eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
A novel methodology for the characterization of cutting conditions in turning processes using ML_final.pdf (1.021Mb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
A novel methodology for the characterization of cutting conditions in turning processes using Machine Learning models and Acoustic Emission Signals
Author
Fernandez de Barrena, Telmo
Ferrando, Juan Luis
García Gangoiti, Ander
ARRAZOLA, PEDRO JOSE
Abete, J.M.
Herrero Villalibre, Diego
Research Group
Mecanizado de alto rendimiento
Other institutions
Vicomtech
Sidenor I+D
Version
Postprint
Rights
© 2022 The Author(s)
Access
Open access
URI
https://hdl.handle.net/20.500.11984/7144
Publisher’s version
https://doi.org/10.1007/978-3-030-87869-6_53
Published at
International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO)  16. Bilbao-Online, 22-24 septiembre 2021
Publisher
Springer Nature
Keywords
Machine learning
acoustic emission
Cutting characterization
Wavelet transform ... [+]
Machine learning
acoustic emission
Cutting characterization
Wavelet transform
Recursive feature elimination [-]
Abstract
In the last few years, the industry requires to know in real-time the condition of their assets. Acoustic Emission (AE) technique has been widely used to understand the real-time condition of manufact ... [+]
In the last few years, the industry requires to know in real-time the condition of their assets. Acoustic Emission (AE) technique has been widely used to understand the real-time condition of manufacturing processes such as the degree of tool wear or tool breakage. Traditionally, to fulfil that goal, the information extracted from the signal sensors of the machines has been processed with mathematical models. This methodology is changing, and instead of developing complex physical models (where an in-depth knowledge of the system being modelled is required), the current trend is to use Machine Learning (ML) models which are based on previous data . Signal pre-processing and feature extraction is a complex task that usually generates a high amount of predicting variables. Therefore, this paper proposes a methodology to identify the best pre-processing tools, AE features and ML models to characterize cutting condition processes. This methodology is validated identifying cutting conditions in a turning process based on AE signals. To classify the cutting condition with the highest accuracy, several techniques are applied, (including wavelet transform for multiresolution analysis, Recursive Feature Elimination (RFE) technique, different classifiers (Decision Tree (DT), Random Forests (RF), Support Vector Machine (SVM), Gaussian Process (GP), K-Nearest Neighbor (KNN) and Multilayer Perceptron (MLP) classifiers) and different signal segmentation lengths. These techniques were evaluated using the data captured in a turning process when cutting a 19NiMoCr6 steel under pre-established cutting conditions. The best accuracy of predicting the cutting conditions based on AE signals was 99.7%, and it was achieved combining the wavelet packet transform (WPT) with RFE, with a segmentation time of 0.05 s and RF as classifier. [-]
Funder
Gobierno Vasco.
Program
Elkartek 2020
Number
KK-2020-00099
Award URI
Sin información
Project
Materiales magnetoactivos multifuncionales para fabricación avanzada e industria inteligente (MMMfavIN)
Collections
  • Conferences - Engineering [423]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace