Título
Application of material constitutive and friction models parameters identified with AI and ALE to a CEL orthogonal cutting modelAutor-a
Autor-a (de otra institución)
Otras instituciones
Université de Mons (Bélgica)Versión
Version publicada
Derechos
© 2023 The Authors. Published by Elsevier B.V.Acceso
Acceso abiertoVersión del editor
https://doi.org/10.1016/j.procir.2023.03.053Publicado en
Procedia CIRP Vol 117. Pp. 311-316, 2023Editor
Elsevier B.V.Palabras clave
CuttingFinite element method (FEM)
Predictive model
Resumen
The identification of input parameters for funite element modelling of the cutting process is still a complex task as the experimental testing equipment cannot reach its combined levels of strains, st ... [+]
The identification of input parameters for funite element modelling of the cutting process is still a complex task as the experimental testing equipment cannot reach its combined levels of strains, strain rates and temperatures. Inverse identification using Artificial Intelligence method provides a relevant alternative. In this paper, material constitutive and friction models parameters identified with an Efficient Global Optimization algorithm and an ALE orthogonal cutting model are introduced in a CEL model. Assessment of the differences in the results due to the formulation and dependence of parameters identification to the finite element model are then performed. [-]
Sponsorship
Gobierno VascoID Proyecto
info:eu-repo/grantAgreement/GV/Elkartek 2022/KK-2022-00001/CAPV/Desarrollos en la nanoescala para manufactura y asistencia sanitaria/NG22Colecciones
- Congresos - Ingeniería [378]
El ítem tiene asociados los siguientes ficheros de licencia: