Erregistro soila

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.contributor.authorAbu-Dakka, Fares J.
dc.contributor.authorSaveriano, Matteo
dc.contributor.authorPeternel, Luka
dc.date.accessioned2025-01-23T16:52:41Z
dc.date.available2025-01-23T16:52:41Z
dc.date.issued2024
dc.identifier.issn1872-793Xen
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=178845en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6865
dc.description.abstractMany daily tasks exhibit a periodic nature, necessitating that robots possess the ability to execute them either alone or in collaboration with humans. A widely used approach to encode and learn such periodic patterns from human demonstrations is through periodic Dynamic Movement Primitives (DMPs). Periodic DMPs encode cyclic data independently across multiple dimensions of multi-degree of freedom systems. This method is effective for simple data, like Cartesian or joint position trajectories. However, it cannot account for various geometric constraints imposed by more complex data, such as orientation and stiffness. To bridge this gap, we propose a novel periodic DMP formulation that enables the encoding of periodic orientation trajectories and varying stiffness matrices while considering their geometric constraints. Our geometry-aware approach exploits the properties of the Riemannian manifold and Lie group to directly encode such periodic data while respecting its inherent geometric constraints. We initially employed simulation to validate the technical aspects of the proposed method thoroughly. Subsequently, we conducted experiments with two different real-world robots performing daily tasks involving periodic changes in orientation and/or stiffness, i.e., operating a drilling machine using a rotary handle and facilitating collaborative human–robot sawing.en
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2024 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLearning from demonstrationen
dc.subjectLearning periodic skillsen
dc.subjectRiemannian manifold learningen
dc.subjectODS 9 Industria, innovación e infraestructuraes
dc.titleLearning periodic skills for robotic manipulation: Insights on orientation and impedanceen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceRobotics and Autonomous Systemsen
local.contributor.groupRobótica y automatizaciónes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.robot.2024.104763en
local.contributor.otherinstitutionhttps://ror.org/05trd4x28
local.contributor.otherinstitutionhttps://ror.org/02e2c7k09
local.source.detailsVol. 180. N. art. 104763, 2024en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/mt5.45en
oaire.funderNameComisión Europeaen
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderIdentifierhttps://ror.org/00k4n6c32 / http://data.crossref.org/fundingdata/funder/10.13039/501100000780en
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.fundingStreamHorizon-RIAen
oaire.fundingStreamElkartek 2022en
oaire.fundingStreamElkartek 2023en
oaire.awardNumber101136067en
oaire.awardNumberKK-2022-00024en
oaire.awardNumberKK-2023-00055en
oaire.awardTitleINteractive robots that intuitiVely lEarn to inVErt tasks by ReaSoning about their Execution (INVERSE)en
oaire.awardTitleProducción Fluída y Resiliente para la Industria inteligente (PROFLOW)en
oaire.awardTitleTecnologías de Inteligencia Artificial para la percepción visual y háptica y la planificación y control de tareas de manipulación (HELDU)en
oaire.awardURIhttps://doi.org/10.3030/101136067en
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen
dc.unesco.clasificacionhttp://skos.um.es/unesco6/1203en


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila

Attribution-NonCommercial-NoDerivatives 4.0 International
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da: Attribution-NonCommercial-NoDerivatives 4.0 International