eBiltegia

    • Euskara
    • Español
    • English
  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Open Access institutional policy
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Scientific production - Articles
  • Articles - Engineering
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Scientific production - Articles
  • Articles - Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
View/Open
Adiabatic self-heating determination for Ti6Al4V at different temperatures.pdf (1.913Mb)
Full record
Impact

Web of Science   

Google Scholar
Microsoft Academic
Share
Save the reference
Mendely
Title
Adiabatic self-heating determination for Ti6Al4V at different temperatures
Author
Sela, AndrésMondragon Unibertsitatea
Ortiz-de-Zarate, Gorka ccMondragon Unibertsitatea
Soler Mallol, DanielMondragon Unibertsitatea
ARRAZOLA, PEDRO JOSE ccMondragon Unibertsitatea
Author (from another institution)
Germain, Guénaël
Gallegos, L.
Research Group
Mecanizado de alto rendimiento
Published Date
2023
Publisher
Elsevier
Keywords
Adiabatic self-heating
Infrared measurement
Thermodynamic analysis
Ti6Al4V ... [+]
Adiabatic self-heating
Infrared measurement
Thermodynamic analysis
Ti6Al4V
Compression test [-]
Abstract
Nowadays, numerical models are one of the most widely used techniques to predict material performance subjected to different manufacturing processes. However, to obtain accurate predictions, these mod ... [+]
Nowadays, numerical models are one of the most widely used techniques to predict material performance subjected to different manufacturing processes. However, to obtain accurate predictions, these models require reliable input data from thermomechanical tests. Nevertheless, during the test performance the material is self-heated due to a phenomenon known as adiabatic self-heating. Despite the proven relevance of a proper characterization, adiabatic self-heating is not properly taken into account during thermomechanical tests. In addition, in the literature, two different definitions were found under the umbrella of adiabatic-self heating. On the one hand, it could be defined as the ratio between the heat spent to heat the sample to the plastic work, value commonly taken as 0.9. On the other hand, many authors define the adiabatic heating as the ratio between the heat experimentally measured to the total plastic work. This second approach, although seems easier, is neglecting heat losses. These two different approaches could lead to misunderstandings once this parameter is implemented in the models. This paper aims to clarify this issue. Moreover, the techniques found in literature aiming to measure this parameter are usually based on 2D approaches at low temperatures. In this paper, a 3D methodology to measure adiabatic self-heating is presented which considers all possible heat losses (conduction, convection, radiation and mass flux) through infrared measurements and Digital Image Correlation (DIC) technique. The adiabatic self-heating was measured for a widely used alloy (Ti6Al4V) obtaining promising results. [-]
URI
https://hdl.handle.net/20.500.11984/5952
Publisher’s version
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123747
ISSN
1879-2189
Published at
International Journal of Heat and Mass Transfer  V. 204. N. articulo 123747
Document type
Article
Version
Submitted
Rights
© 2023 Elsevier
Access
Embargoed Access (until 2025-01-12)
Collections
  • Articles - Engineering [478]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASE

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASE

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace