eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
    • Euskara
    • Español
    • English

Laguntzailea:

  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ikusi/Ireki
ACCEPTED_FOR_PUBLICATION_Survey_deep_learning_for_predictive_maintenance.pdf (814.1Kb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects
Egilea
Serradilla, Oscar
Zugasti, Ekhi
Zurutuza, Urko
Egilea (beste erakunde batekoa)
Rodríguez Breton, Jon
Ikerketa taldea
Análisis de datos y ciberseguridad
Beste instituzio
Koniker, S. Coop.
Bertsioa
Postprinta
Eskubideak
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC
Sarbidea
Sarbide bahitua
URI
https://hdl.handle.net/20.500.11984/5473
Argitaratzailearen bertsioa
https://doi.org/10.1007/s10489-021-03004-y
Non argitaratua
Applied intelligence  2022
Argitaratzailea
Springer Science+Business Media, LLC
Gako-hitzak
Keywords Deep learning
predictive maintenance
Laburpena
Given the growing amount of industrial data in the 4th industrial revolution, deep learning solutions have become popular for predictive maintenance (PdM) tasks, which involve monitoring assets to ant ... [+]
Given the growing amount of industrial data in the 4th industrial revolution, deep learning solutions have become popular for predictive maintenance (PdM) tasks, which involve monitoring assets to anticipate their requirements and optimise maintenance tasks. However, given the large variety of such tasks in the literature, choosing the most suitable architecture for each use case is difficult. This work aims to facilitate this task by reviewing various state-of-the-art deep learning (DL) architectures and analysing how well they integrate with predictive maintenance stages to meet industrial companies’ requirements from a PdM perspective. This review includes a self-organising map (SOM), one-class neural network (OCNN) and generative techniques. This article explains how to adapt DL architectures to facilitate data variability handling, model adaptability and ensemble learning, all of which are characteristics relevant to industrial requirements. In addition, this review compares the results of state-of-the-art DL architectures on a publicly available dataset to facilitate reproducibility and replicability, enabling comparisons. Furthermore, this work covers the mitigation step with deep learning models, the final PdM stage that is essential for implementing PdM systems. Moreover, state-of-the-art deep learning architectures are categorised, analysed and compared; their industrial applications are presented; and an explanation of how to combine different architectures in a solution is presented that addresses their gaps. Finally, open challenges and possible future research paths are presented and supported in this review, and current research trends are identified. [-]
Sponsorship
Comisión Europea
Projectu ID
info:eu-repo/grantAgreement/EC/H2020/825030/EU/Digital Reality in Zero Defect Manufacturing/QU4LITY
Bildumak
  • Artikuluak - Ingeniaritza [735]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace