eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ver/Abrir
Context-informed conditional anomaly detection approach for wave power plants The case of air turbines.pdf (7.364Mb)
Registro completo
Impacto

Web of Science   

Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
Context-informed conditional anomaly detection approach for wave power plants: The case of air turbines
Autor-a
Aizpurua Unanue, Jose Ignacio
Penalba, Markel
Kirillova, Natalia
Autor-a (de otra institución)
Lekube, Jon
Marina, Dorleta
Grupo de investigación
Teoría de la señal y comunicaciones
Mecánica de fluidos
Otras instituciones
Ikerbasque
Ente Vasco de la Energía (EVE)
Biscay Marine Energy Platform
Versión
Postprint
Derechos
© 2022 Elsevier
Acceso
Acceso embargado
URI
https://hdl.handle.net/20.500.11984/5828
Versión del editor
https://doi.org/10.1016/j.oceaneng.2022.111196
Publicado en
Ocean Engineering  Vol. 253. Artículo 111196. June, 2022
Editor
Elsevier
Palabras clave
Marine Renewable Energy monitoring
anomaly detection
Prognostics and health management
Turbine ... [+]
Marine Renewable Energy monitoring
anomaly detection
Prognostics and health management
Turbine
Power curve and monitoring [-]
Resumen
The reliability and energy production of wave power plants (WPPs) depend on sea-state conditions, operation efficiency and degradation of its constituent assets. Air turbines are key assets for the ef ... [+]
The reliability and energy production of wave power plants (WPPs) depend on sea-state conditions, operation efficiency and degradation of its constituent assets. Air turbines are key assets for the efficient and reliable operation of WPPs and ensuring their correct operation leads to enhance the efficiency of WPPs. However, the lack of run-to-failure data and scarce fault records hampers the development of predictive condition monitoring solutions. In this context, focusing on unsupervised health monitoring methods, this paper presents an air turbine conditional anomaly detection (CAD) approach with a practical case study tested and validated on the Mutriku wave power plant. In contrast to anomaly detection models, which model the health-state without taking into account the influence of the operating context, the proposed CAD approach learns the expected air turbine operation conditioned on specific sea-states information modelled through wave energy flux concepts. This is achieved through an ensemble of Gaussian Mixture models and the expectation–maximization algorithm. Results show that, the integration of sea-states in the anomaly detection learning process improves the discrimination capability of the CAD model compared with the anomaly detection model without sea-state information, reducing false positive events and improving the accuracy of the CAD model. [-]
Sponsorship
Gobierno Vasco-Eusko Jaurlaritza
ID Proyecto
info:eu-repo/grantAgreement/GV/Elkartek 2021/KK-2021-00021/CAPV/Modelización del comportamiento térmico de los transformadores para aplicaciones fotovoltaicas/TRASMOII
Colecciones
  • Artículos - Ingeniería [735]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace