eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
Identification of interaction mechanisms during drag finishing by means of an originalmacroscopic numerical model.pdf (23.87Mb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Identification of interaction mechanisms during drag finishing by means of an original macroscopic numerical model
Author
Malkorra Sarasola, Irati
Souli, Hanène
Claudin, Christophe
Salvatore, Ferdinando
ARRAZOLA, PEDRO JOSE
Rech, Joël
Seux, Hervé
Mathis, Aude
Rolet, Jason
Research Group
Mecanizado de alto rendimiento
Other institutions
IRT M2P
Université de Lyon
https://ror.org/03rks9355
Version
Postprint
Rights
© 2021 Elsevier Ltd
Access
Open access
URI
https://hdl.handle.net/20.500.11984/7145
Publisher’s version
https://doi.org/10.1016/j.ijmachtools.2021.103779
Published at
International Journal of Machine Tools and Manufacture  Vol. 168. Part A. N. artículo 103779, 2021
Publisher
Elsevier
Keywords
Drag finishing
Numerical modelling
arbitrary Lagrangian–Eulerian (ALE) formulation
abrasive media shape ... [+]
Drag finishing
Numerical modelling
arbitrary Lagrangian–Eulerian (ALE) formulation
abrasive media shape
Rheological behaviour
Abrasive wear [-]
Abstract
Drag finishing is one of the mass finishing processes that enhances surface roughness on complex parts due to the mechanical action of abrasive media. Due to the complexity of the process, industrial ... [+]
Drag finishing is one of the mass finishing processes that enhances surface roughness on complex parts due to the mechanical action of abrasive media. Due to the complexity of the process, industrial practice is based on experience. This paper proposes a model simulating abrasive media flowing around a part during a drag finishing operation at a macroscopic scale. The 2D model is based on an Arbitrary Lagrangian Eulerian (ALE) formulation that provides relevant mechanical parameters such as the distribution of stresses (normal and shear stresses) and sliding velocities between abrasive media and the surface to be polished. Abrasive media are modelled as a continuous material with a Drucker-Prager plastic constitutive equation. This last has been calibrated as a result of triaxial testing, commonly used to characterise soils in civil engineering. Two abrasive media (spherical and pyramidal shape) having the same composition were characterised. Pyramidal media exhibit significantly higher rheological behaviour compared to spherical one. The model is shown to be very sensitive to the media's rheological behaviour but also to the immersion depth. Pyramidal media leads to much higher normal and shear stresses, which are even higher at deeper immersion depths. Drag finishing experimental tests were carried out to evaluate the efficiency of the model. The correlation between experimental drag finishing tests and numerical test results reveals the physical mechanisms at the interface between media and the surface. Spherical media, with a small/orthogonal orientation impact angle, promotes plastic deformation, while the main mechanisms becomes cutting at higher impact angles. However, pyramidal media promotes cutting irrespective of the orientation angle. Moreover, it was concluded that the optimal mechanical loading combination happens between 30 and 60° for both medias, as the shearing energy reaches its maximum value. [-]
Collections
  • Articles - Engineering [743]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace