eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver/Abrir
Probabilistic feature selection for improved asset lifetime estimation in renewables. Application to transformers in photovoltaic power plants.pdf (7.516Mb)
Registro completo
Impacto

Web of Science   

Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
Probabilistic feature selection for improved asset lifetime estimation in renewables. Application to transformers in photovoltaic power plants
Autor-a
Ramirez García, Ibai
Aizpurua Unanue, Jose Ignacio
Autor-a (de otra institución)
Lasa, Iker
del Rio, Luis
Grupo de investigación
Teoría de la señal y comunicaciones
Otras instituciones
Ikerbasque
Ormazabal
Versión
Postprint
Derechos
© 2024 Elsevier
Acceso
Acceso restringido
URI
https://hdl.handle.net/20.500.11984/6306
Versión del editor
https://doi.org/10.1016/j.engappai.2023.107841
Publicado en
Engineering Applications of Artificial Intelligence  Vol. 131. N. art. 107841, 2024
Editor
Elsevier
Palabras clave
Prognostics
Degradation
Feature selection
Machine learning ... [+]
Prognostics
Degradation
Feature selection
Machine learning
Transformer [-]
Campo (Clasificación UNESCO)
Ciencias Tecnológicas
Disciplina (Clasificación UNESCO)
Tecnología energética
Resumen
The increased penetration of renewable energy sources (RESs) as an effective mechanism to reduce carbon emissions leads to an increased weather dependency for power and energy systems. This has create ... [+]
The increased penetration of renewable energy sources (RESs) as an effective mechanism to reduce carbon emissions leads to an increased weather dependency for power and energy systems. This has created dynamic operation and degradation phenomena, which affect the lifetime estimation of the assets operated with RESs. For the reliable and efficient operation of RES it is crucial to monitor the health of its constituent components and feature selection is a crucial step for building robust and accurate health monitoring approaches. In this context, this paper presents a probabilistic feature selection approach, which probabilistically weights and selects features through a heuristic and iterative process for an improved asset lifetime estimation. Power transformers are key power grid assets and they are used to demonstrate the validity and impact of the proposed approach. The approach is tested on two different photovoltaic power plants operated in Spain and Australia. Results consistently show that the proposed feature-selection approach reduces the prediction error and consistently selects relevant features. The approach has been applied to transformer lifetime estimation, but it can be generally applied to assist in the lifetime estimation of other components operated in RESs. Part of the studies presented here as well as source codes are all open-source under the GitHub repository https://github.com/iramirezg/FeatureSelection. [-]
Financiador
Gobierno de España
Gobierno Vasco
Gobierno de España
Programa
Convocatoria 2021. Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia, del Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023
Ikertalde Convocatoria 2022-2023
Convocatoria 2019. Plan Estatal de I+D+I 2017-2020. Subprograma Estatal de Formación y en el Subprograma Estatal de Incorporación, del Programa Estatal de Promoción del Talento y su Empleabilidad. Ayudas Juan de la Cierva-incorporación
Número
CPP2021-008580
IT1451-22
IJC2019-039183-I
Proyecto
Modelización y Diagnóstico de Transformadores (MODITRANS)
Teoría de la Señal y Comunicaciones
Sin información
Colecciones
  • Artículos - Ingeniería [743]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace