dc.contributor.author | Garcia-Michelena, Pablo | |
dc.contributor.author | Herrero-Dorca, Nuria | |
dc.contributor.author | chamorro, xabier | |
dc.contributor.other | Ruiz-Reina, E. | |
dc.date.accessioned | 2024-02-02T08:53:13Z | |
dc.date.available | 2024-02-02T08:53:13Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 1359-4311 | |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=174490 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6221 | |
dc.description.abstract | Vacuum induction melting is crucial in casting nickel-based superalloy components, ensuring excellent properties for aero-engine applications. Precise melting temperatures are vital for achieving optimal metallurgical quality before casting. Hence, a multiphysics numerical model is developed to simulate the induction melting process for the Inconel 718 superalloy. The proposed holistic model integrates magnetic fields, induced currents, and heat and momentum transfer phenomena in a single coupled model. A moving mesh approach reproduces the magneto-hydrodynamic behavior of the free surface, simulating the oscillations of the melt. The stabilized deformed surface profile is correlated with experimental measurements, reporting a proper correlation. Then, the flow field and recirculation effect are modeled with a Low Reynolds Number turbulence approach and coupled with the melt convective heat transfer, developing a complete magneto-thermo-hydrodynamic model. In a laboratory-scale vacuum induction melting furnace, transient melting operation variables are characterized and introduced to the numerical model to compute the temperature evolution. An accurate reproduction of the transient melt temperature variations is reported with a relative error of less than 5%. The influence of the crucible thermal insulating capacity is assessed, emissivity dependence evaluated, and melt homogenization is reported at different process stages. This comprehensive numerical and experimental approach offers valuable insights for enhancing vacuum induction melting for Ni-based superalloys. | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.rights | © 2023 Elsevier | |
dc.subject | Vacuum induction melting | |
dc.subject | Multiphysics modeling | |
dc.subject | Experimental validation | |
dc.subject | Turbulent heat transfer | |
dc.subject | Dynamic modeling | |
dc.subject | Moving mesh | |
dc.subject | ODS 7 Energía asequible y no contaminante | |
dc.subject | ODS 9 Industria, innovación e infraestructura | |
dc.title | Multiphysics modeling and experimental validation of heat and mass transfer for the vacuum induction melting process | |
dcterms.accessRights | http://purl.org/coar/access_right/c_f1cf | |
dcterms.source | Applied Thermal Engineering | |
local.contributor.group | Procesos avanzados de conformación de materiales | |
local.description.peerreviewed | true | |
local.identifier.doi | https://doi.org/10.1016/j.applthermaleng.2024.122562 | |
local.embargo.enddate | 2026-04-30 | |
local.contributor.otherinstitution | https://ror.org/036b2ww28 | |
local.source.details | Vol. 243. N. art. 122562 | |
oaire.format.mimetype | application/pdf | |
oaire.file | $DSPACE\assetstore | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
oaire.funderName | Eusko Jaurlaritza = Gobierno Vasco | |
oaire.funderIdentifier | https://ror.org/00pz2fp31 http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | |
oaire.fundingStream | Hazitek 2020 | |
oaire.awardNumber | ZE-2020-00001 | |
oaire.awardTitle | Optimización del proceso de fusión VIM de la aleación MAR-M247LC e In718 (FAKTORIA) | |
oaire.awardURI | Sin información | |