eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
ACCEPTED_FOR_PUBLICATION_Survey_deep_learning_for_predictive_maintenance.pdf (814.1Kb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects
Author
Serradilla, Oscar
Zugasti, Ekhi
Zurutuza, Urko
Author (from another institution)
Rodríguez Breton, Jon
Research Group
Análisis de datos y ciberseguridad
Other institutions
Koniker, S. Coop.
Version
Postprint
Rights
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC
Access
Embargoed access
URI
https://hdl.handle.net/20.500.11984/5473
Publisher’s version
https://doi.org/10.1007/s10489-021-03004-y
Published at
Applied intelligence  2022
Publisher
Springer Science+Business Media, LLC
Keywords
Keywords Deep learning
predictive maintenance
Abstract
Given the growing amount of industrial data in the 4th industrial revolution, deep learning solutions have become popular for predictive maintenance (PdM) tasks, which involve monitoring assets to ant ... [+]
Given the growing amount of industrial data in the 4th industrial revolution, deep learning solutions have become popular for predictive maintenance (PdM) tasks, which involve monitoring assets to anticipate their requirements and optimise maintenance tasks. However, given the large variety of such tasks in the literature, choosing the most suitable architecture for each use case is difficult. This work aims to facilitate this task by reviewing various state-of-the-art deep learning (DL) architectures and analysing how well they integrate with predictive maintenance stages to meet industrial companies’ requirements from a PdM perspective. This review includes a self-organising map (SOM), one-class neural network (OCNN) and generative techniques. This article explains how to adapt DL architectures to facilitate data variability handling, model adaptability and ensemble learning, all of which are characteristics relevant to industrial requirements. In addition, this review compares the results of state-of-the-art DL architectures on a publicly available dataset to facilitate reproducibility and replicability, enabling comparisons. Furthermore, this work covers the mitigation step with deep learning models, the final PdM stage that is essential for implementing PdM systems. Moreover, state-of-the-art deep learning architectures are categorised, analysed and compared; their industrial applications are presented; and an explanation of how to combine different architectures in a solution is presented that addresses their gaps. Finally, open challenges and possible future research paths are presented and supported in this review, and current research trends are identified. [-]
xmlui.dri2xhtml.METS-1.0.item-sponsorship
Comisión Europea
xmlui.dri2xhtml.METS-1.0.item-projectID
info:eu-repo/grantAgreement/EC/H2020/825030/EU/Digital Reality in Zero Defect Manufacturing/QU4LITY
Collections
  • Articles - Engineering [735]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace