eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
    • Euskara
    • Español
    • English

Laguntzailea:

  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ikusi/Ireki
Probabilistic feature selection for improved asset lifetime estimation in renewables. Application to transformers in photovoltaic power plants.pdf (7.516Mb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
Probabilistic feature selection for improved asset lifetime estimation in renewables. Application to transformers in photovoltaic power plants
Egilea
Ramirez García, Ibai
Aizpurua Unanue, Jose Ignacio
Egilea (beste erakunde batekoa)
Lasa, Iker
del Rio, Luis
Ikerketa taldea
Teoría de la señal y comunicaciones
Beste instituzio
Ikerbasque
Ormazabal
Bertsioa
Postprinta
Eskubideak
© 2024 Elsevier
Sarbidea
Sarbide mugatua
URI
https://hdl.handle.net/20.500.11984/6306
Argitaratzailearen bertsioa
https://doi.org/10.1016/j.engappai.2023.107841
Non argitaratua
Engineering Applications of Artificial Intelligence  Vol. 131. N. art. 107841, 2024
Argitaratzailea
Elsevier
Gako-hitzak
Prognostics
Degradation
Feature selection
Machine learning ... [+]
Prognostics
Degradation
Feature selection
Machine learning
Transformer [-]
Eremua (UNESCO Sailkapena)
Zientzia Teknologikoak
Diziplina (UNESCO Sailkapena)
Energia-teknologia
Laburpena
The increased penetration of renewable energy sources (RESs) as an effective mechanism to reduce carbon emissions leads to an increased weather dependency for power and energy systems. This has create ... [+]
The increased penetration of renewable energy sources (RESs) as an effective mechanism to reduce carbon emissions leads to an increased weather dependency for power and energy systems. This has created dynamic operation and degradation phenomena, which affect the lifetime estimation of the assets operated with RESs. For the reliable and efficient operation of RES it is crucial to monitor the health of its constituent components and feature selection is a crucial step for building robust and accurate health monitoring approaches. In this context, this paper presents a probabilistic feature selection approach, which probabilistically weights and selects features through a heuristic and iterative process for an improved asset lifetime estimation. Power transformers are key power grid assets and they are used to demonstrate the validity and impact of the proposed approach. The approach is tested on two different photovoltaic power plants operated in Spain and Australia. Results consistently show that the proposed feature-selection approach reduces the prediction error and consistently selects relevant features. The approach has been applied to transformer lifetime estimation, but it can be generally applied to assist in the lifetime estimation of other components operated in RESs. Part of the studies presented here as well as source codes are all open-source under the GitHub repository https://github.com/iramirezg/FeatureSelection. [-]
Finantzatzailea
Gobierno de España
Gobierno Vasco
Gobierno de España
Programa
Convocatoria 2021. Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia, del Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023
Ikertalde Convocatoria 2022-2023
Convocatoria 2019. Plan Estatal de I+D+I 2017-2020. Subprograma Estatal de Formación y en el Subprograma Estatal de Incorporación, del Programa Estatal de Promoción del Talento y su Empleabilidad. Ayudas Juan de la Cierva-incorporación
Zenbakia
CPP2021-008580
IT1451-22
IJC2019-039183-I
Proiektua
Modelización y Diagnóstico de Transformadores (MODITRANS)
Teoría de la Señal y Comunicaciones
Sin información
Bildumak
  • Artikuluak - Ingeniaritza [743]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace