Erregistro soila

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.contributor.authorPenalba, Markel
dc.contributor.authorAizpurua Unanue, Jose Ignacio
dc.contributor.otherMartínez Perurena, Ander
dc.contributor.otherIglesias, Gregorio
dc.date.accessioned2023-03-21T14:25:48Z
dc.date.available2023-03-21T14:25:48Z
dc.date.issued2022
dc.identifier.issn1879-0690en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=171624en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6054
dc.description.abstractThe potential of Marine Renewable Energy (MRE) systems is usually evaluated based on recent metocean data and assuming the stationarity of the MRE resource. Yet, different studies in the literature have shown long-term resource variations and even the connection between ocean warming and wave power variations. Therefore, it is crucial to accurately characterise the future resource, including these long-term variations. To that end, this paper presents a novel data-driven forecasting approach through the combination of machine-learning (ML) and oceanic engineering concepts. First, the historical resource is characterised in the Bay of Biscay, including the different long-term trends identified based upon the dataset obtained via the SIMAR model ensemble. Secondly, the most relevant features of the metocean dataset are extracted and selected via advanced statistical techniques. Finally, three different ML algorithms are designed, validated and tested. All three ML models demonstrate to adequately represent the overall pattern of the dataset, although showing difficulties with reproducing particular peak values. Accordingly, an alternative interval prediction approach is presented for three different wave height discretisation levels, showing a greater potential for long-term metocean data forecasting.es
dc.description.sponsorshipGobierno Vasco-Eusko Jaurlaritzaes
dc.description.sponsorshipGobierno de Españaes
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2022 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMetocean dataen
dc.subjectRe-analysis dataen
dc.subjectLong-term trenden
dc.subjectWave forecastingen
dc.subjectMachine learningen
dc.subjectRegression algorithmsen
dc.subjectClassification algorithmsen
dc.titleA data-driven long-term metocean data forecasting approach for the design of marine renewable energy systemsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceRenewable and Sustainable Energy Reviewsen
local.contributor.groupMecánica de fluidoses
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.rser.2022.112751en
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Elkartek 2022/KK-2022-00090/CAPV/Codiseño de control de energías renovables flotantes/KONFLOTen
local.relation.projectIDinfo:eu-repo/grantAgreement/GE/Convocatoria 2019. Plan Estatal de I+D+I 2017-2020. Subprograma Estatal de Formación y en el Subprograma Estatal de Incorporación, del Programa Estatal de Promoción del Talento y su Empleabilidad. Ayudas Juan de la Cierva-incorporación/IJC2019-039183-I/ES/en
local.rights.publicationfeeAPCen
local.rights.publicationfeeamountAcuerdo transformativo Elsevieren
local.contributor.otherinstitutionhttps://ror.org/01cc3fy72en
local.contributor.otherinstitutionhttps://ror.org/03265fv13en
local.contributor.otherinstitutionhttps://ror.org/008n7pv89en
local.source.detailsVol. 167. N. artículo 112751en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila

Attribution-NonCommercial-NoDerivatives 4.0 International
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da: Attribution-NonCommercial-NoDerivatives 4.0 International