Share
Title
Context-informed conditional anomaly detection approach for wave power plants: The case of air turbinesPublished Date
2022Publisher
ElsevierKeywords
Marine Renewable Energy monitoring
anomaly detection
Prognostics and health management
Turbine ... [+]
anomaly detection
Prognostics and health management
Turbine ... [+]
Marine Renewable Energy monitoring
anomaly detection
Prognostics and health management
Turbine
Power curve and monitoring [-]
anomaly detection
Prognostics and health management
Turbine
Power curve and monitoring [-]
Abstract
The reliability and energy production of wave power plants (WPPs) depend on sea-state conditions, operation efficiency and degradation of its constituent assets. Air turbines are key assets for the ef ... [+]
The reliability and energy production of wave power plants (WPPs) depend on sea-state conditions, operation efficiency and degradation of its constituent assets. Air turbines are key assets for the efficient and reliable operation of WPPs and ensuring their correct operation leads to enhance the efficiency of WPPs. However, the lack of run-to-failure data and scarce fault records hampers the development of predictive condition monitoring solutions. In this context, focusing on unsupervised health monitoring methods, this paper presents an air turbine conditional anomaly detection (CAD) approach with a practical case study tested and validated on the Mutriku wave power plant. In contrast to anomaly detection models, which model the health-state without taking into account the influence of the operating context, the proposed CAD approach learns the expected air turbine operation conditioned on specific sea-states information modelled through wave energy flux concepts. This is achieved through an ensemble of Gaussian Mixture models and the expectation–maximization algorithm. Results show that, the integration of sea-states in the anomaly detection learning process improves the discrimination capability of the CAD model compared with the anomaly detection model without sea-state information, reducing false positive events and improving the accuracy of the CAD model. [-]
Publisher’s version
https://doi.org/10.1016/j.oceaneng.2022.111196ISSN
0029-8018Published at
Ocean Engineering Vol. 253. Artículo 111196. June, 2022Document type
Article
Version
Postprint – Accepted Manuscript
Rights
© 2022 ElsevierAccess
Embargoed Access (until 2024-06-30)Collections
- Articles - Engineering [483]