eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   The Library compiles and disseminates your publications

Con la colaboración de:

Euskara | Español | English
  • Contact Us
  • Open Science
  • About eBiltegia
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Research - Conferences
  • Conferences - Engineering
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Research - Conferences
  • Conferences - Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
Methodology for thermal modelling of lithiumion batteries.pdf (898.8Kb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Methodology for thermal modelling of lithium-ion batteries
Author
IRAOLA, UNAI cc
Aizpuru, Iosu
Canales, Jose Maria
Etxeberria Larrazabal, Ander
Gil, Imanol
Publication Date
2013
Research Group
Almacenamiento de energía
Other institutions
Orona EIC
Version
Postprint
Document type
Conference ObjectConference Object
Language
English
Rights
© 2013 IEEE
Access
Open access
URI
https://hdl.handle.net/20.500.11984/5803
Publisher’s version
http://doi.org/10.1109/IECON.2013.6700250
Published at
39th Annual Conference of the IEEE Industrial Electronics Society (IECON)  10-13 November. Pp. 6752-6757. IEEE, 2013
Publisher
IEEE
Keywords
Mathematical model
Heating
Batteries
Temperature measurement ... [+]
Mathematical model
Heating
Batteries
Temperature measurement
System-on-chip
Integrated circuit modeling
Solid modeling [-]
Abstract
Temperature is a determinant parameter in terms of performance, lifespan and safety working with li-ion batteries. Working above 45°C, in hot climates, has direct influence in the cycle life of the ba ... [+]
Temperature is a determinant parameter in terms of performance, lifespan and safety working with li-ion batteries. Working above 45°C, in hot climates, has direct influence in the cycle life of the battery and can cause a dangerous failure if higher temperatures are reached; besides, performance of li-ion batteries in cold climates is very poor due to the high internal resistance they present under these ambient conditions. Being able to predict the temperature of a li-ion cell or the temperature distribution in a module for any working condition without testing the device is considered important when designing energy storage systems based on li-ion batteries. Thus, this paper presents a methodology to achieve the equivalent thermal parameters governing the behavior of a single li-ion cell and the power losses within it; different experimental tests are combined with an analytical expression of the power losses inside a cell to reach this target. The parameters obtained are used to develop a model in matlab/simulink and another model solved with CFD software. Simulation results show good agreement with experimental results with a maximum error of 2°C committed during the validation of the methodology. [-]
Collections
  • Conferences - Engineering [435]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace