eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
Li-ion Battery State-of-Charge estimation algorithm with CNN-LSTM and Transfer Learning using synthetic training data.pdf (870.4Kb)
Full record
Impact
Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Li-ion Battery State-of-Charge estimation algorithm with CNN-LSTM and Transfer Learning using synthetic training data
Author
Azkue, Markel
Oca, Laura
IRAOLA, UNAI
Author (from another institution)
Lucu, M.
Martínez Laserna, Egoitz
Research Group
Almacenamiento de energía
Other institutions
Ikerlan
Version
Postprint
Rights
© 2022 The Authors
Access
Open access
URI
https://hdl.handle.net/20.500.11984/6360
Published at
35th International Electric Vehicle Symposium & Exhibition 
Keywords
Machine Learning
Transfer Learning
lithium-ion batteries
State-of-Charge ... [+]
Machine Learning
Transfer Learning
lithium-ion batteries
State-of-Charge
Artificial Neural Network [-]
Abstract
The development of State-of-Charge (SoC) algorithms for Li-ion batteries involves carrying out different laboratory tests with the money and time that this entails. Furthermore, such laboratory labour ... [+]
The development of State-of-Charge (SoC) algorithms for Li-ion batteries involves carrying out different laboratory tests with the money and time that this entails. Furthermore, such laboratory labours must typically be repeated for each new Li-ion cell reference. In order to minimise this issue, this work proposes a new approach for developing SoC algorithms, using a Recurrent Neural Network in combination with a Transfer Learning method. The latter technique will make possible to take advantage of the data generated for previously tested cell references and use it for the development of a SoC estimation algorithm for a new cell reference. This work provides a proof-of-concept for the proposed approach, using synthetic data generated from electrochemical models, which describes the behaviour of different Li-ion cell references. [-]
Collections
  • Conferences - Engineering [423]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace