Compartir
Título
A novel indirect cryogenic cooling system for improving surface finish and reducing cutting forces when turning ASTM F-1537 cobalt-chromium alloysFecha de publicación
2020Editor
SpringerPalabras clave
Indirect cryogenic coolingLiquid nitrogen
Cobalt-based alloys
Cryogenic turning
Resumen
This paper presents a novel indirect cryogenic cooling system, employing liquid nitrogen (LN2) as a coolant for machining the difficult-to-cut ASTM F-1537 cobalt-chromium (CoCr) alloy. The prototype d ... [+]
This paper presents a novel indirect cryogenic cooling system, employing liquid nitrogen (LN2) as a coolant for machining the difficult-to-cut ASTM F-1537 cobalt-chromium (CoCr) alloy. The prototype differs from the already existing indirect cooling systems by using a modified cutting insert that allows a larger volume of cryogenic fluid to flow under the cutting zone. For designing the prototype analytical and finite element, thermal calculations were performed; this enabled to optimize the heat evacuation of the tool from the rake face without altering the stress distribution on the insert when cutting material. Turning experiments on ASTM F-1537 CoCr alloys were performed under different cutting conditions and employing indirect cryogenic cooling and dry machining, to test the performance of the developed system. The results showed that the new system improved surface roughness by 12%, and cutting forces were also reduced by 12% when compared with the existing indirect cryogenic cooling technique. [-]
Versión del editor
https://doi.org/10.1007/s00170-020-06193-xISSN
0268-3768Publicado en
International Journal of Advanced Manufacturing Technology Vol. 111. N. 7-8. Pp. 1971-1989, 2020Tipo de documento
Artículo
Versión
Postprint – Accepted Manuscript
Derechos
© 2020 SpringerAcceso
Acceso abiertoColecciones
- Artículos - Ingeniería [486]