eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
    • Euskara
    • Español
    • English

Laguntzailea:

  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ikusi/Ireki
Sensor signal selection tool wear curve estimation and subsequent tool breakage prediction in a drilling operation.pdf (1.610Mb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
Sensor signal selection for tool wear curve estimation and subsequent tool breakage prediction in a drilling operation
Egilea
Duo, Aitor
Basagoiti, Rosa
ARRAZOLA, PEDRO JOSE
CUESTA ZABALAJAUREGUI, MIKEL
Ikerketa taldea
Análisis de datos y ciberseguridad
Mecanizado de alto rendimiento
Bertsioa
Postprinta
Eskubideak
© 2021 Taylor & Francis
Sarbidea
Sarbide bahitua
URI
https://hdl.handle.net/20.500.11984/5621
Argitaratzailearen bertsioa
https://doi.org/10.1080/0951192X.2021.1992661
Non argitaratua
International Journal of Computer Integrated Manufacturing  Volume 35, Issue 2, 2022
Argitaratzailea
Taylor & Francis
Gako-hitzak
Tool condition monitoring
Inconel 718
Drilling
Data mining ... [+]
Tool condition monitoring
Inconel 718
Drilling
Data mining
Machine learning [-]
Laburpena
Tool condition monitoring have an important role in machining processes to reduce defective component and ensure quality requirements. Stopping the process before the tool breaks or an excessive tool ... [+]
Tool condition monitoring have an important role in machining processes to reduce defective component and ensure quality requirements. Stopping the process before the tool breaks or an excessive tool wear is reached can avoid costs resulting from that undesirable situation. This research work presents the results obtained in drilling process monitoring carried out on Inconel 718. Monitoring systems should be light and scalable. Following this idea, multiple sensors for external signal acquisition are used in this work (cutting forces, vibrations, and acoustic emissions) and several machine internal signals are collected. The main objective is to evaluate the capacity of each acquisition source for the reconstruction of the tool wear curve and subsequently detection of tool breakage. Given the difficulty of using all of these signals in a real system, the methodology used to analyse the data makes it possible to have a comparative analysis of the potential of each of these sources for tool wear monitoring during the drilling process. The results indicate cutting forces whether they come from internal signals or external signals can carry out this task accurately. At the same time of data acquisition, detailed tool wear measurements were added. [-]
Sponsorship
Gobierno Vasco
Projectu ID
info:eu-repo/grantAgreement/GV/Elkartek 2020/KK-2020-00103/CAPV/Herramientas de corte inteligentes sensorizadas mediante recubrimientos funcionales/INTOOL II
Bildumak
  • Artikuluak - Ingeniaritza [735]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace