Simple record

dc.contributor.authorEtxeberria Garcia, Mikel
dc.contributor.authorLabayen, Mikel
dc.contributor.authorEizaguirre, Fernando
dc.contributor.authorZamalloa, Maider
dc.contributor.authorArana-Arexolaleiba, Nestor
dc.date.accessioned2025-04-10T08:07:28Z
dc.date.available2025-04-10T08:07:28Z
dc.date.issued2021
dc.identifier.isbn9781510644274en
dc.identifier.issn1996-756Xen
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=167320en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6949
dc.description.abstractIn this paper, the application of monocular Visual Odometry (VO) solutions for underground train stopping operation are explored. In order to analyze if the application of monocular VO solutions in challenging environments as underground railway scenarios is viable, di erent VO architectures are selected. For that, the state of the art of deep learning based VO approaches is analyzed. Four categories can be de ned in the VO approaches de ned in the last few years: (1) supervised pure deep learning based solutions; (2) solutions combining geometric features and deep learning; (3) solutions combining inertial sensors and deep learning; and (4) unsupervised deep learning solutions. A dataset composed of underground train stop operations was also created, where the ground truth is labeled according to the onboard unit SIL-4 ERTMS/ETCS odometry data. The dataset was recorded by using a camera installed in front of the train. Preliminary experimental results demonstrate that deep learning based VO solutions are applicable in underground train stop operations.en
dc.language.isoengen
dc.publisherSPIEen
dc.subjectcomputer visionen
dc.subjectRail transportationen
dc.subjectDeep learningen
dc.subjectArtifi cial intelligenceen
dc.subjectAutonomous trainen
dc.titleMonocular visual odometry for underground railway scenariosen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceInternational Conference on Quality Control by Artificial Vision (QCAV)en
local.contributor.groupRobótica y automatizaciónes
local.description.peerreviewedfalseen
local.identifier.doihttps://doi.org/10.1117/12.2586310en
local.contributor.otherinstitutionhttps://ror.org/03hp1m080es
local.contributor.otherinstitutionhttps://ror.org/000xsnr85es
local.source.details15. Tokushima (Japón), 12-14 May 2021en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bcceen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Simple record