dc.contributor.author | ARRAZOLA, PEDRO JOSE | |
dc.contributor.other | Ducobu, F. | |
dc.contributor.other | Kugalur-Palanisamy, N. | |
dc.contributor.other | Briffoteaux, G. | |
dc.contributor.other | Gobert, M. | |
dc.contributor.other | Tuyttens, D. | |
dc.contributor.other | Rivière-Lorphèvre, E. | |
dc.date.accessioned | 2024-05-03T13:21:57Z | |
dc.date.available | 2024-05-03T13:21:57Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 1528-8935 | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=176497 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6397 | |
dc.description.abstract | The evolution of high-performance computing facilitates the simulation of manufacturing processes. The prediction accuracy of a numerical model of the cutting process is closely associated with the selection of constitutive and friction models. The reliability and the accuracy of these models highly depend on the value of the parameters involved in the definition of the cutting process. Direct of inverse methods are used to determine these model parameters. However, these identification procedures often neglect the link between the parameters of the material and the friction models. This article introduces a novel approach to inversely identify the best parameters value for both models at the same time and by taking into account multiple cutting conditions in the optimization routine. An artificial intelligence (AI) framework that combines the finite element modeling with an adaptive Bayesian multi-objective evolutionary algorithm (AB-MOEA) is developed, where the objective is to minimize the deviation between the experimental and the numerical results. The arbitrary Lagrangian–Eulerian (ALE) formulation and the Ti6Al4V alloy are selected to demonstrate its applicability. The investigation shows that the developed AI platform can identify the best parameters values with low computational time and resources. The identified parameters values predicted the cutting and feed forces within a deviation of less than 4% from the experiments for all the cutting conditions considered in this work. | en |
dc.language.iso | eng | en |
dc.publisher | ASME | en |
dc.rights | © 2024 ASME | en |
dc.subject | Artificial Intelligence | en |
dc.subject | multi-objective identification | en |
dc.subject | surrogate evolutionary algorithm | en |
dc.subject | orhtogonal cutting | en |
dc.subject | finite element modeling | en |
dc.subject | machining processes | en |
dc.subject | modeling and simulation | en |
dc.title | Identification of the Constitutive and Friction Models Parameters via a Multi-Objective Surrogate-Assisted Algorithm for the Modeling of Machining - Application to Arbitrary Lagrangian Eulerian Orthogonal Cutting of Ti6Al4V | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_f1cf | en |
dcterms.source | Journal of Manufacturing Science and Engineering | en |
local.contributor.group | Mecanizado de alto rendimiento | es |
local.description.peerreviewed | true | en |
local.identifier.doi | https://doi.org/10.1115/1.4065223 | en |
local.embargo.enddate | 2144-01-01 | |
local.contributor.otherinstitution | https://ror.org/02qnnz951 | en |
local.source.details | Vol. 146. N. 6. N. art. 061005. Jun, 2024 | |
oaire.format.mimetype | application/pdf | en |
oaire.file | $DSPACE\assetstore | en |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | en |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | en |