Registro sencillo

dc.contributor.authorGarcia-Michelena, Pablo
dc.contributor.authorHerrero-Dorca, Nuria
dc.contributor.authorchamorro, xabier
dc.contributor.otherRuiz-Reina, E.
dc.date.accessioned2024-02-02T08:53:13Z
dc.date.available2024-02-02T08:53:13Z
dc.date.issued2024
dc.identifier.issn1359-4311
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=174490
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6221
dc.description.abstractVacuum induction melting is crucial in casting nickel-based superalloy components, ensuring excellent properties for aero-engine applications. Precise melting temperatures are vital for achieving optimal metallurgical quality before casting. Hence, a multiphysics numerical model is developed to simulate the induction melting process for the Inconel 718 superalloy. The proposed holistic model integrates magnetic fields, induced currents, and heat and momentum transfer phenomena in a single coupled model. A moving mesh approach reproduces the magneto-hydrodynamic behavior of the free surface, simulating the oscillations of the melt. The stabilized deformed surface profile is correlated with experimental measurements, reporting a proper correlation. Then, the flow field and recirculation effect are modeled with a Low Reynolds Number turbulence approach and coupled with the melt convective heat transfer, developing a complete magneto-thermo-hydrodynamic model. In a laboratory-scale vacuum induction melting furnace, transient melting operation variables are characterized and introduced to the numerical model to compute the temperature evolution. An accurate reproduction of the transient melt temperature variations is reported with a relative error of less than 5%. The influence of the crucible thermal insulating capacity is assessed, emissivity dependence evaluated, and melt homogenization is reported at different process stages. This comprehensive numerical and experimental approach offers valuable insights for enhancing vacuum induction melting for Ni-based superalloys.
dc.language.isoeng
dc.publisherElsevier
dc.rights© 2023 Elsevier
dc.subjectVacuum induction melting
dc.subjectMultiphysics modeling
dc.subjectExperimental validation
dc.subjectTurbulent heat transfer
dc.subjectDynamic modeling
dc.subjectMoving mesh
dc.subjectODS 7 Energía asequible y no contaminante
dc.subjectODS 9 Industria, innovación e infraestructura
dc.titleMultiphysics modeling and experimental validation of heat and mass transfer for the vacuum induction melting process
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cf
dcterms.sourceApplied Thermal Engineering
local.contributor.groupProcesos avanzados de conformación de materiales
local.description.peerreviewedtrue
local.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2024.122562
local.embargo.enddate2026-04-30
local.contributor.otherinstitutionhttps://ror.org/036b2ww28
local.source.detailsVol. 243. N. art. 122562
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
oaire.funderNameEusko Jaurlaritza = Gobierno Vasco
oaire.funderIdentifierhttps://ror.org/00pz2fp31 http://data.crossref.org/fundingdata/funder/10.13039/501100003086
oaire.fundingStreamHazitek 2020
oaire.awardNumberZE-2020-00001
oaire.awardTitleOptimización del proceso de fusión VIM de la aleación MAR-M247LC e In718 (FAKTORIA)
oaire.awardURISin información


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo