dc.contributor.author | Etxeberria Garcia, Mikel | |
dc.contributor.author | Labayen, Mikel | |
dc.contributor.author | Eizaguirre, Fernando | |
dc.contributor.author | Zamalloa, Maider | |
dc.contributor.author | Arana-Arexolaleiba, Nestor | |
dc.date.accessioned | 2025-04-10T08:07:28Z | |
dc.date.available | 2025-04-10T08:07:28Z | |
dc.date.issued | 2021 | |
dc.identifier.isbn | 9781510644274 | en |
dc.identifier.issn | 1996-756X | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=167320 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6949 | |
dc.description.abstract | In this paper, the application of monocular Visual Odometry (VO) solutions for underground train stopping
operation are explored. In order to analyze if the application of monocular VO solutions in challenging environments
as underground railway scenarios is viable, di erent VO architectures are selected. For that, the state of
the art of deep learning based VO approaches is analyzed. Four categories can be de ned in the VO approaches
de ned in the last few years: (1) supervised pure deep learning based solutions; (2) solutions combining geometric
features and deep learning; (3) solutions combining inertial sensors and deep learning; and (4) unsupervised
deep learning solutions. A dataset composed of underground train stop operations was also created, where the
ground truth is labeled according to the onboard unit SIL-4 ERTMS/ETCS odometry data. The dataset was
recorded by using a camera installed in front of the train. Preliminary experimental results demonstrate that
deep learning based VO solutions are applicable in underground train stop operations. | en |
dc.language.iso | eng | en |
dc.publisher | SPIE | en |
dc.subject | computer vision | en |
dc.subject | Rail transportation | en |
dc.subject | Deep learning | en |
dc.subject | Artifi cial intelligence | en |
dc.subject | Autonomous train | en |
dc.title | Monocular visual odometry for underground railway scenarios | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
dcterms.source | International Conference on Quality Control by Artificial Vision (QCAV) | en |
local.contributor.group | Robótica y automatización | es |
local.description.peerreviewed | false | en |
local.identifier.doi | https://doi.org/10.1117/12.2586310 | en |
local.contributor.otherinstitution | https://ror.org/03hp1m080 | es |
local.contributor.otherinstitution | https://ror.org/000xsnr85 | es |
local.source.details | 15. Tokushima (Japón), 12-14 May 2021 | en |
oaire.format.mimetype | application/pdf | en |
oaire.file | $DSPACE\assetstore | en |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | en |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | en |