Simple record

dc.contributor.authorSaez de Buruaga, Mikel
dc.contributor.authorSoler Mallol, Daniel
dc.contributor.authorAristimuño, Patxi Xabier
dc.contributor.authorEsnaola, Jon Ander
dc.contributor.authorARRAZOLA, PEDRO JOSE
dc.date.accessioned2022-09-01T09:46:22Z
dc.date.available2022-09-01T09:46:22Z
dc.date.issued2018
dc.identifier.issn1359-4311en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=149827en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5650
dc.description.abstractTemperature measurement in metal cutting is of central importance as tool wear and surface integrity have been demonstrated to be temperature dependent. In this context, infrared thermography is presented as a reliable technique to determine tool temperatures and thermal fields at near real-time. However, a constraint of this technique is that temperatures are measured on the tool side faces normal to the cutting edge but offset from the tool/chip contact. In the present research, tool/chip contact temperatures were calculated from the tool side based on analytical theories of heating and the principles of heat generation in cutting processes. The required inputs were commonly measurable variables (cutting and feed forces, chip thickness and tool/chip contact length). The proposed approach was combined with a new calibration method in which a calibration curve that directly relates real and radiated temperatures is obtained, instead of measuring the emissivity of the radiating surface. As a case study, the research was conducted on a set of four ferrite-pearlite steels (16MnCr5, 27MnCr, C45 and C60). The results demonstrated the effectiveness of the method to establish the real influence of the cutting conditions (cutting speed and feed) and to distinguish the effect that different work material microstructures have in tool/chip temperature. Furthermore, the results showed a high degree of accuracy and less than 12% deviation from the trends when compared with 2D cutting simulations.en
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2018 Elsevieren
dc.subjecttemperature measurementen
dc.subjectInfrared thermographyen
dc.subjectMetal cuttingen
dc.subjectOrthogonal cuttingen
dc.titleDetermining tool/chip temperatures from thermography measurements in metal cuttingen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceApplied Thermal Engineeringen
local.contributor.groupMecanizado de alto rendimientoes
local.description.peerreviewedfalseen
local.description.publicationfirstpage305en
local.description.publicationlastpage314en
local.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2018.09.051en
local.relation.projectIDinfo:eu-repo/grantAgreement/EC/RFCS/RFSR-CT-2014-00020/EU/Innovative Method dedicated to the development of a ferrite-pearlite grade regarding its Machinability/IMMACen
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Convocatoria de ayudas a la Investigación básica y-o aplicada 2014-2015/PI_2014_1_116/CAPV/Estudio de la influencia de la microestructura de aceros y superaleaciones base níquel en la maquinabilidad e integridad superficial de componentes mecanizados/MICROMAQUINTEen
local.relation.projectIDinfo:eu-repo/grantAgreement/GE/Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Convocatoria 2015, Modalidad 1: Proyectos de I+D+I/DPI2015-67667-C3-3-R/ES/Modelización y análisis experimental del proceso de mecanizado en la escala micro/EMULATEen
local.source.detailsVol. 145. Pp. 305-314. 25 December, 2018en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_71e4c1898caa6e32en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Simple record