testing approach.

2.5. Dynamic software reconfiguration

Dynamic software reconfiguration is an area of research focusing
on providing faster software solutions to changing problems by adding
more flexibility to any given software solution, enabling the same
solution to be rapidly repurposed for new situations [48]. Distinct from
writing new code from scratch, software reconfiguration is a strategy
that allows code to be modifiable, extensible (capable of responding to
new characteristics and specifications), reusable (applicable to multiple
programs), and, most importantly, reconfigurable (capable of retaining
driver configurations and supporting internal and external interactions
between modules) with no additional modifications. This concept is
of great interest to the manufacturing control research community.
Several methods exist [49], including Petri Nets (PN) model [50], PLC
and PC based control [50,51], Domain Specific Modelling (DMS) [52],
and Self-Adaptive Smart Assembly System (SASAS) [53].

Though there is research on achieving software control reconfigura-
tion, only a few consider developing an automated model to generate
the program and reconfigure it automatically [32,54,55]. With the
development of artificial intelligence technology, OpenAI company has
released ChatGPT. ChatGPT is an advanced natural language processing
model that uses deep learning algorithms to generate human-like re-
sponses to user input. It can also automatically generate code snippets
based on a developer’s problem statement or code requirement. This

technology has the potential to revolutionise software development by



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
reducing the time and effort required to write code, and improving
speed and accuracy [56]. With this kind of technology, the performance
of dynamic software reconfiguration has the potential to be enhanced.

Furthermore, the data model in software reconfiguration should be
standardised to make the approach more extensible and easily handle
compatibility issues.

2.6. Graph Neural Network (GNN) and GraphSAGE model

In an adaptive system, asset connections and relationships change to
cope with the ever-changing environment and requirements. Therefore,
semantic relations among the assets must be represented to allow
changes in the production system to be dynamically orchestrated. Se-
mantic relations refer to the relationships between words and concepts
based on their meaning. In natural language processing, understanding
semantic relations is important because it allows systems to interpret
the meaning of words and phrases in context, rather than simply
identifying them as discrete units. In addressing changes in production
systems, semantic relations are crucial because they enable the system
to recognise and respond to changes in the language used to describe
production processes. By analysing the semantic relationships between
different concepts and phrases, the system can identify new or modified
processes and adapt accordingly. This can help ensure that production
systems remain up-to-date and effective, even in the face of changing
technologies, processes, and business needs. Graphs are a method of
representing data in a way that captures the structural relationships be-
tween data. Storing data as graphs may encode structural information
to describe the relationships between entities, yielding more insightful
insights into the data. Graphs are ubiquitous in many application
disciplines, ranging from social analysis [57], fraud detection [58,59],
traffic prediction [60], and computer vision [61].

However, it is frequently difficult to utilise graphs as a data storage
method as many different forms of data, such as images and text data,
are not initially arranged as graphs. Even for graph-structured data,
the underlying connectivity patterns are often complex and diverse,
making interpretation difficult. A potential solution is to learn the
representation of graphs in a low-dimensional Euclidean space, such
that the graph properties can be preserved [62].

Graph Neural Networks (GNN) are neural models that use message
exchange between graph nodes to reflect the reliance on graphs [63].
In recent years, GNN variations such as graph convolutional network
(GCN), graph attention network (GAT), and graph recurrent network
(GRN) have shown ground-breaking performance on numerous deep
learning tasks. In numerous applications, deep learning models have
proven to be effective. For large-scale graphs, however, the train-
ing procedure of GCN might be memory-intensive. In addition, the
transduction of GCN interferes with generalisation, making it more
challenging to learn representations of unseen nodes in the same net-
work and nodes in an entirely different graph [64]. To effectively
address changes in production systems using PLCs, it is necessary to
utilise inductive learning methods. This is because production system
changes can often be unpredictable, making it difficult to anticipate
and respond to them using traditional rule-based approaches. The use
of inductive learning in PLCs is becoming increasingly important as
production systems become more complex and dynamic. By leverag-
ing the power of machine learning, PLCs can adapt to changes in
the production environment and optimise performance without the
need for extensive manual programming or maintenance. This can
help companies remain competitive by improving efficiency, reducing
downtime, and ensuring consistent product and service quality.

GraphSAGE model addressed this issue. It is a framework for in-
ductively learning huge graph representations. Graphs are utilised to
construct low-dimensional vector representations for nodes, which is
particularly effective for graphs with abundant node attribute data.
Unlike embedding approaches based on matrix factorisation, the node
175

features (e.g., text attributes, node profile information, node degrees)
based on GraphSAGE are leveraged to learn an embedding function
that generalises to unseen nodes [65]. The GraphSAGE model has the
advantage of inductively learning huge graph representations, which
can help the system deal with new unknown requests.

2.7. Human–machine coexistence in manufacturing

Some autonomous machines are designed to adapt to new and
unforeseen scenarios. Their abilities, however, do not yet approach
the adaptive skills of a human being. Humans are and will remain an
essential part of manufacturing due to their cognition and problem-
solving skills [66]. Human–machine coexistence is, therefore, a key
aspect of dynamically adapting the system to new situations, as in-
dicated by [67]. Despite being highly adaptable and flexible, human
labour can be comparatively expensive and requires significant time
and effort. Productivity can be increased with automation, although
there must be a balance between fully automated production systems
and highly adaptable human work. In this matter, the A4BLUE project
is developing assembly systems that will integrate digital and auto-
mated mechanisms in conjunction with human workers to respond to
the rapidly evolving requirements of manufacturing processes [8].

The majority of industrial research and development under the
Industry 4.0 banner is on enhancing the performance of manufacturing
systems without a clear emphasis on human aspects and their relation-
ship to production systems [5]. ‘Industry 5.0’ responds to this with
a value-driven approach towards practical implementations of avail-
able enabling technologies in the industry. The key ideas of Industry
5.0 are underpinned by three interwoven pillars: human-centricity,
sustainability, and resilience [68].

Humans and machines must work collaboratively to achieve the
same goals rather than solely as individuals [69,70]. Humans should
therefore play an active and distinctive role rather than performing
repetitive tasks that could be automated and replaced by machines.
According to Autor [71], automation brings new job opportunities, as
it increases outputs in a way that leads to higher demand for labour.
Automation should therefore complement human work. As such, Cimini
et al. [4] focused their study on the role of humans in smart factories
and highlighted the importance of properly integrating humans in
production systems. This however requires significant changes to the
human role in today’s industry.

2.8. Existing gaps

Most manufacturing approaches (e.g. dedicated manufacturing sys-
tems such as production lines and mass manufacture) are not designed
for regular change. However, other manufacturing system paradigms
such as reconfigurable or flexible manufacturing systems are not able
to adapt autonomously to changing manufacturing environments [72].
Control architectures should be adaptive enough to respond to manu-
facturing requirements as a company reacts to market demands. New
approaches such as autonomous manufacturing systems achieve these
needs but often miss the human role and focus on the adaptability
of machines alone [72], which require a lot of engineering time as
reconfiguration and testing are required every time there is a change
in the controller. To achieve this, the adoption of software engineering
in automation is key [73].

PLC code, however, is mostly dedicated to specific machines, and
requires significant changes in frequently changing environments, not
being able to reuse FBD blocks to build up new ones. Moreover, With
the increasing complexity of automation systems, engineers face more
challenging scenarios in integrating products from multiple vendors
into the same system [74]. This is a barrier when exchanging PLC
programs and libraries between multiple heterogeneous environments.
In this regard, according to Vogel-Heuser et al. [73], research on soft-
ware automation should focus on building reusable and interoperable
solutions to make it extensible.



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
Fig. 1. Overview of the PLC reconfiguration framework in an adaptive manufacturing system.
Given the existing challenges described above, a new approach
is required to succeed in automating PLC orchestration for Adaptive
Manufacturing Systems. The approach should focus on AMS, in which
humans and machines coexist, and should meet the following key
objectives:

• O1: Orchestrating new manufacturing processes in frequently
changing manufacturing environments autonomously.

• O2: Avoiding repetitive manual work, reducing significant pro-
gramming errors and time.

• O3: Involving humans to address highly flexible tasks in coexis-
tence with automated machines.

• O4: Reusing modules to quickly build new FBDs or reconfigure
existing ones, making them extensible and scalable.

• O5: Building a generic, vendor-agnostic, and interoperable so-
lution to exchange information among multiple heterogeneous
environments.

3. Proposed methodology

3.1. Overall structure

With the increased demand for adaptive production, there is a need
to update the PLC code whenever a new request is received. Motivated
by the literature review and the current limitations of the techniques,
our paper proposes a novel framework of human–machine collaborative
PLC reconfiguration in an adaptive manufacturing system that auto-
mates the PLC code generation and testing. This was achieved with
the use of human learning, software automation, customised program
development, ontology reasoning, knowledge graphs, and GNN.

We have implemented the simulation environment to generate and
test the code in our methodology. A simulation environment is crucial
for updating PLC code when a new product request occurs. Because it
allows engineers to test new code changes in a virtual environment,
reducing the risk of errors and downtime in the actual production
system. This saves time and ensures that the production system meets
the required specifications for the new product. This section describes
in detail the process of updating the simulation environment either
manually or automatically and the respective PLC code when a new
product request comes. Fig. 1 depicts the main steps involved when
processing the existing product and a new one. Some of the steps are
fully automated, whereas others present the coexistence of humans and
machines in the process.

New product requirements are addressed by creating a new Bill of
Processes (BoP). This triggers the adaptation of the manufacturing sys-
tem. The BoP includes all the necessary processes or tasks involved with
the new customer request. These tasks could be fully automated but
could also require human labour to perform complex tasks that require
more flexibility. In this way, the framework should first understand the
requirements, and match the required capabilities from the existing Bill
of Resources (BoR) to accommodate the new BoP. Then our framework
will generate PLC code and build (or update) a simulation environment
176

for testing the code, as detailed in Fig. 2.
3.1.1. Establishment of the database for PLC code
Key to this approach is the reuse of existing PLC code to minimise

effort on behalf of the human workers. A database for storing the PLC
information and the manufacturing information is therefore generated
as the first step. In our approach, we utilise a graph database, as they
are effective for discovering and giving meaning to complex inter-
dependencies and relationships between entities [75]. Using the graph
database, the following manufacturing information is represented:

(1) Task information
The task information describes the information about how cus-
tomer orders and requests that are initiated internally within the
factory are processed. It represents the tasks or activities needed
to complete a customer order or fulfil a request. It provides
a high-level overview of the steps involved in the production
process. It is critical in our methodology as it describes the new
customer request information properly.

(2) Product information
In reconfigurable manufacturing systems, product dimensions
and geometric features are key to determining appropriate man-
ufacturing processes. Process selection is typically based on fac-
tors such as size, shape, and material properties. For instance,
sheet metal cutting processes such as laser, plasma, and water
jet cutting may be suitable for products with large dimensions.
Conversely, products with intricate geometries may require CNC
milling, EDM wire cutting, or CNC turning. Material properties,
such as hardness, may also dictate the manufacturing process,
with CNC grinding or honing processes used for hard materi-
als. Similarly, processes like polishing or sandblasting may be
employed for products requiring a high surface finish.

(3) Bill of process (BoP)
A BoP in manufacturing outlines the processes needed to make
a product. It is important to understand customer requests and
optimise efficiency. When a customer request for a change is
received, the BOP is used to assess the feasibility and make
necessary modifications to the production system.

(4) Bill of resource (BoR)
A BoR in manufacturing lists the resources needed to produce a
product. It is important to understand product requirements and
adapt to changes in customer requests by analysing potential re-
source constraints or bottlenecks and optimising resource alloca-
tion. When a customer request for a change is received, the BoR
is used to assess the availability of the required resources and
identify any necessary modifications to the production system.
In summary, the BoR is a critical document in manufacturing
that outlines the necessary resources to produce a product. It
helps manufacturers understand product requirements and adapt
to changes in customer requests, allowing them to optimise
resource allocation and minimise disruptions to the production

schedule.



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
Fig. 2. Process of generating the PLC code.
(5) Capability model of the resources
A Capability Model represents a factory’s abilities and limita-
tions regarding processes, technologies, resources, skills, and
regulations in manufacturing. It provides a comprehensive view
of the factory’s capabilities, aiding informed product and process
feasibility decisions. The model also identifies improvement op-
portunities, such as acquiring new resources or technologies or
skill development to enhance the factory’s competitiveness.

(6) Capacity model of the resources
A capacity model in manufacturing is a mathematical repre-
sentation of a factory or production line’s production capacity.
It considers resources, processes, and constraints to determine
maximum output under specific conditions. The model adapts
to changes in production conditions, such as new products,
demand changes, or technology updates, to achieve reconfig-
uration. This structured representation of manufacturing KPIs
monitors performance on the shop floor, focusing on reconfig-
uration. It helps identify areas for improvement in capacity and
informs decision-making for achieving optimal performance.

(7) Plc control code library
A code library for PLC control code contains pre-written software
modules that control various aspects of a manufacturing process.
It saves time, reduces errors, and improves efficiency by allowing
programmers to incorporate pre-tested code blocks. The library
includes primary and complex functions and can be customised
for specific industries and applications.

An ontology and industry standards are utilised to represent the
information in a formal and structured way. In our proposed frame-
work, existing ontologies describing PLC code are used to build the
layered ontology. In particular, Common Core Ontology (CCO) [26]
as there is a need to represent common concepts in PLC projects. In
addition, the Application Specific Ontology (ASO) [26] is also needed
to represent the heterogeneous PLC development environment (O5),
code comments, test logs, and bug reports. With these two ontology
models, the PLC domain knowledge base can be built with high ac-
curacy and completeness by considering PLC domain characteristics,
designing a layered ontology, and implementing the matching process
on the schema level instead of the instance level. The schema level
represents the formal definition of the PLC domain’s classes, properties,
and relationships. It consists of the general, abstract concepts and the
177
structure of the ontology, providing the basis for the specific instances
that will populate the ontology. The instance level represents the
actual instances of the classes and relationships defined in the schema
level. This level includes specific entities, their properties, and the
relationships between them, all based on the schema level’s structure.

Any previous modular PLC code is also stored in the database so
that it can be reused to build new FBD modules, making it extensible
(O4), and reducing significantly manual work (O2).

3.1.2. Understanding the product requirement
This step is critical to getting all the necessary information to

process the new task. The product requirement, BoP, and BoR will
be generated based on the experience of the engineer or utilising
automated methods such as the knowledge graph reasoning [76], and
semantic search [77]. This step specifies the required manufacturing
capabilities and feasible manufacturing resources (including humans).
The approach developed by Mo et al. [54] is used in our methodology
to detail the procedure of processing the new product requirement.

Algorithm 1 details the procedure of processing the new product
requirement. There are three ways of finding the BoP. First of all, the
product requirement and the BoP can be provided by the system. A
rule-based approach will be applied if the BoP is not pre-provided. It is
a traditional approach that extracts knowledge in the form of rules. For
example, the sub-product requirement is to have a hole with a diameter
of 50 mm in the product. Then drilling operation is needed. The end-
effector can drill a hole of 50 mm, and a related robot is needed. The
main problem with rule-based systems is that the programmer must
specify all ‘‘rules’’ or <pattern> <template> pairs.

If the rule-based search does not yield the desired BoPs, a semantic
search approach can be employed. Semantic search focuses on under-
standing the intent and context behind a product requirement, rather
than just keyword matching. For instance, suppose a product require-
ment mentions "a durable material resistant to outdoor conditions." A
semantic search could infer the need for materials like stainless steel
or treated wood, even if these specific terms aren’t present in the
requirement, based on knowledge graphs or ontologies that understand
the relationships and properties of materials.

Should the rule-based and semantic searches fail to secure the
BoPs, the semantic embedding search becomes the primary recourse.
This technique identifies potential processes related to a product node
by leveraging semantic insights grounded in graph embeddings. To



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
facilitate this, a graph neural network is trained, converting graph-
centric knowledge into a cohesive vector space, which in turn fosters
efficient graph embeddings. Given the unpredictable nature of some
product modifications, it is paramount for this neural network to fea-
ture inductive learning capabilities. In line with this, our methodology
integrates the inductive learning approach, designed especially for han-
dling expansive graphs. This approach not only streamlines data storage
but also significantly reduces computational overhead in subsequent
reasoning stages. Hence, when faced with a product inquiry, the adeptly
pre-trained model recommends appropriate manufacturing processes
and pinpoints the necessary resources.

Algorithm 1 Processing the product requirement
Input: Initialised Database (DB), Task (T)
Output: Bill of process, Bill of process
1: Load initial 𝐷𝐵
2: ProductRequirement(𝑃𝑅) ← Find_requirement(𝑇 )
3: SubProductRequirement(𝑆𝑃𝑅) ← Divide_ProductRequirement(𝑃𝑅)
4: for each 𝑆𝑃𝑅 in 𝑃𝑅 do
5: BillofProcess(𝐵𝑜𝑃 ) ← PreProvided(𝑆𝑃𝑅)
6: if 𝐵𝑜𝑃 ≠ 𝑁𝑢𝑙𝑙 then
7: BoPs.add(𝐵𝑜𝑃 )
8: continue
9: else

10: 𝐵𝑜𝑃 ← Process_search_rule(𝑆𝑃𝑅)
11: if 𝐵𝑜𝑃 ≠ 𝑁𝑢𝑙𝑙 then
12: BoPs.add(𝐵𝑜𝑃 )
13: continue
14: else
15: 𝐵𝑜𝑃 ← Process_search_semantic(𝑆𝑃𝑅)
16: if 𝐵𝑜𝑃 ≠ 𝑁𝑢𝑙𝑙 then
17: BoPs.add(𝐵𝑜𝑃 )
18: continue
19: else
20: 𝐵𝑜𝑃 ← Process_search_semantic_embedding(𝑆𝑃𝑅)
21: if 𝐵𝑜𝑃 ≠ 𝑁𝑢𝑙𝑙 then
22: BoPs.add(𝐵𝑜𝑃 )
23: continue
24: else
25: "No bill of process can be found"
26: end if
27: end if
28: end if
29: end if
30: end for
31: Initialise bill of resource (𝐵𝑜𝑅𝑠)
32: 𝐵𝑜𝑅𝑠 ← Find_resources(𝐵𝑜𝑃𝑠)
33: return 𝐵𝑜𝑃𝑠, 𝐵𝑜𝑅𝑠

The outputs of this step are the BoP and BoR, which are necessary
for building the simulation environment and generating the PLC code
accordingly in an autonomous way (O1). In the BoPs, if the process
and the resources are human-involved operations, the operations will
be marked as manual operations (O3). The generated BoPs and BoRs
will be utilised in the next steps to build the simulation environment
and generate the PLC control code.

3.1.3. Building/updating the simulation process
Our approach aims at utilising and developing simulation software

capable of simulating a broad set of vendor-specific robots and assets.
We have therefore proposed a vendor-agnostic solution to update simu-
lation environments, as depicted in Fig. 3. The simulation environment
is generated based on the BoP, BoR, and the current system configu-
ration, such as the location of each device. All the information will be
saved in a JavaScript Object Notation (JSON) format to facilitate infor-
mation exchange in heterogeneous environments (O5). The simulation
178
Fig. 3. Process of building the simulation environment.

environment is generated or updated manually and with the possibility
of automatically from the JSON files (O2). When a new request comes,
the simulation environment will be updated based on the updated BoPs
and BoRs for the new product request. This interface also facilitates
simulation re-use. For example, if the new product (e.g.: Product II)
has some common parts to the old product (e.g.: Product I), then the
common parts in the simulation environment can be reused for Product
II and do not need to be newly modelled.

A human digital model has also been developed to simulate a
worker’s talents, behaviour, and well-being index. A digital human
well-being impact profile would evaluate an activity’s physical, cogni-
tive, and psychological burden if it were viable for industrial workers to
perform it. This is a requirement of the human-centric manufacturing
system [69].

The creation of a simulation environment depends very heavily on
the specific environment used, and will be a combination of automation
and manual work. An example of how to create and update the simu-
lation environment will be explained in detail in the implementation
section.

3.1.4. Generation of the PLC control code
A PLC is used to orchestrate manufacturing processes and resources

to control the overall production process. As such, a new PLC control
code needs to be generated every time there is a new upcoming product
request.

Automatic code generation for this PLC is generated by parsing
the BoP and BoR to determine the process sequence, determining the
order in which code needs to be executed and which resources must be
triggered for a given process (O2). The code generated by this process
can then be stored in any standardised format, such as SCL source code
or PLCopen-compliant XML, being interoperable with the software used
in the other stages of the proposed methodology (O5). To generate the
specific code required, a set of process mapping rules are applied to the
manufacturing sequence defined within the BoPs, see Fig. 2.

A mapper between the skill interfaces, which is generated based
on the BoPs and BoRs, and the PLC generation modules is generated.
Then the mapping between the skill interfaces and the PLC code is
executed. This mapping is required to transform the physical process
created within the simulation environment into the sequence of PLC
instructions that are required to orchestrate the process. These two
representations of the process can be quite different, so these mapping
rules allow for a consistent approach to orchestrate a given process type
(O1). Examples of these process types and mapping rules are illustrated
in Table 1.

The code generation process uses the database of process-specific
PLC code, which it uses as part of the PLC instructions generated by
the mapping process. These pre-existing pieces of code can come from
various sources but are most likely to have been developed by a suitably

experienced engineer with knowledge of the specific process. Using this



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
Table 1
Examples of mapping rules to generate PLC code from simulation information and the product requirement
(The mapping rules need not be fixed and can be tailored to a manufacturer’s needs)
Operation
Type

PLC action

Robot
(Automation)

(1) Send a request to the robot controller to run
offline programming (OLP) code, specified by filename
on the controller. The OLP code is generated by
relevant robot simulation environments such as
Siemens Process Simulate
(2) Wait for a signal from the robot controller that
the robot has completed the robot operation specified
in the robot code (or handle error condition)

Human
(Manual)

(1) Send a message to HMI with work instructions to
the human operator
(2) Wait for a user input on HMI to acknowledge that
the task is complete

Metrology
(Automation)

(1) Send a message to the metrology controller (e.g:
PC) to trigger the measurement procedure
(2) Wait for a signal from the metrology controller
that the metrology process is complete
approach allows for the coordination of tasks that would be otherwise
too difficult to automate or even for repetitive tasks that do not require
the level of simulation fidelity that would be otherwise required to
perform automatic code generation from the simulation environment.
This way, when a new request comes, some of the existing PLC code
can be reused and updated if there are overlapping skill models (O4).

3.1.5. Conversion/check and update of the PLCopen XML
A method of generating a standard format of the PLC code should

be developed to enable the user to exchange the PLC software programs
from different vendors, libraries, and projects between development
environments. In this regard, we have followed the PLCopen group
committee guidelines, which have established an open interface that
supports a broad set of software tools (O5). We have focused on TC6 for
XML workgroup, as it enables the transmission of screen-based data to
other platforms [78]. This way, the PLC code is converted to PLCopen
XML to perform a vendor-independent PLC testing approach in the next
step.

3.1.6. PLC code testing
PLC testing is vital in adaptive manufacturing systems, as the en-

vironment and respective control code are continuously updated to
proceed with new tasks. Such changes to the PLC code must be fully
tested to ensure there are no implementation errors in the software.
This is a tedious task, as the PLC code will be frequently modified to
respond to new requirements.

As seen in the literature, structural testing is a common practice
when testing the control software. FBD structural coverage is calculated
by a sequence of data paths. Each data path describes all the conditions
that the input edges must go through to reach the output edges of
the FBD program. The output of each Function or Functional Block
is determined by the input value(s), which results in input condition-
based data paths. FBD coverage is then calculated by a combination of
multiple function conditions. In this matter, Jee et al. [36] proposed
Basic Coverage, Input Condition Coverage, and Complex Condition
Coverage, as specified below:

• Basic coverage (BC): every data path in the FBD program must be
tested at least once.

• Input Condition coverage (ICC): every data path in the FBD tester
must be tested with all combinations of Boolean input edges.

• Complex Condition coverage (CCC): every data path in the FBD
tester must be tested with all combinations of Boolean input and
output edges.
179
Fig. 4. PLC code testing process.

FBD structural testing will be therefore carried out based on the
aforementioned metrics. In specific, we build our solution on the FBD
tester developed by KAIST university [37], as it does not require any
additional model-to-model transformations to generate structural data
path-based test cases. While coverage-based testing aims to maximise
the structural coverage of a program, it does not necessarily correlate
with high effectiveness in detecting faults. Therefore, we also generated
mutation-based test cases to leverage the benefits of both techniques.

As outlined within the objectives, the approach should be vendor
agnostic and interoperable with a wide range of PLC controllers; there-
fore, we have designed a testing methodology for PLCopen standardised
functional blocks (O5). The presented process involves the following
steps, detailed in Fig. 4:

The FBD tester first gets the PLC code in the PLCopen XML format to
define the functions, functional blocks, constant values, and input and
output signals. Such information is utilised to define the data paths and
data path conditions for each input and output edge of the FBD. It is
worth emphasising that the library should encompass all the essential
functions. If a specific function is not available, it is essential to update
the library accordingly. The FBD tester then generates test suites based
on BC, ICC, and CCC structural coverage criteria aiming at maximising
the coverage with the minimum number of test cases. These tests can
be valuable in assessing the quality of the model design for subsequent
SiL (Software-in-the-Loop) or HiL (Hardware-in-the-Loop) testing.

A test case includes input values for a minimum set of scan cycles
required in the FBD. Each test case addresses basically a certain number
of data path combinations; hence the coverage level increases with the
number of test cases. Some of the test cases may also have overlapping
data path conditions. Thus the test generation algorithm only generates
test cases for those data paths that have not been addressed until
maximum coverage is achieved.

The generated test suites are then executed in the FBD standalone
tester to define assertions based on the output values. Test outputs
will be used as oracles when executing the PLC code in the simulation
environment (SiL) and the physical PLC (HiL) before deploying the PLC
code into operations. Tests will be passed if the asserted output value
is the same as the FBD tester execution results in Java. If not, a test
failure will be reported as seen in Figs. 5–6:



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
Fig. 5. Successful test execution.
Fig. 6. Failed test execution.
To date, this approach enhances PLC testing practices, a process
that has been manually performed in the industry, leading to human
errors (O2). This way, the proposed methodology is expected to re-
duce implementation errors while shortening the commissioning time
significantly.

3.1.7. Virtual commissioning and deployment
Once the simulation environment is built and the PLC code is

thoroughly tested, Virtual commissioning (VC) can be executed to test
the effectiveness of the PLC code. VC is the process of validating the
software code for PLCs, HMIs and SCADA equipment in the virtual
world before deploying it on the factory floor. The code of the PLC
controls a virtual model, also called the behaviour model, which be-
haves like the real machine [79]. The PLC code generated from the
modular database will be optimised and updated based on the VC
results from the simulation software. To enable virtual commissioning,
the PLC code, which is generated in Section 3.1.4, is imported to
the PLC simulation software (e.g., TIA Portal [80], CODESYS [81],
TwinCAT [82]).

Dynamic reconfiguration of a PLC system introduces complexities
that require careful management to ensure safety. Any change in the
control logic or machine configuration can potentially impact safety,
making it critical to synchronise safety measures with the implemented
changes. Safety verification is performed within the virtual environ-
ment during VC. This includes testing for potential hazardous states,
verifying fail-safe mechanisms, and validating safety functions within
the updated logic. VC aids in ensuring that changes do not compromise
system safety before they are implemented on real equipment.

After successful commissioning, the updated configuration and con-
trol code will be deployed to the real equipment. However, applying
these updates to real equipment presents some challenges;

• I/O Modules: The updated configuration must be supported by
the correct I/O module (in terms of bandwidth, channels etc.). It
is necessary to thoroughly examine field equipment for compati-
bility before implementing updates.

• In or Out: Wiring errors and incompatibility can occur as the
program is updated, leading to undesired behaviour and potential
damage from a short circuit. An ‘‘integrity check’’ for in and out
wiring must be conducted to ensure correct memory addressing
and power connection.
180
• Interference: External influences such as electromagnetic or
radio frequency interference can cause issues as program logic is
updated and executed. Proper shielding and grounding practices
must be in place to mitigate these effects.

• Memory: Frequently changing the programs in the PLC can
lead to memory corruption, necessitating a system refresh. It is
crucial to verify that the configuration operates as expected after
changes.

• Troubleshooting: Changing configurations can cause conflicts
or errors in PLCs. Different manufacturers have unique trou-
bleshooting methods that need to be understood and effectively
applied.

By managing these challenges effectively, the updated PLC code,
optimised via virtual commissioning, can be safely and successfully
deployed to the real-world system.

4. Implementation and case study

A use case was designed to verify the feasibility of our proposed
methodology. The production of aircraft parts still relies heavily on hu-
man labour, with parts often loaded into jigs manually, representing a
significant health and safety risk for the workers and an increased likeli-
hood of damaging components during the manufacturing process [83].
In the near future, the demand for aircraft is expected to increase
considerably and thus, there is a need to produce a large number of
aircraft units [84]. This will consist of existing aircraft designs, re-
engineering of existing designs, and new designs yet to be launched.
Tier 1 suppliers – which supply both large structural components and
small box assemblies to the original equipment manufacturers (OEMs)
– will particularly benefit from optimising the production line with
modular, automated, intelligent, and reconfigurable solutions to meet
the varying demands of the OEMs. Reconfigurable automated solutions
are considered key to the assembly strategy, as they bring benefits
such as increased automation across assembly operations, fewer vari-
ations, standardised processes, increased process capability, reduced
tool design lead time, increased in-house knowledge, reduced inte-
gration out-sourcing, increased re-use of expensive capital equipment,

increased in-house assembly, and a more sustainable approach [85,86].



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
Fig. 7. Architectural layout of a test plant within the OMNIFACTORY.

Table 2
Current process - producing product I.

At the University of Nottingham, an adaptive assembly facility in the
OMNIFACTORY [87] test plant is designed to be applied to a range of
small box assemblies for aircraft. Opportunities to reduce adjustment
and shimming on assembly operations will be explored through the
development of virtual assembly models, allowing virtual assemblies to
be built with data collected significantly further upstream. This cell will
also look at all data collection and processing opportunities to support
a multi-product production line concept. Our method is validated in
this assembly facility, enabling it to react more quickly to new aircraft
model launches, reduce product life cycles, and deal with fluctuations
in product demand. Fig. 7 shows a station of this assembly cell.

The current production line is intended to assemble Product I and
other variants. It consists of three workstations, with a mix of both
automated and manual assembly solutions. The initial reconfiguration
and inspection will happen at Station 1. Station 2 will then utilise
human workers for the manual assembly of small components. At
Station 3, automatic assembly of the large components will happen.
The required operations to produce a Product I are detailed in Table 2.
These operations will be carried out at different workstations (WP1,
WP2, WP3) as detailed in Fig. 8.

In this use case, the assembly line will suddenly receive a new
customer request (Product II). We have therefore applied our method-
ology to enable the human–machine collaborative PLC adaptation and
proceed with the new request. The detailed implementation steps are
described in the following sections:
181
Fig. 8. Current process.

4.1. Establishment of the database for PLC and manufacturing information

Regarding implementing ontologies, the major technologies used
in creating the database include knowledge modelling, knowledge
extraction, ontology matching, and knowledge inferences. In specific,
Protégé was selected to define the ontology, and Neo4j to build the
graph database platform, as detailed below.

The database is built based on the ontology model we defined in
Protégé. The presented use case includes task information, product re-
quirements, part information, required process information, capability
information of the assets, and device information. The ontology model
is illustrated in Fig. 9. Then this ontology information is converted to a
JSON model, which can be used in the data importer of Neo4j to build
the graph database.

The skill model is generated based on the capability model de-
scribed in Neo4j. For the purpose of this demonstration, we clarify
the relationship between skills and capabilities as follows: a skill is an
executable action based on an underlying capability. In simpler terms,
a capability is the potential to perform a specific action, while a skill
is the actual execution of that action. For example, if the robot has
the capability to move, then in our demonstration, the corresponding
skill allows the robot to perform the actual movement. Regarding the
PLC code, we used Siemens TIA Portal for PLC programming in the
demo. The PLC code was generated through a custom XML generation
program we designed.

Based on the mapping rules, the customised program can generate
the PLC code of specific skills from the modular database. The gener-
ated PLC code is stored in Siemens-compliant XML format following the
structure depicted in Fig. 10.

4.2. Understanding the product requirements

The steps for understanding the product requirements are exe-
cuted based on the Algorithm 1 described in Section 3.1.2. The BoPs
and BoRs of the current product (Product I) listed in Table 2 are
generated from the experience of the engineer (pre-provided and rule-
based search). If the system encounters product requirements that do
not directly align with the engineer’s predefined methods but can be
interpreted or converted using domain-specific ontologies to uncover
implicit relationships, then the semantic search is employed. However,
if the semantic search proves insufficient, especially for product with
unknown requirements (e.g. Product II), the semantic search with em-
bedded vector representation (semantic embedding search) is executed
in the algorithm. As a result, the semantic embedding search find the
most suitable BoPs and BoRs. This is achieved by a GraphSAGE graph
neural network model. The network is trained to transfer the graph data
into the embedding vector to execute the semantic search. The training
process was done with StellarGraph [88], which is a Python library that
offers state-of-the-art algorithms for graph machine learning.

Once BoPs and BoRs are generated, the information is stored in
a JSON file [89], which is essential for constructing the simulation

environment. Fig. 11 outlines the structure of the JSON file used in our



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
Fig. 9. Ontology model of our proposed framework.
Fig. 10. PLC code library structure.

approach. The JSON file gathers the necessary information for build-
ing the simulation environment, including details on parts, resources,
manufacturing features, and compound operation information.

In the current implementation, the simulation environment is up-
dated through a semi-automatic process. The JSON file is manually
loaded, and then the simulation environment is updated based on
the provided information. While this approach reduces some manual
labour, there is still potential for further optimisation to streamline the
process and improve overall efficiency.

4.3. Building the simulation environment

In this case study, Siemens Tecnomatix Process Simulate is utilised
for the simulation, as it can simulate a wide set of robot controllers
182
Fig. 11. Json information about the BoPs and BoRs.

and supports secondary development to customise behaviour. The Tec-
nomatix .NET API [90] was employed to enable the secondary de-
velopment of Tecnomatix software. The developed modules with this
development tool exhibit fast running speeds and high reliability. With
the assistance of the Tecnomatix .NET API, the simulation environ-
ment is generated based on the information from the BoPs, BoRs, and
the current system configuration, following the approach presented in
Fig. 3.

The Tecnomatix .NET API plays a crucial role in bridging the com-
munication between the simulation environment and various elements,
such as the BoPs (Bills of Processes), BoRs (Bills of Resources), and
the current system configuration. By leveraging the capabilities of this
API, we were able to effectively extract relevant features and import
necessary data, enabling seamless integration of these elements into the
simulation environment.

Fig. 12 is the user interface for importing the JSON file to generate
or update the simulation environment in Tecnomatix .NET API. This
interface allows for the efficient importation of data, streamlining the
process and reducing the possibility of errors. Fig. 13 showcases the
generated simulation environment in the Tecnomatix Process Simulate,
providing a comprehensive and accurate representation of the system
being modelled.

Overall, the use of the Tecnomatix .NET API in this case study has
demonstrated its effectiveness in streamlining the development process,
ensuring high reliability and efficiency, and providing a foundation for
further development and customisation as needed.



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
Fig. 12. GUI interface for building the simulation environment.

Fig. 13. Generated simulation environment.

4.4. Generation of the PLC code

As proposed in Section 3, a mapper between the skill model inter-
face and PLC code library is designed. In the validation use case, we
created the mapper with Protégé and Owlready2, which is a package
for manipulating OWL 2.0 ontologies in Python [91]. At this step, the
modular process-specific PLC codes are stored in the database, which
are later needed for the mapping rules. The required information from
the BoPs and BoRs is applied to the skill model with the ontology model
we designed. The corresponding PLC code is then generated based on
the skill model. As mentioned before, the PLC database already stores
some PLC code.

A benefit of using this modular approach is how flexible the system
is in incorporating new processes or technologies; once a new process-
specific code is developed, it can be easily used within the automatic
code generation process by entering it into the database and adding a
new rule into the mapping process.

Based on this approach and the mapping tools, the related PLC code
from the BoPs and BoRs was generated as indicated in Fig. 14.

4.5. Conversion/check of the PLCopen XML

The generated PLC code is in Siemens-compliant format, as de-
scribed in Section 4.4. In this case, a conversion to the PLCopen XML is
needed to convert the Siemens-compliant format to the PLCopen XML
format. PLC automated conversion work remains in progress, and for
this use case was manually done to demonstrate the methodology. PLC
code was replicated in the Codesys development environment so that it
could be exported automatically on an IEC 61131-3 standardised XML
format.

4.6. PLC code testing

The developed PLC testing solution is implemented in the Siemens
TIA Portal environment by following the approach described in Fig. 15.
183
TIA Portal automatically creates a PLCSIM Advanced instance – a
virtual replica of the hardware in place – and downloads the PLC con-
figuration to the PLC simulation instance for executing the generated
test cases. Thus, a software-in-the-loop approach is proposed to validate
the changes before commissioning and deploying the new PLC code into
operations.

The presented approach was implemented for the ‘‘Drilling’’ opera-
tion of the OMNIFACTORY. Specifically, the following FBD networks of
the drilling process were selected: FBD, which generates position flags,
and FBD, which sets the execute bit when a position is required.

The FBD tester was developed by KAIST [37] for FBD automated
coverage-based test data generation and MuFBD tester [41] for
mutation-based test data generation. We extended these tools for their
use in the OMNIFACTORY by 1) updating the respective FBD libraries,
2) developing cost-effective metrics calculation – Test Execution Time
(TET), Fault Detection Capability (FDC), and coverage (BC, ICC, CCC)
– to cost-effectively select the test cases, and 3) developing automated
test execution to obtain test oracles, which are required to benchmark
TIA Portal execution results. In addition, we implemented a new SMT
solver – Yices 2 SMT2 – to generate test cases for a wide range of IEC
61131-3 function groups, including non-linear arithmetic functions, as
opposed to the legacy KAIST tool.

Given a large number of test cases per each Functional Block dia-
gram, a cost-effective test selection approach was applied based on the
evaluation of cost-effective metrics, i.e. TET, FBD, and coverage. The
developed test selection testing was based on a multi-objective search-
based algorithm that maximises FDC and coverage (BC, ICC, CCC) while
reducing execution time.

A total of 134 test cases were generated for the selected FBD
networks of the drilling operation: 2 test cases for the BC test suite,
5 test cases for ICC and CCC test suites, and 122 mutation-based test
cases. Fig. 16 shows an example test case of the basic coverage test
suite with three cyclic iterations, as indicated on the left side. These
test cases were then executed in Java to record the expected output
values of every intermediate cycle of each test case, as outlined on the
right side.

A converter was developed to map the generated test cases into the
TIA Portal Test Suite Application format. TIA Test Suite application
allows us to define the input values for a given number of scan cycles
or execution time. Hence, every output of each execution run can be
assessed according to previous test execution results.

Finally, the generated TIA Test Suite application test cases were im-
ported to TIA Portal via TIA Openness. Siemens TIA Openness is an API
that allows the engineer to interact with TIA Portal using a customised
application. It offers many advantages that lead to more efficient code
development. For example, TIA Openness allows us to create modular
code that can be used across many devices, with application-specific
changes being made automatically. By defining templates, users can
generate entire projects without any specific knowledge of PLC and
HMI programming.

TIA Portal then establishes a connection with the S7-PLCSIM Ad-
vanced simulation environment to execute the generated test cases in
the FBD program (see Fig. 17).

TIA Portal Test Suite first compiles the program and downloads
the hardware configuration to PLCSIM Advanced. All variables are also
loaded into the device. Once successfully completed, application tests
were executed and asserted with test oracles one by one. All tests were
successfully executed with a success rate of 100.00%, which means that
TIA execution results matched the test oracles generated in Java. On
average, each test case execution lasted around 40 s, resulting in a total
execution time of 132 min. This significantly reduces time to market,
as traditional manual testing requires a lot of time and is error-prone,
depending on the experience of the engineer.



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
Fig. 14. PLC code generation process.
Fig. 15. PLC Code testing - the overall structure.

Fig. 16. Example of a test case.
184
4.7. Virtual commissioning

As mentioned in the previous steps, Siemens Tecnomatix Process
Simulate is utilised in our approach. Virtual commissioning was per-
formed via TIA PLCSIM Advanced to validate the PLC code against the
newly updated simulation environment.

In Tecnomatix Process Simulate, there are two modes: standard
mode and line simulation mode. The standard mode is used for detailed
robot planning, which is a time-based simulation. Compared with the
standard mode, the line simulation mode is an event-based simulation
in which operations are triggered continuously by signals. In our pro-
posal, the line simulation mode was chosen for virtual commissioning
because it is more suitable to describe the use case and implementation.
This choice is made as the regular factory control is typically performed
through event-triggered operations rather than time-sequenced actions.
By using the line simulation mode, we can accurately represent the real-
world behaviour of the system and ensure a more effective evaluation
of its performance during the commissioning process. To enable virtual
commissioning, the PLC code generated in our last step was converted
to the format used in TIA Portal. As mentioned in Section 4.4, the
generated PLC code is in the Siemens XML format. Therefore, the
generated PLC code was imported to the Siemens automation software
TIA portal in this step. This was done with the help of the TIA Openness
program.

This API interface supports exporting consistent blocks and user
data types to an XML file. The XML file receives the name of the
block. The following block types are supported: Function blocks (FB),
Functions (FC), Organisation blocks (OB), and Global data blocks (DB).
According to the International Electrotechnical Commission 61131-3,
the following programming languages are supported: TL, function block
diagrams (FBD), ladder logic (LAD), GRAPH, and SCL.

We have developed a customised program leveraging Siemens TIA
Openness, which can automatically extract PLC code from the TIA
portal. Our tailored PLC generation program offers several advantages
over the standard TIA Openness demo program provided by Siemens:

• Our program can import different blocks at the same time,
whereas the TIA openness demo can only import one block at
a time.



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
Fig. 17. Example of TIA Portal Test Suite application test.
• Our program can automatically integrate and extract the PLC
code via automation methods.

The process of importing the PLC code from the original Siemens-
compliant XML format is defined in the next steps:

• Selecting the version: Select the version of the software, as
the project file is related to the TIA Portal software version. A
compatibility problem will exist if the software version is different
from the project file version.

• Selecting the project: The TIA Openness program will select
the target TIA Portal project stored locally or in the cloud. The
corresponding TIA project will then be automatically launched in
TIA Portal.

• Updating the project information: The information on the
project in the TIA portal will be updated in the TIA Openness
Program user interface. All the information on the selected TIA
Portal project will be updated with the help of the developed
import automation command.

• Importing the PLC code: With the help of TIA Openness API,
the generated PLC code in Siemens-compliant XML format can be
imported into the TIA Portal.

5. Conclusions

This paper presents a methodology aimed at enhancing human–
machine integration in adaptive manufacturing systems through auto-
matic PLC code generation and testing. By automating the PLC code
generation and testing process, the proposed approach addresses the
evolving manufacturing demands and reduces the need for human
workers to perform repetitive tasks. This enables humans to play a more
active role in adaptive manufacturing systems, working in harmony
with machines.

The applicability of this approach has been demonstrated through
an industrial use case. In this implementation, a modular PLC database
is employed, facilitating the generation and updating of PLC code based
on new requirements and previously available PLC function blocks.
This allows existing modules to be efficiently reused and extended as
185
needed, depending on the processes to be operated. PLCopen, a vendor-
independent solution, is utilised as the PLC code format, broadening the
potential scope of applications. An automatic interface is implemented
for generating/updating the simulation, while a customised TIA Open-
ness program automates the import and export of PLC data from the
TIA Portal.

The following manual commissioning procedures have been suc-
cessfully automated, significantly reducing error-prone routine tasks,
human effort, and time:

• Automated PLC code generation
• Automated coverage and mutation-based test case generation
• Automated multi-objective test case selection
• Automated test case execution and assertion with the use of test

oracles

For future work, we plan to extend the implementation to en-
compass physical hardware, going beyond simulations. The perfor-
mance of the proposed methodology will be benchmarked against
conventional manufacturing assembly systems to justify the return
on investment in terms of costs and time. Furthermore, we aim to
validate the methodology on other PLC vendors, such as Beckhoff
and Mitsubishi, to ensure maximum extensibility. To achieve this, the
ontology model for the PLC database will be enriched with existing
Industry 4.0 Standards [92]. As the data stored in the PLC database
grows, deep learning algorithms will be employed to select relevant
PLC code more accurately [93]. Finally, vision sensors, virtual reality,
and augmented reality will be integrated to implement the proposed
method in human–machine collaborative manufacturing systems.

By automating key aspects of the manufacturing process, this pa-
per highlights the potential for improved human–machine integration,
allowing for a more efficient and collaborative work environment.

CRediT authorship contribution statement

Fan Mo: Conceptualization, Methodology, Writing – original draft,
Software. Miriam Ugarte Querejeta: Conceptualization, Methodology,



Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
Writing – original draft, Software. Joseph Hellewell: Conceptualiza-
tion, Writing – original draft, Software. Hamood Ur Rehman: Con-
ceptualization, Writing – original draft. Miren Illarramendi Rezabal:
Supervision. Jack C. Chaplin: Writing – review & editing, Supervision.
David Sanderson: Writing – review & editing, Supervision. Svetan
Ratchev: Supervision, Funding acquisition, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This research is supported byDiManD Innovative Training Net-
work (ITN) project funded by the European Union through the Marie
Skłodowska-Curie Innovative Training Networks (H2020-MSCA-ITN-
2018) under grant agreement number no. 814078 and the Elastic Man-
ufacturing Systems project (Project Reference EP/T024429/1) funded
by the UK Engineering and Physical Science Research Council. The
authors would like to acknowledge the support from Innovate UK
project ELCAT (ref 113235) and GKN Aerospace.

References

[1] Storrie Donald. The future of manufacturing in Europe. Eurofound; 2019.
[2] Mo Fan, Chaplin Jack C, Sanderson David, Rehman Hamood Ur, Mon-

etti Fabio Marco, Maffei Antonio, et al. A framework for manufacturing system
reconfiguration based on artificial intelligence and digital twin. In: International
conference on flexible automation and intelligent manufacturing. Springer; 2022,
p. 361–73.

[3] Mo Fan, Monetti Fabio Marco, Torayev Agajan, Rehman Hamood Ur, Mulet Al-
berola Jose A, Rea Minango Nathaly, et al. A maturity model for the autonomy
of manufacturing systems. Int J Adv Manuf Technol 2023;126(1–2):405–28.

[4] Cimini Chiara, Pirola Fabiana, Pinto Roberto, Cavalieri Sergio. A human-in-the-
loop manufacturing control architecture for the next generation of production
systems. J Manuf Syst 2020;54:258–71.

[5] Peruzzini Margherita, Pellicciari Marcello. A framework to design a human-
centred adaptive manufacturing system for aging workers. Adv Eng Inform
2017;33:330–49.

[6] Lu Yuqian, Xu Xun, Wang Lihui. Smart manufacturing process and system
automation–a critical review of the standards and envisioned scenarios. J Manuf
Syst 2020;56:312–25.

[7] Bortolini Marco, Faccio Maurizio, Galizia Francesco Gabriele, Gamberi Mauro,
Pilati Francesco. Adaptive automation assembly systems in the industry 4.0 era:
A reference framework and full–scale prototype. Appl Sci 2021;11(3):1256.

[8] Fletcher Sarah R, Johnson Teegan, Adlon Tobias, Larreina Jon, Casla Patri-
cia, Parigot Laure, et al. Adaptive automation assembly: Identifying system
requirements for technical efficiency and worker satisfaction. Comput Ind Eng
2020;139:105772.

[9] Rehman Hamood Ur, Chaplin Jack C, Zarzycki Leszek, Mo Fan, Jones Mark,
Ratchev Svetan. Service based approach to asset administration shell for
controlling testing processes in manufacturing. 2022.

[10] Bortolini Marco, Faccio Maurizio, Galizia Francesco Gabriele, Gamberi Mauro,
Pilati Francesco. Design, engineering and testing of an innovative adaptive
automation assembly system. Assem Autom 2020;40(3):531–40.

[11] Sărăcin Cristina Gabriela, Deaconu Ioan Dragoş, Chirilă Aurel Ionuţ. Educational
Platform Dedicated to the Study of Programmable Logic Controllers and the
Human-Machine Interface. In: 2019 11th international symposium on advanced
topics in electrical engineering (ATEE). IEEE; 2019, p. 1–4.

[12] Manesis S, Akantziotis K. Automated synthesis of ladder automation circuits
based on state-diagrams. Adv Eng Softw 2005;36(4):225–33.

[13] Ulm G, Bellorini F, Brodrick D, Fernandes R, Levchenko N, Fernandez D Piso.
PLC factory: Automating routine tasks in large-scale PLC software development.
In: 16th int. conf. on accelerator and large experimental control systems
(ICALEPCS’17), Barcelona, Spain, 8-13 October 2017. JACOW Geneva; 2018, p.
495–500.

[14] Rehman Hamood Ur, Pulikottil Terrin, Estrada-Jimenez Luis Alberto, Mo Fan,
Chaplin Jack C, Barata Jose, et al. Cloud based decision making for multi-
agent production systems. In: Progress in artificial intelligence: 20th EPIA
conference on artificial intelligence, EPIA 2021, Virtual Event, September 7–9,
2021, proceedings 20. Springer; 2021, p. 673–86.

[15] Babiceanu Radu F, Chen F Frank. Development and applications of holonic
manufacturing systems: a survey. J Intell Manuf 2006;17:111–31.
186
[16] Trentesaux Damien. Distributed control of production systems. Eng Appl Artif
Intell 2009;22(7):971–8.

[17] Lyu Guolin, Brennan Robert William. Towards IEC 61499-based dis-
tributed intelligent automation: A literature review. IEEE Trans Ind Inf
2020;17(4):2295–306.

[18] Tiegelkamp Michael, John Karl-Heinz. IEC 61131-3: Programming industrial
automation systems. Vol. 166, Springer; 2010.

[19] Páez-Logreira Heyder David, Zamora-Musa Ronald, Bohorquez-Perez Jose. Pro-
gramming logic controllers (PLC) using ladder and structured control language
(SCL) in MATLAB. Revista Facultad de Ingenieria 2015;24(39):109–19.

[20] Estévez E, Marcos Marga, Lüder Arndt, Hundt Lorenz. PLCopen for achieving
interoperability between development phases. In: 2010 IEEE 15th conference on
emerging technologies & factory automation (ETFA 2010). IEEE; 2010, p. 1–8.

[21] Vogel-Heuser Birgit, Witsch Daniel, Katzke Uwe. Automatic code generation
from a UML model to IEC 61131-3 and system configuration tools. In: 2005
international conference on control and automation. Vol. 2, IEEE; 2005, p.
1034–9.

[22] Hametner Reinhard, Kormann Benjamin, Vogel-Heuser Birgit, Winkler Dietmar,
Zoitl Alois. Test case generation approach for industrial automation systems. In:
The 5th international conference on automation, robotics and applications. IEEE;
2011, p. 57–62.

[23] van der Wal Eelco. PLCopen. IEEE Ind Electron Mag 2009;3(4):25.
[24] Wang Han, Tang Xiaoqi, Song Bao, Wang Xiaoyu. A novel architecture of the

embedded computer numerical control system based on PLCopen standard. Proc
Inst Mech Eng B 2014;228(4):595–605.

[25] Wu Yi-Chen, Fan Chin-Feng. Automatic test case generation for structural testing
of function block diagrams. Inf Softw Technol 2014;56(10):1360–76.

[26] An Yameng, Qin Feiwei, Sun Danfeng, Wu Huifeng. A multi-facets On-
tology matching Approach for generating PLC Domain Knowledge Graphs.
IFAC-PapersOnLine 2020;53(2):10929–34.

[27] Aminu Enesi Femi, Oyefolahan Ishaq Oyebisi, Abdullahi Mohammad Bashir,
Salaudeen Muhammadu Tajudeen. A review on ontology development method-
ologies for developing ontological knowledge representation systems for various
domains. 2020.

[28] Elshafei Basem, Mo Fan, Chaplin Jack C, Arellano Giovanna Martinez,
Ratchev Svetan. Capacity modelling and measurement for smart elastic
manufacturing systems. Tech. rep., SAE Technical Paper; 2023.

[29] Martínez-Arellano Giovanna, Niewiadomski Karol, Mo Fan, Elshafei Basem,
Chaplin Jack C, Mcfarlane Duncan, Ratchev Svetan. Enabling Coordinated Elastic
Responses of Manufacturing Systems through Semantic Modelling. 2023.

[30] An Yameng, Qin Feiwei, Chen Baiping, Simon Rene, Wu Huifeng. OntoPLC:
semantic model of PLC programs for code exchange and software reuse. IEEE
Trans Ind Inf 2020;17(3):1702–11.

[31] Bayha Andreas, Bock Jürgen, Boss Birgit, Diedrich Christian, Malakuti Somayeh.
Describing capabilities of industrie 4.0 components: Joint white paper between
plattform industrie 4.0, VDI GMA 7.20, BaSys 4.2. 2020.

[32] Köcher Aljosha, Jeleniewski Tom, Fay Alexander. A method to automatically
generate semantic skill models from PLC code. In: IECON 2021–47th annual
conference of the IEEE industrial electronics society. IEEE; 2021, p. 1–6.

[33] Jee Eunkyoung, Shin Donghwan, Cha Sungdeok, Lee Jang-Soo, Bae Doo-
Hwan. Automated test case generation for FBD programs implementing reactor
protection system software. Softw Test Verif Reliab 2014;24(8):608–28.

[34] Hametner Reinhard, Kormann Benjamin, Vogel-Heuser Birgit, Winkler Dietmar,
Zoitl Alois. Automated test case generation for industrial control applications.
In: Recent advances in robotics and automation. Springer; 2013, p. 263–73.

[35] Enoiu Eduard P, Čaušević Adnan, Ostrand Thomas J, Weyuker Elaine J, Sund-
mark Daniel, Pettersson Paul. Automated test generation using model checking:
an industrial evaluation. Int J Softw Tools Technol Transf 2016;18(3):335–53.

[36] Jee Eunkyoung, Yoo Junbeom, Cha Sungdeok, Bae Doohwan. A data flow-
based structural testing technique for FBD programs. Inf Softw Technol
2009;51(7):1131–9.

[37] Song Jiyoung, Jee Eunkyoung, Bae Doo-Hwan. FBDTester 2.0: Automated test
sequence generation for FBD programs with internal memory states. Sci Comput
Program 2018;163:115–37.

[38] Jia Yue, Harman Mark. An analysis and survey of the development of mutation
testing. IEEE Trans Softw Eng 2010;37(5):649–78.

[39] Papadakis Mike, Kintis Marinos, Zhang Jie, Jia Yue, Le Traon Yves, Har-
man Mark. Mutation testing advances: An analysis and survey. In: Memon Atif M,
editor. Advances in computers. Vol. 112, Elsevier; 2019, p. 275–378.

[40] Enoiu Eduard P, Sundmark Daniel, Čaušević Adnan, Feldt Robert, Petters-
son Paul. Mutation-based test generation for PLC embedded software using model
checking. In: Wotawa Franz, Nica Mihai, Kushik Natalia, editors. Testing software
and systems. Lecture notes in computer science, Vol. 9976, Cham: Springer; 2016,
p. 155–71. http://dx.doi.org/10.1007/978-3-319-47443-4_10.

[41] Liu Lingjun, Jee Eunkyoung, Bae Doo-Hwan. Mugenfbd: Automated mutant
generator for function block diagram programs. KIPS Trans Softw Data Eng
2021;10(4):115–24.

[42] Fernández B, Blanco E, Merezhin A. Testing & verification of PLC code for process
control. In: Proceedings of ICALEPCS. 2013.

http://refhub.elsevier.com/S0278-6125(23)00147-4/sb1
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb2
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb2
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb2
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb2
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb2
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb2
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb2
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb2
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb2
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb3
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb3
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb3
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb3
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb3
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb4
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb4
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb4
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb4
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb4
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb5
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb5
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb5
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb5
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb5
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb6
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb6
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb6
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb6
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb6
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb7
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb7
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb7
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb7
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb7
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb8
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb8
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb8
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb8
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb8
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb8
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb8
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb9
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb9
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb9
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb9
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb9
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb10
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb10
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb10
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb10
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb10
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb11
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb11
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb11
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb11
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb11
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb11
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb11
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb12
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb12
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb12
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb13
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb13
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb13
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb13
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb13
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb13
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb13
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb13
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb13
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb14
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb14
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb14
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb14
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb14
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb14
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb14
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb14
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb14
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb15
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb15
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb15
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb16
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb16
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb16
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb17
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb17
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb17
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb17
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb17
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb18
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb18
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb18
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb19
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb19
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb19
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb19
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb19
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb20
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb20
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb20
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb20
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb20
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb21
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb21
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb21
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb21
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb21
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb21
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb21
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb22
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb22
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb22
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb22
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb22
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb22
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb22
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb23
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb24
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb24
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb24
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb24
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb24
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb25
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb25
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb25
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb26
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb26
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb26
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb26
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb26
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb27
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb27
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb27
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb27
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb27
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb27
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb27
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb28
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb28
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb28
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb28
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb28
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb29
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb29
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb29
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb29
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb29
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb30
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb30
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb30
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb30
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb30
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb31
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb31
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb31
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb31
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb31
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb32
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb32
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb32
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb32
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb32
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb33
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb33
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb33
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb33
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb33
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb34
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb34
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb34
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb34
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb34
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb35
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb35
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb35
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb35
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb35
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb36
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb36
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb36
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb36
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb36
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb37
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb37
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb37
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb37
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb37
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb38
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb38
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb38
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb39
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb39
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb39
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb39
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb39
http://dx.doi.org/10.1007/978-3-319-47443-4_10
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb41
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb41
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb41
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb41
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb41
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb42
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb42
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb42


Journal of Manufacturing Systems 71 (2023) 172–187F. Mo et al.
[43] Schofield B, Viñuela E Blanco, et al. Continuous integration for PLC-based control
systems. In: 17th int. conf. on acc. and large exp. physics control systems,
ICALEPCS2019. 2019.

[44] Stolberg Sean. Enabling agile testing through continuous integration. In: 2009
agile conference. IEEE; 2009, p. 369–74.

[45] Talkhestani Behrang Ashtari, Jung Tobias, Lindemann Benjamin, Sahlab Nada,
Jazdi Nasser, Schloegl Wolfgang, et al. An architecture of an intelligent dig-
ital twin in a cyber-physical production system. at-Automatisierungstechnik
2019;67(9):762–82.

[46] Talkhestani Behrang Ashtari, Braun Dominik, Schloegl Wolfgang,
Weyrich Michael. Qualitative and quantitative evaluation of reconfiguring
an automation system using Digital Twin. Proc CIRP 2020;93:268–73.

[47] Koziorek J, Gavlas A, Konecny J, Mikolajek M, Kraut R, Walder P. Automated
control system design with model-based commissioning. Int J Circuits Syst Signal
Process 2019;13(2019):6–12.

[48] Robert Szepesi, Horia Ciocârlie. An overview on software reconfiguration. Theory
Appl Math Comput Sci 2011;1(1):74–9.

[49] Aksit Mehmet, Choukair Zièd. Dynamic, adaptive and reconfigurable systems
overview and prospective vision. In: 23rd international conference on distributed
computing systems workshops, 2003. proceedings. IEEE; 2003, p. 84–9.

[50] Li Jun, Dai Xianzhong, Meng Zhengda. Automatic reconfiguration of petri net
controllers for reconfigurable manufacturing systems with an improved net
rewriting system-based approach. IEEE Trans Autom Sci Eng 2008;6(1):156–67.

[51] Mohamad NR, Rahman AA Abdul, Mohamad BM Bali, Rahman MAA, Ja-
far FA, Muhamad MR, et al. Architecture of reconfigurable conveyor system in
manufacturing system. J Adv Manuf Technol (JAMT) 2018;12(1 (2)):117–28.

[52] Niang Mohamed, Riera Bernard, Philippot Alexandre, Zaytoon Janan, Gel-
lot François, Coupat Raphaël. A methodology for automatic generation, formal
verification and implementation of safe PLC programs for power supply
equipment of the electric lines of railway control systems. Comput Ind
2020;123:103328.

[53] Bortolini Marco, Accorsi Riccardo, Faccio Maurizio, Galizia Francesco Gabriele,
Pilati Francesco. Toward a real-time reconfiguration of self-adaptive smart
assembly systems. Procedia Manuf 2019;39:90–7.

[54] Mo Fan, Rehman Hamood Ur, Monetti Fabio Marco, Chaplin Jack C, Sander-
son David, Popov Atanas, et al. A framework for manufacturing system
reconfiguration and optimisation utilising digital twins and modular artificial
intelligence. Robot Comput-Integr Manuf 2023;82:102524.

[55] Jbair Mohammad, Ahmad Bilal, Mus’ab H Ahmad, Vera Daniel, Harrison Robert,
Ridler Tony. Automatic PLC code generation based on virtual engineering model.
In: 2019 IEEE international conference on industrial cyber physical systems
(ICPS). IEEE; 2019, p. 675–80.

[56] Floridi Luciano. AI as agency without intelligence: On chatgpt, large language
models, and other generative models. Philosophy Technol 2023;36(1):15.

[57] Backstrom Lars, Leskovec Jure. Supervised random walks: predicting and recom-
mending links in social networks. In: Proceedings of the fourth ACM international
conference on web search and data mining. 2011, p. 635–44.

[58] Akoglu Leman, Tong Hanghang, Koutra Danai. Graph based anomaly detection
and description: a survey. Data Min Knowl Discov 2015;29(3):626–88.

[59] Zhang Si, Zhou Dawei, Yildirim Mehmet Yigit, Alcorn Scott, He Jingrui,
Davulcu Hasan, et al. Hidden: hierarchical dense subgraph detection with
application to financial fraud detection. In: Proceedings of the 2017 SIAM
international conference on data mining. SIAM; 2017, p. 570–8.

[60] Li Yaguang, Yu Rose, Shahabi Cyrus, Liu Yan. Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting. 2017, arXiv preprint arXiv:1707.
01926.

[61] Monti Federico, Boscaini Davide, Masci Jonathan, Rodola Emanuele, Svo-
boda Jan, Bronstein Michael M. Geometric deep learning on graphs and
manifolds using mixture model cnns. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017, p. 5115–24.

[62] Cai Hongyun, Zheng Vincent W, Chang Kevin Chen-Chuan. A comprehensive
survey of graph embedding: Problems, techniques, and applications. IEEE Trans
Knowl Data Eng 2018;30(9):1616–37.

[63] Zhou Jie, Cui Ganqu, Hu Shengding, Zhang Zhengyan, Yang Cheng, Liu Zhiyuan,
et al. Graph neural networks: A review of methods and applications. AI Open
2020;1:57–81.

[64] Kipf Thomas N, Welling Max. Semi-supervised classification with graph
convolutional networks. 2016, arXiv preprint arXiv:1609.02907.

[65] Hamilton Will, Ying Zhitao, Leskovec Jure. Inductive representation learning on
large graphs. In: Advances in neural information processing systems. Vol. 30,
2017.

[66] Hermann Mario, Pentek Tobias, Otto Boris. Design principles for industrie 4.0
scenarios. In: 2016 49th hawaii international conference on system sciences
(HICSS). IEEE; 2016, p. 3928–37.

[67] Hoc Jean-Michel. From human–machine interaction to human–machine
cooperation. Ergonomics 2000;43(7):833–43.
187
[68] Xu Xun, Lu Yuqian, Vogel-Heuser Birgit, Wang Lihui. Industry 4.0 and Industry
5.0—Inception, conception and perception. J Manuf Syst 2021;61:530–5.

[69] Lu Yuqian, Zheng Hao, Chand Saahil, Xia Wanqing, Liu Zengkun, Xu Xun, et
al. Outlook on human-centric manufacturing towards Industry 5.0. J Manuf Syst
2022;62:612–27.

[70] Michalos George, Makris Sotiris, Papakostas Nikolaos, Mourtzis Dimitris, Chrys-
solouris George. Automotive assembly technologies review: challenges and
outlook for a flexible and adaptive approach. CIRP J Manufact Sci Technol
2010;2(2):81–91.

[71] David HJJOEP. Why are there still so many jobs? The history and future of
workplace automation. J Econ Perspect 2015;29(3):3–30.

[72] Park Hong-Seok, Tran Ngoc-Hien. An autonomous manufacturing system for
adapting to disturbances. Int J Adv Manuf Technol 2011;56(9):1159–65.

[73] Vogel-Heuser Birgit, Fay Alexander, Schaefer Ina, Tichy Matthias. Evolution of
software in automated production systems: Challenges and research directions.
J Syst Softw 2015;110:54–84.

[74] Schneider Georg Ferdinand, Wicaksono Hendro, Ovtcharova Jivka. Virtual en-
gineering of cyber-physical automation systems: The case of control logic. Adv
Eng Inform 2019;39:127–43.

[75] Fosić I, Šolić K. Graph database approach for data storing, presentation and
manipulation. In: 2019 42nd international convention on information and com-
munication technology, electronics and microelectronics (MIPRO). IEEE; 2019,
p. 1548–52.

[76] Chen Xiaojun, Jia Shengbin, Xiang Yang. A review: Knowledge reasoning over
knowledge graph. Expert Syst Appl 2020;141:112948.

[77] Xiong Chenyan, Power Russell, Callan Jamie. Explicit semantic ranking for
academic search via knowledge graph embedding. In: Proceedings of the 26th
international conference on world wide web. 2017, p. 1271–9.

[78] Simros Markus, Wollschlaeger Martin, Theurich Stefan. Programming embedded
devices in IEC 61131-languages with industrial PLC tools using PLCopen XML.
In: CONTROLO’2012. 2012.

[79] Lechler Tobias, Fischer Eva, Metzner Maximilian, Mayr Andreas, Franke Jörg.
Virtual Commissioning–Scientific review and exploratory use cases in advanced
production systems. Proc CIRP 2019;81:1125–30.

[80] Salih Husam, Abdelwahab Hammam, Abdallah Areej. Automation design for
a syrup production line using Siemens PLC S7-1200 and TIA Portal software.
In: 2017 international conference on communication, control, computing and
electronics engineering (ICCCCEE). IEEE; 2017, p. 1–5.

[81] Salari Mikael Ebrahimi, Paul Enoiu Eduard, Afzal Wasif, Seceleanu Cristina.
Choosing a test automation framework for programmable logic controllers in
CODESYS development environment. In: 2022 IEEE international conference
on software testing, verification and validation workshops (ICSTW). 2022, p.
277–84.

[82] Langlois Kevin, van der Hoeven Tom, Cianca David Rodriguez, Verstraten Tom,
Bacek Tomislav, Convens Bryan, et al. Ethercat tutorial: An introduction for real-
time hardware communication on windows [tutorial]. IEEE Robot Autom Mag
2018;25(1):22–122.

[83] Jayaweera Nirosh, Webb Phil. Metrology-assisted robotic processing of aerospace
applications. Int J Comput Integr Manuf 2010;23(3):283–96.

[84] Nicksch C, Kluge-Wilkes A, Huber M, Schmitt RH. Global Reference System
for factory-wide integration of metrology enabling flexible automation in aero-
plane assembly–requirements, concept and suitable technologies. Procedia Manuf
2020;52:89–94.

[85] Morgan Jeff, Halton Mark, Qiao Yuansong, Breslin John G. Industry 4.0 smart
reconfigurable manufacturing machines. J Manuf Syst 2021;59:481–506.

[86] Bortolini Marco, Galizia Francesco Gabriele, Mora Cristina. Reconfigurable
manufacturing systems: Literature review and research trend. J Manuf Syst
2018;49:93–106.

[87] Introduction of the Omnifactory, https://www.omnifactory.co.uk/.
[88] Waikhom Lilapati, Patgiri Ripon. An empirical investigation on BigGraph using

deep learning. In: Advances in computers. Vol. 128, Elsevier; 2023, p. 107–33.
[89] Pezoa Felipe, Reutter Juan L, Suarez Fernando, Ugarte Martín, Vrgoč Do-

magoj. Foundations of JSON schema. In: Proceedings of the 25th international
conference on world wide web. 2016, p. 263–73.

[90] Givehchi Mohammad, Ng Amos, Wang Lihui. Evolutionary optimization of
robotic assembly operation sequencing with collision-free paths. J Manuf Syst
2011;30(4):196–203.

[91] Tomaszuk Dominik, Szeremeta Łukasz. The molecular entities in linked data
dataset. Data in Brief 2020;31:105757.

[92] Jaskó Szilárd, Skrop Adrienn, Holczinger Tibor, Chován Tibor, Abonyi János.
Development of manufacturing execution systems in accordance with Industry
4.0 requirements: A review of standard-and ontology-based methodologies and
tools. Comput Ind 2020;123:103300.

[93] Kussul Nataliia, Lavreniuk Mykola, Skakun Sergii, Shelestov Andrii. Deep learn-
ing classification of land cover and crop types using remote sensing data. IEEE
Geosci Remote Sens Lett 2017;14(5):778–82.

http://refhub.elsevier.com/S0278-6125(23)00147-4/sb43
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb43
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb43
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb43
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb43
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb44
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb44
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb44
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb45
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb45
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb45
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb45
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb45
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb45
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb45
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb46
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb46
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb46
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb46
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb46
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb47
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb47
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb47
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb47
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb47
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb48
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb48
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb48
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb49
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb49
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb49
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb49
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb49
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb50
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb50
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb50
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb50
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb50
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb51
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb51
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb51
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb51
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb51
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb52
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb52
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb52
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb52
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb52
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb52
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb52
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb52
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb52
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb53
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb53
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb53
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb53
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb53
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb54
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb54
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb54
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb54
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb54
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb54
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb54
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb55
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb55
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb55
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb55
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb55
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb55
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb55
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb56
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb56
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb56
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb57
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb57
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb57
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb57
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb57
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb58
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb58
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb58
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb59
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb59
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb59
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb59
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb59
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb59
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb59
http://arxiv.org/abs/1707.01926
http://arxiv.org/abs/1707.01926
http://arxiv.org/abs/1707.01926
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb61
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb61
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb61
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb61
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb61
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb61
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb61
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb62
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb62
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb62
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb62
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb62
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb63
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb63
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb63
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb63
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb63
http://arxiv.org/abs/1609.02907
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb65
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb65
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb65
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb65
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb65
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb66
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb66
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb66
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb66
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb66
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb67
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb67
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb67
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb68
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb68
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb68
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb69
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb69
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb69
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb69
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb69
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb70
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb70
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb70
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb70
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb70
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb70
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb70
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb71
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb71
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb71
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb72
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb72
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb72
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb73
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb73
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb73
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb73
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb73
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb74
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb74
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb74
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb74
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb74
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb75
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb75
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb75
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb75
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb75
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb75
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb75
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb76
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb76
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb76
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb77
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb77
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb77
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb77
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb77
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb78
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb78
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb78
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb78
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb78
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb79
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb79
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb79
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb79
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb79
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb80
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb80
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb80
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb80
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb80
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb80
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb80
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb81
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb81
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb81
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb81
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb81
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb81
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb81
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb81
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb81
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb82
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb82
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb82
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb82
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb82
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb82
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb82
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb83
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb83
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb83
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb84
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb84
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb84
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb84
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb84
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb84
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb84
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb85
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb85
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb85
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb86
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb86
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb86
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb86
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb86
https://www.omnifactory.co.uk/
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb88
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb88
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb88
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb89
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb89
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb89
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb89
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb89
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb90
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb90
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb90
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb90
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb90
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb91
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb91
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb91
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb92
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb92
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb92
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb92
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb92
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb92
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb92
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb93
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb93
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb93
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb93
http://refhub.elsevier.com/S0278-6125(23)00147-4/sb93

	PLC orchestration automation to enhance human–machine integration in adaptive manufacturing systems
	Introduction
	Literature review
	Control architecture
	PLC code formats and standards
	Semantics for PLC modelling
	PLC code testing
	Dynamic software reconfiguration
	Graph Neural Network (GNN) and GraphSAGE model
	Human–machine coexistence in manufacturing
	Existing gaps

	Proposed methodology
	Overall structure
	Establishment of the database for PLC code
	Understanding the product requirement
	Building/updating the simulation process
	Generation of the PLC control code
	Conversion/check and update of the PLCopen XML
	PLC code testing
	Virtual commissioning and deployment


	Implementation and case study
	Establishment of the database for PLC and manufacturing information
	Understanding the product requirements
	Building the simulation environment
	Generation of the PLC code
	Conversion/check of the PLCopen XML
	PLC code testing
	Virtual commissioning

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


