Izenburua
Deflectometric data segmentation for surface inspection: a fully convolutional neural network approachBertsioa
Postprinta
Eskubideak
© 2020 Society of Photo-Optical Instrumentation EngineersSarbidea
Sarbide irekiaArgitaratzailearen bertsioa
https://doi.org/10.1117/1.JEI.29.4.041007Non argitaratua
Journal of Electronic Imaging Vol. 29. N. 4. N. artículo, 041007, 2020Argitaratzailea
SPIEGako-hitzak
Specular surfacesDefect detection
Deflectometry
Artificial Neural Networks
Laburpena
The purpose of this paper is to explore the use of fully convolutional neural networks (FCN) to perform a semantic segmentation of deflectometric recordings for quality control of reflective surfaces. ... [+]
The purpose of this paper is to explore the use of fully convolutional neural networks (FCN) to perform a semantic segmentation of deflectometric recordings for quality control of reflective surfaces. The proposed method relies on a U-net network to identify the location and boundaries of the object and the possible defective areas present on it by performing a pixel-wise classification based on local curvatures and data modulation. Experiments were performed on a real industrial problem using four variations of the architecture. The results demonstrate that the method combining geometric and photometric information enables the identification of a wider variety of shape and texture imperfections, with the resulting segmentations closely correlated with the visual impact of the defects. In addition, several suggestions are presented for near-term industrial utilization. [-]
Finantzatzailea
Gobierno VascoGobierno Vasco
Programa
Convocatoria Universidad Empresa 2018-2019Ikertalde Convocatoria 2019-2021
Zenbakia
PUE 2018-06IT1357-19
Laguntzaren URIa
Sin informaciónSin información
Proiektua
Desarrollo de un sistema de inspección inteligente basado en algoritmos de Deep Learning para células robotizadas flexibles multi-puesto 3D (IDEFIX)Sistemas Inteligentes para Sistemas Industriales (IKERTALDE 2019-2021)