Simple record

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.contributor.authorZarketa-Astigarraga, Ander
dc.contributor.authorMartin-Mayor, Alain
dc.contributor.authorMartinez Agirre, Manex
dc.contributor.authorPenalba, Markel
dc.contributor.otherMaeso, Aimar
dc.contributor.otherde Miguel, Borja
dc.date.accessioned2024-04-10T09:23:22Z
dc.date.available2024-04-10T09:23:22Z
dc.date.issued2023
dc.identifier.issn0029-8018en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=173234en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6339
dc.description.abstractThe growing demand of energy coupled with the worldwide commitments in favor of renewable technologies turns marine renewable sources especially attractive, including wave energy. In particular, the oscillating water column technology is shown to be one of the most promising technologies, for which the design of efficient air turbines is crucial. The large number of geometrical parameters that such turbines own, together with the fact that the wave climate conditions affect the overall behavior, call for a tool that combines both aspects for optimizing the turbine design. A genetic-algorithm-based approach is proposed, which runs over a blade-element-method coupled with a stochastic modeling of the sea-state. The optimization method computes an overall fitness function given as a weighted average of the stochastic turbine efficiency over a set of most relevant sea-states. The suggested methodology is proven capable of finding the global fitness maximum upon a 6-dimensional parametric space. Additionally, it allows identifying and discarding the geometrical parameters that are shown to be negligible for the computation of the fitness function. Hence, a reduced parametric space results in a 2-dimensional region comprised by the hub-to-tip ratio and the tip solidity, which permits refining the search and analyzing their individual effects upon the turbine design. It is shown that the optimal configuration corresponds to trade-off solutions between the hub-to-tip ratio and the tip solidity, avoiding both an excessive rotational speed and an exceeding blockage of the turbine.en
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2023 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectWells turbinesen
dc.subjectGenetic algorithmen
dc.subjectBlade optimizationen
dc.subjectBEM analysisen
dc.subjectODS 7 Energía asequible y no contaminantees
dc.subjectODS 12 Producción y consumo responsableses
dc.subjectODS 13 Acción por el climaes
dc.titleA holistic optimization tool for the design of power take-off systems in realistic wave climates: The Wells turbine caseen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceOcean Engineeringen
local.contributor.groupMecánica de fluidoses
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.oceaneng.2023.115332en
local.contributor.otherinstitutionhttps://ror.org/01cc3fy72en
local.contributor.otherinstitutionhttps://ror.org/03912g573
local.source.detailsVol. 285. Parte 2. N. art. 115332
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Simple record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International