Title
Analysis of thermophoresis for separation of polystyrene microparticles in microfluidic devicesVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
Rights
© 2022 The AuthorsAccess
http://purl.org/coar/access_right/c_abf2Publisher’s version
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122690Published at
International Journal of Heat and Mass Transfer Vol. 189. Article 122690Publisher
ElsevierKeywords
MicroparticlesThermodiffusion
Thermophoresis
Microdevice and separation
Abstract
We analysed the thermodiffusion phenomenon both numerically and experimentally for size-based separation of polystyrene microparticles. For model validation, we followed previously published numerical ... [+]
We analysed the thermodiffusion phenomenon both numerically and experimentally for size-based separation of polystyrene microparticles. For model validation, we followed previously published numerical studies using ANSYS Fluent 2020 R2 software. For our experimental analysis, we defined a new microchannel geometry that would separate at least two groups of particles (5 and 20 µm). We analysed the trajectory of the microparticles in the central channel of the microdevice under the following conditions: without a temperature gradient, with application of a thermal gradient parallel to the gravitational field (cooling from the bottom or top part), and generation of a temperature gradient perpendicular to the direction of the gravity force. Numerical and experimental results for these geometry and boundary conditions demonstrated that, under terrestrial conditions, 5 µm and larger microsized polystyrene particles cannot be separated by thermophoresis in flow because of the gravity force. [-]
xmlui.dri2xhtml.METS-1.0.item-sponsorship
Gobierno Vasco-Eusko Jaurlaritzaxmlui.dri2xhtml.METS-1.0.item-projectID
info:eu-repo/grantAgreement/GV/Elkartek 2021/KK-2021-00082/CAPV/Microtecnologías como motor de desarrollo de Microsistemas avanzados integrados en la Fábrica Inteligente y Digital en el marco de la IIoT4.0/μ4IIOTCollections
- Articles - Engineering [641]
The following license files are associated with this item: