Registro sencillo

dc.rights.licenseAttribution-NonCommercial 4.0 International*
dc.contributor.authorLlavori, Inigo
dc.contributor.authorAginagalde, Andrea
dc.contributor.authorZabala, Alaitz
dc.contributor.otherMoles, Luis
dc.contributor.otherEchegaray, Goretti
dc.contributor.otherBruneel, David
dc.contributor.otherBoto, Fernando
dc.date.accessioned2024-10-24T14:21:48Z
dc.date.available2024-10-24T14:21:48Z
dc.date.issued2024
dc.identifier.issn0301-679Xen
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=178123en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6685
dc.description.abstractFemtosecond laser surface texturing is gaining increased interest for optimizing tribological behaviour. However, the laser surface texturing parameter selection is often conducted through time-consuming and inefficient trial-and-error processes. Although machine learning emerges as an interesting option, multitude of models exists, and determining the most suitable one for predicting femtosecond laser textures remains uncertain. Furthermore, the absence of open-source implementations and the expertise required for their utilization hinders their adoption within the tribology community. In this study, two novel inverse modelling approaches for the optimal prediction of femtosecond laser parameters are proposed, based on the results of a comparison between six different machine learning models conducted within this research. The entire development relies on open-source tools, and the models employed are shared, with the aim of democratizing these techniques and facilitating their adoption by non-expert users within the tribology community.en
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2024 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectlaseren
dc.subjectInverse modellingen
dc.subjectMachine learningen
dc.subjectStampingen
dc.subjectsurface texturingen
dc.titleOn the use of machine learning for predicting femtosecond laser grooves in tribological applicationsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceTribology Internationalen
local.contributor.groupTecnologías de superficieses
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.triboint.2024.110067en
local.contributor.otherinstitutionhttps://ror.org/02fv8hj62en
local.contributor.otherinstitutionhttps://ror.org/000xsnr85en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo

Attribution-NonCommercial 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International