Título
Multiphysics modeling and experimental validation of heat and mass transfer for the vacuum induction melting processAutor-a (de otra institución)
Otras instituciones
Universidad de MálagaVersión
Postprint
Derechos
© 2023 ElsevierAcceso
Acceso embargadoVersión del editor
https://doi.org/10.1016/j.applthermaleng.2024.122562Publicado en
Applied Thermal Engineering Vol. 243. N. art. 122562Editor
ElsevierPalabras clave
Vacuum induction melting
Multiphysics modeling
Experimental validation
Turbulent heat transfer ... [+]
Multiphysics modeling
Experimental validation
Turbulent heat transfer ... [+]
Vacuum induction melting
Multiphysics modeling
Experimental validation
Turbulent heat transfer
Dynamic modeling
Moving mesh
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura [-]
Multiphysics modeling
Experimental validation
Turbulent heat transfer
Dynamic modeling
Moving mesh
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura [-]
Resumen
Vacuum induction melting is crucial in casting nickel-based superalloy components, ensuring excellent properties for aero-engine applications. Precise melting temperatures are vital for achieving opti ... [+]
Vacuum induction melting is crucial in casting nickel-based superalloy components, ensuring excellent properties for aero-engine applications. Precise melting temperatures are vital for achieving optimal metallurgical quality before casting. Hence, a multiphysics numerical model is developed to simulate the induction melting process for the Inconel 718 superalloy. The proposed holistic model integrates magnetic fields, induced currents, and heat and momentum transfer phenomena in a single coupled model. A moving mesh approach reproduces the magneto-hydrodynamic behavior of the free surface, simulating the oscillations of the melt. The stabilized deformed surface profile is correlated with experimental measurements, reporting a proper correlation. Then, the flow field and recirculation effect are modeled with a Low Reynolds Number turbulence approach and coupled with the melt convective heat transfer, developing a complete magneto-thermo-hydrodynamic model. In a laboratory-scale vacuum induction melting furnace, transient melting operation variables are characterized and introduced to the numerical model to compute the temperature evolution. An accurate reproduction of the transient melt temperature variations is reported with a relative error of less than 5%. The influence of the crucible thermal insulating capacity is assessed, emissivity dependence evaluated, and melt homogenization is reported at different process stages. This comprehensive numerical and experimental approach offers valuable insights for enhancing vacuum induction melting for Ni-based superalloys. [-]
Financiador
Eusko Jaurlaritza = Gobierno VascoPrograma
Hazitek 2020Número
ZE-2020-00001URI de la ayuda
Sin informaciónProyecto
Optimización del proceso de fusión VIM de la aleación MAR-M247LC e In718 (FAKTORIA)Colecciones
- Artículos - Ingeniería [667]