Erregistro soila

dc.contributor.authorMaestro-Watson, Daniel
dc.contributor.authorBalzategui, Julen
dc.contributor.authorEciolaza, Luka
dc.contributor.authorArana-Arexolaleiba, Nestor
dc.date.accessioned2025-04-02T07:14:32Z
dc.date.available2025-04-02T07:14:32Z
dc.date.issued2020
dc.identifier.issn1560-229Xen
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=161733en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6938
dc.description.abstractThe purpose of this paper is to explore the use of fully convolutional neural networks (FCN) to perform a semantic segmentation of deflectometric recordings for quality control of reflective surfaces. The proposed method relies on a U-net network to identify the location and boundaries of the object and the possible defective areas present on it by performing a pixel-wise classification based on local curvatures and data modulation. Experiments were performed on a real industrial problem using four variations of the architecture. The results demonstrate that the method combining geometric and photometric information enables the identification of a wider variety of shape and texture imperfections, with the resulting segmentations closely correlated with the visual impact of the defects. In addition, several suggestions are presented for near-term industrial utilization.es
dc.language.isoengen
dc.publisherSPIEen
dc.rights© 2020 Society of Photo-Optical Instrumentation Engineersen
dc.subjectSpecular surfacesen
dc.subjectDefect detectionen
dc.subjectDeflectometryen
dc.subjectArtificial Neural Networksen
dc.titleDeflectometric data segmentation for surface inspection: a fully convolutional neural network approachen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceJournal of Electronic Imagingen
local.contributor.groupRobótica y automatizaciónes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1117/1.JEI.29.4.041007en
local.source.detailsVol. 29. N. 4. N. artículo, 041007, 2020en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086
oaire.fundingStreamConvocatoria Universidad Empresa 2018-2019en
oaire.fundingStreamIkertalde Convocatoria 2019-2021en
oaire.awardNumberPUE 2018-06en
oaire.awardNumberIT1357-19en
oaire.awardTitleDesarrollo de un sistema de inspección inteligente basado en algoritmos de Deep Learning para células robotizadas flexibles multi-puesto 3D (IDEFIX)en
oaire.awardTitleSistemas Inteligentes para Sistemas Industriales (IKERTALDE 2019-2021)en
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila