Erregistro soila

dc.contributor.authorARRAZOLA, PEDRO JOSE
dc.contributor.otherDucobu, F.
dc.contributor.otherKugalur-Palanisamy, N.
dc.contributor.otherBriffoteaux, G.
dc.contributor.otherGobert, M.
dc.contributor.otherTuyttens, D.
dc.contributor.otherRivière-Lorphèvre, E.
dc.date.accessioned2024-05-03T13:21:57Z
dc.date.available2024-05-03T13:21:57Z
dc.date.issued2024
dc.identifier.issn1528-8935en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=176497en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6397
dc.description.abstractThe evolution of high-performance computing facilitates the simulation of manufacturing processes. The prediction accuracy of a numerical model of the cutting process is closely associated with the selection of constitutive and friction models. The reliability and the accuracy of these models highly depend on the value of the parameters involved in the definition of the cutting process. Direct of inverse methods are used to determine these model parameters. However, these identification procedures often neglect the link between the parameters of the material and the friction models. This article introduces a novel approach to inversely identify the best parameters value for both models at the same time and by taking into account multiple cutting conditions in the optimization routine. An artificial intelligence (AI) framework that combines the finite element modeling with an adaptive Bayesian multi-objective evolutionary algorithm (AB-MOEA) is developed, where the objective is to minimize the deviation between the experimental and the numerical results. The arbitrary Lagrangian–Eulerian (ALE) formulation and the Ti6Al4V alloy are selected to demonstrate its applicability. The investigation shows that the developed AI platform can identify the best parameters values with low computational time and resources. The identified parameters values predicted the cutting and feed forces within a deviation of less than 4% from the experiments for all the cutting conditions considered in this work.en
dc.language.isoengen
dc.publisherASMEen
dc.rights© 2024 ASMEen
dc.subjectArtificial Intelligenceen
dc.subjectmulti-objective identificationen
dc.subjectsurrogate evolutionary algorithmen
dc.subjectorhtogonal cuttingen
dc.subjectfinite element modelingen
dc.subjectmachining processesen
dc.subjectmodeling and simulationen
dc.titleIdentification of the Constitutive and Friction Models Parameters via a Multi-Objective Surrogate-Assisted Algorithm for the Modeling of Machining - Application to Arbitrary Lagrangian Eulerian Orthogonal Cutting of Ti6Al4Ven
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceJournal of Manufacturing Science and Engineeringen
local.contributor.groupMecanizado de alto rendimientoes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1115/1.4065223en
local.embargo.enddate2144-01-01
local.contributor.otherinstitutionhttps://ror.org/02qnnz951en
local.source.detailsVol. 146. N. 6. N. art. 061005. Jun, 2024
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila