Erregistro soila

dc.contributor.authorVillalobos Cano, Adrian
dc.contributor.authorBarrutia, Iban
dc.contributor.authorPeña Alzola, Rafael
dc.contributor.authorDragicevic, Tomislav
dc.contributor.authorAizpurua, José I.
dc.date.accessioned2025-03-28T08:02:24Z
dc.date.available2025-03-28T08:02:24Z
dc.date.issued2025
dc.identifier.issn1873-6769en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=180405en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6929
dc.description.abstractSemiconductor devices, especially MOSFETs (Metal–oxide–semiconductor field-effect transistor), are crucial in power electronics, but their reliability is affected by ageing processes influenced by cycling and temperature. The primary ageing mechanism in discrete semiconductors and power modules is the bond wire lift-off, caused by crack growth due to thermal fatigue. The process is empirically characterized by exponential growth and an abrupt end of life, making long-term ageing forecasts challenging. This research presents a comprehensive comparative assessment of different forecasting methods for MOSFET failure forecasting applications. Classical tracking, statistical forecasting and Neural Network (NN) based forecasting models are implemented along with novel Temporal Fusion Transformers (TFTs). A comprehensive comparison is performed assessing their MOSFET ageing forecasting ability for different forecasting horizons. For short-term predictions, all algorithms result in acceptable results, with the best results produced by classical NN forecasting models at the expense of higher computations. For long-term forecasting, only the TFT is able to produce valid outcomes owing to the ability to integrate covariates from the expected future conditions. Additionally, TFT attention points identify key ageing turning points, which indicate new failure modes or accelerated ageing phases.es
dc.language.isoengen
dc.publisherElsevieren
dc.relationhttps://github.com/joxeina/AgeingForecastingMOSFETs
dc.rights© 2025 Elsevier Ltd.en
dc.subjectsemiconductorsen
dc.subjectForecastingen
dc.subjectcondition monitoringen
dc.subjectTemporal Fusionen
dc.subjectTransformersen
dc.subjectneural networksen
dc.titleComparative analysis and evaluation of ageing forecasting methods for semiconductor devices in online health monitoringen
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceEngineering Applications of Artificial Intelligenceen
local.contributor.groupTeoría de la señal y comunicacioneses
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.engappai.2025.110545en
local.embargo.enddate2027-06-30
local.contributor.otherinstitutionhttps://ror.org/00n3w3b69es
local.contributor.otherinstitutionhttps://ror.org/04qtj9h94es
local.contributor.otherinstitutionhttps://ror.org/000xsnr85es
local.contributor.otherinstitutionhttps://ror.org/01cc3fy72es
local.source.detailsVol. 150. N. art. 110545. June 2025en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept9546en
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno de Españaen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.funderIdentifierhttps://ror.org/038jjxj40 / http://data.crossref.org/fundingdata/funder/10.13039/501100010198en
oaire.fundingStreamElkartek 2024en
oaire.fundingStreamRamon y Cajal. Convocatoria 2022en
oaire.awardNumberKK-2024-00030en
oaire.awardNumberRYC2022-037300-Ien
oaire.awardTitleMecatrónica cognitiva para el diseño de las maquinas industriales (MECACOGNIT)en
oaire.awardTitleJose Ignacio Aizpurua Unanueen
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen
dc.unesco.clasificacionhttp://skos.um.es/unesco6/221125en


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila