eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
    • Euskara
    • Español
    • English

Laguntzailea:

  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ikusi/Ireki
Analyzing Inter-Vehicle Collision Predictions during Emergency Braking with Automated Vehicles.pdf (872.7Kb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
Analyzing Inter-Vehicle Collision Predictions during Emergency Braking with Automated Vehicles
Egilea
Gorospe, Joseba
Alonso Gómez, Arrate
Egilea (beste erakunde batekoa)
Hasan, Shahriar
Islam, Mir Riyanul
Girs, Svetlana
Uhlemann, Elisabeth
Ikerketa taldea
Teoría de la señal y comunicaciones
Beste instituzio
Mälardalen University
Bertsioa
Postprinta
Eskubideak
© 2023 IEEE
Sarbidea
Sarbide bahitua
URI
https://hdl.handle.net/20.500.11984/6260
Argitaratzailearen bertsioa
https://doi.org/10.1109/WiMob58348.2023.10187826
Non argitaratua
International Conference on Wireless and Mobile Computing, Networking and Communications  2023. Vol. June. Pp. 411-418
Argitaratzailea
IEEE
Gako-hitzak
Wireless communication
analytical modeling
Wireless sensor networks
Automation ... [+]
Wireless communication
analytical modeling
Wireless sensor networks
Automation
Machine learning
Predictive model
Sensor systems
ODS 9 Industria, innovación e infraestructura [-]
Laburpena
Automated Vehicles (AVs) require sensing and perception to integrate data from multiple sources, such as cameras, lidars, and radars, to operate safely and efficiently. Collaborative sensing through w ... [+]
Automated Vehicles (AVs) require sensing and perception to integrate data from multiple sources, such as cameras, lidars, and radars, to operate safely and efficiently. Collaborative sensing through wireless vehicular communications can enhance this process. However, failures in sensors and communication systems may require the vehicle to perform a safe stop or emergency braking when encountering hazards. By identifying the conditions for being able to perform emergency braking without collisions, better automation models that also consider communications need to be developed. Hence, we propose to employ Machine Learning (ML) to predict inter-vehicle collisions during emergency braking by utilizing a comprehensive dataset that has been prepared through rigorous simulations. Using simulations and data-driven modeling has several advantages over physics-based models in this case, as it, e.g., enables us to provide a dataset with varying vehicle kinematic parameters, traffic density, network load, vehicle automation controller parameters, and more. To further establish the conditions for inter-vehicle collisions, we analyze the predictions made through interpretable ML models and rank the features that contribute to collisions. We also extract human-interpretable rules that can establish the conditions leading to collisions between AVs during emergency braking. Finally, we plot the decision boundaries between different input features to separate the collision and non-collision classes and demonstrate the safe region of emergency braking. [-]
Finantzatzailea
Eusko Jaurlaritza = Gobierno Vasco
Eusko Jaurlaritza = Gobierno Vasco
European Commission
European Commission
Programa
Ikertalde Convocatoria 2022-2023
Elkartek 2021
H2020
H2020-ECSEL
Zenbakia
IT1451-22
KK-2021-00123
764951
101007350
Laguntzaren URIa
Sin información
Sin información
https://doi.org/10.3030/764951
https://doi.org/10.3030/101007350
Proiektua
Teoría de la Señal y Comunicaciones
Evolución tecnológica para la automatización multivehicular y evaluación de funciones de conducción altamente automatizadas (AUTOEV@L)
Immersive Visual Technologies for Safety-critical Applications (ImmerSAFE)
AI-augmented automation for efficient DevOps, a model-based framework for continuous development At RunTime in cyber-physical systems (AIDOaRt)
Bildumak
  • Kongresuak - Ingeniaritza [423]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace