eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
GenMorph-Automatically Generating Metamorphic Relations via Genetic Programming.pdf (721.9Kb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
GenMorph: Automatically Generating Metamorphic Relations via Genetic Programming
Author
Ayerdi, Jon
Arrieta, Aitor
Author (from another institution)
Terragni, Valerio
Jahangirova, Gunel
Tonella, Paolo
Research Group
Ingeniería del software y sistemas
Other institutions
University of Auckland
King's College London
Università della Svizzera italiana (USI) (Suiza)
Version
Postprint
Rights
© 2024 IEEE
Access
Open access
URI
https://hdl.handle.net/20.500.11984/6527
Publisher’s version
https://doi.org/10.1109/TSE.2024.3407840
Published at
IEEE Transactions on Software Engineering 
Publisher
IEEE
Keywords
Metamorphic Testing
oracle improvement
genetic programming
mutation analysis ... [+]
Metamorphic Testing
oracle improvement
genetic programming
mutation analysis
ODS 9 Industria, innovación e infraestructura [-]
Abstract
Metamorphic testing is a popular approach that aims to alleviate the oracle problem in software testing. At the core of this approach are Metamorphic Relations (MRs), specifying properties that hold a ... [+]
Metamorphic testing is a popular approach that aims to alleviate the oracle problem in software testing. At the core of this approach are Metamorphic Relations (MRs), specifying properties that hold among multiple test inputs and corresponding outputs. Deriving MRs is mostly a manual activity, since their automated generation is a challenging and largely unexplored problem. This paper presents GenMorph , a technique to automatically generate MRs for Java methods that involve inputs and outputs that are boolean, numerical, or ordered sequences. GenMorph uses an evolutionary algorithm to search for effective test oracles, i.e., oracles that trigger no false alarms and expose software faults in the method under test. The proposed search algorithm is guided by two fitness functions that measure the number of false alarms and the number of missed faults for the generated MRs. Our results show that GenMorph generates effective MRs for 18 out of 23 methods (mutation score >20%). Furthermore, it can increase Randoop ’s fault detection capability in 7 out of 23 methods, and Evosuite ’s in 14 out of 23 methods. When compared with AUTOMR, a state-of-the-art MR generator, GenMorph also outperformed its fault detection capability in 9 out of 10 methods. [-]
Funder
Gobierno Vasco
Gobierno Vasco
Program
Elkartek 2022
Ikertalde Convocatoria 2022-2023
Number
KK-2022/00119
IT1519-22
Award URI
Sin información
Sin información
Project
Edge Technologies for Industrial Distributed AI Applications (EGIA)
Ingeniería de Software y Sistemas
Collections
  • Articles - Engineering [735]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace