eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
Dual Inertia-Emulation Control for Interlinking Converters in Grid-Tying Applications - Postprint.pdf (1.220Mb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Dual Inertia-Emulation Control for Interlinking Converters in Grid-Tying Applications
Author
Paniagua Amillano, Julen
Unamuno, Eneko
Barrena, Jon Andoni
Research Group
Sistemas electrónicos de potencia aplicados al control de la energía eléctrica
Version
Postprint
Rights
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Access
Open access
URI
https://hdl.handle.net/20.500.11984/5300
Publisher’s version
https://doi.org/10.1109/TSG.2021.3078839
Published at
IEEE Transactions on Smart Grid.  Early Access
Publisher
IEEE
Keywords
Dual Inertia-Emulation
Dual Droop
Power Systems
Virtual Inertia ... [+]
Dual Inertia-Emulation
Dual Droop
Power Systems
Virtual Inertia
Interlinking Converter
Ancillary services
Grid Tying
Decentralised Control [-]
Abstract
Electric grids are undergoing several changes, mostly driven by the replacement of classical highly-inertial generators by converter-interfaced generation and storage systems. This entails the reducti ... [+]
Electric grids are undergoing several changes, mostly driven by the replacement of classical highly-inertial generators by converter-interfaced generation and storage systems. This entails the reduction of inherent inertia levels and might lead to instability issues. In a future scenario formed by grids of different natures and characteristics, power electronic converters will play a key role on grid tying applications. These converters are known as interlinking converters (ICs), and they enable total control over the power flow between interconnected grids. Therefore, they are envisioned to take part not only tying hybrid ac/dc systems but also in ac/ac connections. This paper presents a novel control strategy for ICs named dual inertiaemulation (DIE), that improves the dynamic response of tied grids by emulating inertia at both sides of the converter, and which can be employed at any IC regardless of the interconnected grid type (ac or dc). The proposed control is tested by means of time-domain simulations of WSCC 9-bus and IEEE 14-bus benchmark systems. The obtained results demonstrate that the proposed technique increases the equivalent inertial response of the interconnected grids, hence reducing frequency oscillations and the rate of change of frequency (RoCoF), and improving the frequency nadir. [-]
Collections
  • Articles - Engineering [745]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace