dc.contributor.author | Maestro-Watson, Daniel | |
dc.contributor.author | Balzategui, Julen | |
dc.contributor.author | Eciolaza, Luka | |
dc.contributor.author | Arana-Arexolaleiba, Nestor | |
dc.date.accessioned | 2025-04-02T07:14:32Z | |
dc.date.available | 2025-04-02T07:14:32Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1560-229X | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=161733 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6938 | |
dc.description.abstract | The purpose of this paper is to explore the use of fully convolutional neural networks (FCN) to perform a semantic segmentation of deflectometric recordings for quality control of reflective surfaces. The proposed method relies on a U-net network to identify the location and boundaries of the object and the possible defective areas present on it by performing a pixel-wise classification based on local curvatures and data modulation. Experiments were performed on a real industrial problem using four variations of the architecture. The results demonstrate that the method combining geometric and photometric information enables the identification of a wider variety of shape and texture imperfections, with the resulting segmentations closely correlated with the visual impact of the defects. In addition, several suggestions are presented for near-term industrial utilization. | es |
dc.language.iso | eng | en |
dc.publisher | SPIE | en |
dc.rights | © 2020 Society of Photo-Optical Instrumentation Engineers | en |
dc.subject | Specular surfaces | en |
dc.subject | Defect detection | en |
dc.subject | Deflectometry | en |
dc.subject | Artificial Neural Networks | en |
dc.title | Deflectometric data segmentation for surface inspection: a fully convolutional neural network approach | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
dcterms.source | Journal of Electronic Imaging | en |
local.contributor.group | Robótica y automatización | es |
local.description.peerreviewed | true | en |
local.identifier.doi | https://doi.org/10.1117/1.JEI.29.4.041007 | en |
local.source.details | Vol. 29. N. 4. N. artículo, 041007, 2020 | en |
oaire.format.mimetype | application/pdf | en |
oaire.file | $DSPACE\assetstore | en |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | en |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |
oaire.funderName | Gobierno Vasco | en |
oaire.funderName | Gobierno Vasco | en |
oaire.funderIdentifier | https://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | en |
oaire.funderIdentifier | https://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | |
oaire.fundingStream | Convocatoria Universidad Empresa 2018-2019 | en |
oaire.fundingStream | Ikertalde Convocatoria 2019-2021 | en |
oaire.awardNumber | PUE 2018-06 | en |
oaire.awardNumber | IT1357-19 | en |
oaire.awardTitle | Desarrollo de un sistema de inspección inteligente basado en algoritmos de Deep Learning para células robotizadas flexibles multi-puesto 3D (IDEFIX) | en |
oaire.awardTitle | Sistemas Inteligentes para Sistemas Industriales (IKERTALDE 2019-2021) | en |
oaire.awardURI | Sin información | en |
oaire.awardURI | Sin información | en |