Erregistro soila

dc.contributor.authorRamirez, Ibai
dc.contributor.authorPino Gómez, Joel
dc.contributor.authorPardo, David
dc.contributor.authorSanz Alonso, Mikel
dc.contributor.authorOrtiz, Álvaro
dc.contributor.authorMorozovska, Kateryna
dc.contributor.authorAizpurua Unanue, José Ignacio
dc.date.accessioned2024-11-20T14:27:53Z
dc.date.available2024-11-20T14:27:53Z
dc.date.issued2025
dc.identifier.citationRamirez, I., Pino, J., Pardo, D., Sanz, M., del Rio, L., Ortiz, A., Morozovska, K., & Aizpurua, J. I. (2025). Residual-based attention Physics-informed Neural Networks for spatio-temporal ageing assessment of transformers operated in renewable power plants. Engineering Applications of Artificial Intelligence, 139. https://doi.org/10.1016/J.ENGAPPAI.2024.109556
dc.identifier.issn0952-1976
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=178960
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6787
dc.description.abstractTransformers are crucial for reliable and efficient power system operations, particularly in supporting the integration of renewable energy. Effective monitoring of transformer health is critical to maintain grid stability and performance. Thermal insulation ageing is a key transformer failure mode, which is generally tracked by monitoring the hotspot temperature (HST). However, HST measurement is complex, costly, and often estimated from indirect measurements. Existing HST models focus on space-agnostic thermal models, providing worst-case HST estimates. This article introduces a spatio-temporal model for transformer winding temperature and ageing estimation, which leverages physics-based partial differential equations (PDEs) with data-driven Neural Networks (NN) in a Physics Informed Neural Networks (PINNs) configuration to improve prediction accuracy and acquire spatio-temporal resolution. The computational accuracy of the PINN model is improved through the implementation of the Residual-Based Attention (PINN-RBA) scheme that accelerates the PINN model convergence. The PINN-RBA model is benchmarked against self-adaptive attention schemes and classical vanilla PINN configurations. For the first time, PINN based oil temperature predictions are used to estimate spatio-temporal transformer winding temperature values, validated through PDE numerical solution and fiber optic sensor measurements. Furthermore, the spatio-temporal transformer ageing model is inferred, which supports transformer health management decision-making. Results are validated with a distribution transformer operating on a floating photovoltaic power plant.
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights© 2025 The Authors
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectMachine learning
dc.subjectPhysics Informed Neural Networks (PINNs)
dc.subjectThermal modelling
dc.subjectTransformer
dc.titleResidual-based attention Physics-informed Neural Networks for spatio-temporal ageing assessment of transformers operated in renewable power plants
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2
dcterms.sourceEngineering Applications of Artificial Intelligence
dc.date.updated2024-11-20T14:27:53Z
local.contributor.groupTeoría de la señal y comunicaciones
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/J.ENGAPPAI.2024.109556
local.contributor.otherinstitutionhttps://ror.org/000xsnr85
local.contributor.otherinstitutionhttps://ror.org/03b21sh32
local.contributor.otherinstitutionOrmazabal
local.contributor.otherinstitutionhttps://ror.org/026vcq606
local.contributor.otherinstitutionhttps://ror.org/01cc3fy72
local.source.detailsVol. 139 part B. N. art. 109556. January, 2025
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila

© 2025 The Authors
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da: © 2025 The Authors