Título
Dimple prediction modelling in ultrashort laser processing: A benchmark study on ablation threshold determination methods and incubation modelsAutor-a
Versión
Postprint
Derechos
© 2025 ElsevierAcceso
Acceso embargadoVersión del editor
https://doi.org/10.1016/j.surfcoat.2024.131712Publicado en
Surface and Coatings Technology Vol. 497. N. art. 131712, 2025Editor
ElsevierPalabras clave
Ultrashort laser
prediction models
Multi-shot ablation
Ablation threshold ... [+]
prediction models
Multi-shot ablation
Ablation threshold ... [+]
Ultrashort laser
prediction models
Multi-shot ablation
Ablation threshold
Incubation model
Two-temperature model [-]
prediction models
Multi-shot ablation
Ablation threshold
Incubation model
Two-temperature model [-]
Materia (Tesauro UNESCO)
Tecnología de materialesClasificación UNESCO
Tecnología de materialesResumen
The appropriate selection of ultrashort laser processing parameters is a complex task in which prediction models based on the logarithmic ablation law derived from the Two-Temperature model are common ... [+]
The appropriate selection of ultrashort laser processing parameters is a complex task in which prediction models based on the logarithmic ablation law derived from the Two-Temperature model are commonly used to minimize experimental effort. Although the model's accuracy depends on the threshold fluence (
) and energy penetration depth (
) values used, which evolve with the number of pulses (Np) due to the incubation effect, there is no consensus on the optimal determination method or incubation description. A benchmark on ablation threshold determination methods and incubation models was conducted on stainless steel to (i) analyse their effects on
and
and (ii) evaluate the impact on diameter and depth prediction errors of multi-shot dimples. Four ablation threshold determination methods and four incubation models, along with their variants, were identified. This resulted in a total of 24 combinations, referred to as estimation approaches. For a single pulse,
varied up to 73 % depending on the estimation approach, whereas
was less sensitive, with differences up to 40 %. Regarding prediction errors, they remained below 12 % for diameter across all estimation approaches. Depth prediction errors exhibited greater sensitivity, ranging from 11 % to 33 %. This study emphasizes the importance of the estimation approach used for both ablation threshold and incubation parameter determination and its impact on the multi-shot dimple prediction accuracy. [-]
Financiador
Diputación Foral de GipuzkoaDiputación Foral de Gipuzkoa
Programa
Programa de Red Guipuzcoana de Ciencia, Tecnología e Innovación 2021Programa de Red Guipuzcoana de Ciencia, Tecnología e Innovación 2023
Número
2021-000291-01-B2023-CIEN-000037-01
URI de la ayuda
Sin informaciónSin información
Proyecto
Digitalización de Procesos de Funcionalización Superficial Láser Bioinspirada para Conformado Sostenible (DIGILAS)Eficiencia energética en componentes de la industria del H2 a través del diseño y caracterización de materiales y superficies avanzadas (ENERGY EH2)
Colecciones
- Artículos - Ingeniería [699]
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Analytical Model of the Current Stress in Active-Bridge Active-Clamp Converter for More Electric Aircraft
Abad, Gonzalo (IEEE, 2021)Nowadays, the emergence of electrically supplied actuators and energy storage systems is leading the aeronautic industry to develop aircrafts with more electrical power installed. Therefore, different Power-Electronic ... -
Transevol - A Tool to Evolve Legacy Model Transformations by Example
Agirre, Joseba Andoni; Sagardui, Goiuria; Etxeberria, Leire (SCITEPRESS, 2014)The use of Model Driven Development (MDD) approach is increasing in industry. MDD approach raises the level of abstraction using models as main artefacts of software engineering processes. The development of model ... -
Evolving Legacy Model Transformations to Aggregate Non Functional Requirements of the Domain
Agirre, Joseba Andoni; Sagardui, Goiuria; Etxeberria, Leire (SCITEPRESS, 2015)The use of Model Driven Development (MDD) is increasing in industry. When a Non Functional Requirement (NFR) not considered in the development must be added metamodels, models and also transformations are affected. Tasks ...