eBiltegia

    • Euskara
    • Español
    • English
  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Sarbide Irekiko politika instituzionala
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ekoizpen zientifikoa - Kongresuak
  • Kongresuak - Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ekoizpen zientifikoa - Kongresuak
  • Kongresuak - Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ikusi/Ireki
Active Power Optimization of a Turning Process by Cutting Conditions Selection A Q-Learning Approach.pdf (746.7Kb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Microsoft Academic
Partekatu
Gorde erreferentzia
Mendely
Izenburua
Active Power Optimization of a Turning Process by Cutting Conditions Selection: A Q-Learning Approach
Egilea
Duo, Aitor ccMondragon Unibertsitatea
Reguera-Bakhache, Daniel ccMondragon Unibertsitatea
Izagirre, Unai ccMondragon Unibertsitatea
Aperribay Zubia, Javier ccMondragon Unibertsitatea
Ikerketa taldea
Análisis de datos y ciberseguridad
Mecanizado de alto rendimiento
Argitalpen data
2022
Argitaratzailea
IEEE
Gako-hitzak
Q-learning
Power demand
Manufacturing processes
Process control ... [+]
Q-learning
Power demand
Manufacturing processes
Process control
Turning
Fourth Industrial Revolution
optimization [-]
Laburpena
In the context of Industry 4.0, the optimization of manufacturing processes is a challenge. Although in recent years many of the efforts have been in this direction, there is still improvement opportu ... [+]
In the context of Industry 4.0, the optimization of manufacturing processes is a challenge. Although in recent years many of the efforts have been in this direction, there is still improvement opportunities in these processes. The optimisation of the power consumed by the processes can be improved by means of the parameters of control. To date, this challenge has been addressed by Multi-Objective optimization techniques, however, Reinforcement Learning based approaches are raising with promising results in many industrial fields.In this paper, we propose a Reinforcement Learning (RL) based approach to optimize the active power consumption of a machining process by the cutting conditions selection. Through the application of Q-Learning algorithm, the agent self-learns the optimal solution through interacting with the environment. The approach was validated in three different scenarios demonstrating the feasibility of RL application to determine the cutting conditions values in order to optimize the active power consumption. [-]
URI
https://hdl.handle.net/20.500.11984/5879
Argitaratzailearen bertsioa
https://doi.org/10.1109/ETFA52439.2022.9921714
ISBN
978-1-6654-9996-5
Non argitaratua
2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA)  6-9 septiembre, Stuttgart. Pp. 1-6
Dokumentu-mota
Kongresura ekarpena
Bertsioa
Postprinta – Accepted Manuscript
Eskubideak
© 2022 IEEE
Sarbidea
Sarbide bahitua (2024-10-31 arte)
Bildumak
  • Kongresuak - Ingeniaritza [242]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASE

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASE

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace