Título
Broaching Digital Twin to Predict Forces, Local Overloads, and Surface Topography IrregularitiesVersión
Version publicada
Derechos
© 2024 The AuthorsAcceso
Acceso abiertoVersión del editor
https://doi.org/10.3390/ma17225471Publicado en
Materials Vol. 17. N. 22. N. art. 5471. 2024Editor
MDPIPalabras clave
Digital twin
Surface integrity
Broaching
Topography ... [+]
Surface integrity
Broaching
Topography ... [+]
Digital twin
Surface integrity
Broaching
Topography
Residual stresses
Aeronautics
Inconel 718
Turbine
Hybrid modelling
ODS 9 Industria, innovación e infraestructura [-]
Surface integrity
Broaching
Topography
Residual stresses
Aeronautics
Inconel 718
Turbine
Hybrid modelling
ODS 9 Industria, innovación e infraestructura [-]
Materia (Tesauro UNESCO)
Tecnología de materialesClasificación UNESCO
Tecnología de materialesResumen
Broaching is a key manufacturing process that directly influences the surface integrity of critical components, impacting their functional performance in sectors such as aeronautics, automotive, and e ... [+]
Broaching is a key manufacturing process that directly influences the surface integrity of critical components, impacting their functional performance in sectors such as aeronautics, automotive, and energy. Such components are subjected to severe conditions, including high thermomechanical loads, fatigue, and corrosion. For this reason, the development of predictive models is essential for determining the optimal tool design and machining conditions to ensure proper in-service performance. This study, therefore, presents a broaching digital twin based on hybrid modelling, which combines analytical, numerical, and empirical approaches to provide rapid and accurate predictions of the forces per tooth, local overloads, and surface topography irregularities. The digital twin was validated with a critical industrial case study involving fir-tree broaching of turbine discs made of forged and age-hardened Inconel 718. The accuracy of the digital twin was demonstrated by the results: the average error in force predictions was below 10%, and the model effectively identified the most critical teeth and zones prone to failure. It also predicted surface topography irregularities with an error of less than 15%. Interestingly, the relationship between surface topography irregularities and surface residual stress variations across the machined surface was observed experimentally for the first time. [-]
Financiador
Gobierno de EspañaGobierno Vasco
Gobierno Vasco
Programa
Proyectos de Generación de Conocimiento y a actuaciones para la formación de personal investigador predoctoralElkartek 2024
Hazitek 2023
Número
PID2022-139655OB-I00KK-2024-0001
ZL-2023-00550
URI de la ayuda
Sin informaciónSin información
Sin información
Proyecto
Diseño a medida de la integridad superficial de los componentes mecanizados para mejorar su durabilidad en aplicaciones de salud y Aeronáuticas (TAILORSURF)Desarrollos en la nanoescala para procesos avanzados de fabricación de metales (nG24)
Corte Perfecto en Brochas (OPERA)
Colecciones
- Artículos - Ingeniería [684]
El ítem tiene asociados los siguientes ficheros de licencia: