eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
    • Euskara
    • Español
    • English

Laguntzailea:

  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ikusi/Ireki
State of Charge Estimation Combining Physics-Based and Artificial.pdf (954.8Kb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
State of charge estimation combining physics-based and artificial intelligence models for Lithium-ion batteries
Egilea
Yeregui, Josu
Oca, Laura
Lopetegi, Iker
GARAYALDE, ERIK
Aizpurua, Manex
IRAOLA, UNAI
Ikerketa taldea
Almacenamiento de energía
Energía eléctrica
Bertsioa
Postprinta
Eskubideak
© 2023 Elsevier Ltd
Sarbidea
Sarbide bahitua
URI
https://hdl.handle.net/20.500.11984/6245
Argitaratzailearen bertsioa
https://doi.org/10.1016/j.est.2023.108883
Non argitaratua
Journal of Energy Storage  Vol. 73. Parte A. N. art. 108883, 2023
Argitaratzailea
Elsevier
Laburpena
This paper presents a sequential model based on Physic Based Models (PBM) and Artificial Intelligence Models (AI) focused on the estimation of the State of Charge (SoC). The PBM can provide interestin ... [+]
This paper presents a sequential model based on Physic Based Models (PBM) and Artificial Intelligence Models (AI) focused on the estimation of the State of Charge (SoC). The PBM can provide interesting information about the internal physical variables of the battery, which relate directly with the momentary SoC of the cell. This way, we can use this information to feed the AI model alongside with application measurements to obtain an accurate SoC estimation. By their nature, PBMs can potentially provide immense numbers of internal variables, some of which are irrelevant and redundant for the AI model. To solve this, a feature selection technique based on the regression score is introduced between both models. Selecting the most relevant variables we can build a model that reduces the computational cost of the model while improving the performance compared to using every feature. With this baseline, a Reduced-Order Model (ROM) with parameters from literature has been implemented in the PBM part and a Long-Short Term Memory (LSTM) network on the ML side. With this configuration and the PBM simplification the model needs little laboratory tests and low computational cost to outperform alternative solutions, which has been experimentally validated in different operating conditions of the cell. [-]
Bildumak
  • Artikuluak - Ingeniaritza [743]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace