Registro sencillo

dc.contributor.authorReguera-Bakhache, Daniel
dc.contributor.authorGaritano, Iñaki
dc.contributor.authorCernuda, Carlos
dc.contributor.authorUribeetxeberria, Roberto
dc.contributor.authorZurutuza, Urko
dc.contributor.authorLasa, Ganix
dc.date.accessioned2025-04-28T09:13:22Z
dc.date.available2025-04-28T09:13:22Z
dc.date.issued2021
dc.identifier.isbn978-1-6654-4139-1en
dc.identifier.issn2159-6255en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=163550en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6983
dc.description.abstractAdaptive User Interfaces (AUI) have the potential to deliver advantageous solutions for a wide range of industrial applications. Their ability to adapt to operator interaction patterns and achieve a more personalised interaction can lead to greater efficiency and productivity in the manufacturing process. However, in certain industrial contexts multiple operators interact with the system, rendering it impossible to detect each individual and propose an operator-personalised adaptation. In this paper we propose a data-driven methodology to generate temporal adaptation rules for a multi-operator industrial process. Through the use of machine learning (ML), the methodology: i) analyzes the interaction of different operators with the same machine, ii) selects the most representative adaptations, and iii) generates a set of temporal adaptation rules. The methodology was validated in a real industrial setting resulting in over 40% shorter operator interaction time, and almost 60% number of clicks reduction, thus decreasing the occurrence of interaction errors.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2021 IEEEen
dc.subjectIndustrial HMIen
dc.subjectAdaptive user interfacesen
dc.subjectInteraction Patternsen
dc.subjectMachine learningen
dc.titleAn Adaptive Industrial Human-Machine Interface to Optimise Operators Working Performanceen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceIEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)en
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedtrueen
local.description.publicationfirstpage1213en
local.description.publicationlastpage1219en
local.identifier.doihttps://doi.org/10.1109/AIM46487.2021.9517434en
local.source.detailsDelft (Holanda). 12-16 julio 2021en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo