eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ver/Abrir
Application of Computer Vision and Deep Learning in the railway domain for autonomous train stop operation.pdf (405.6Kb)
Registro completo
Impacto

Web of Science   

Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
Application of Computer Vision and Deep Learning in the railway domain for autonomous train stop operation
Autor-a
Arana-Arexolaleiba, Nestor
Autor-a (de otra institución)
Etxeberria Garcia, Mikel
Labayen, Mikel
Zamalloa, Maider
Grupo de investigación
Robótica y automatización
Otras instituciones
Ikerlan
Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU)
Versión
Postprint
Derechos
© 2020 IEEE
Acceso
Acceso abierto
URI
https://hdl.handle.net/20.500.11984/6395
Versión del editor
https://doi.org/10.1109/SII46433.2020.9026246
Publicado en
IEEE/SICE International Symposium on System Integration (SII) 
Editor
IEEE
Palabras clave
Machine learning
Rail transportation
Cameras
Simultaneous localization and mapping ... [+]
Machine learning
Rail transportation
Cameras
Simultaneous localization and mapping
Visualization
Visual odometry [-]
Resumen
The purpose of this paper is to present the results of the analysis of the application of Deep Learning in the railway domain with a particular focus on a train stop operation. The paper proposes an a ... [+]
The purpose of this paper is to present the results of the analysis of the application of Deep Learning in the railway domain with a particular focus on a train stop operation. The paper proposes an approach consisting of monocular vision-based and Deep Learning architectures. Even the difficulties imposed by actual regulation, the findings show that Deep Learning architecture can offer promising results in railway localization using techniques like visual odometry, SLAM or pose estimation. Besides, in spite of the many datasets available in the literature needed to train the neural network, none of them have been created for indoor railway environments. Therefore, a new dataset should be created. Furthermore, the paper presents future research and development suggestions for railway applications which contribute to guiding the mid-term research and development. [-]
Colecciones
  • Congresos - Ingeniería [423]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace