eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Buscar 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Buscar
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Buscar
JavaScript is disabled for your browser. Some features of this site may not work without it.

Buscar

Mostrar filtros avanzadosOcultar filttos avanzados

Filtros

Use filtros para refinar sus resultados.

Mostrando ítems 1-10 de 10

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Validation of Random Forest Machine Learning Models to Predict Dementia-Related Neuropsychiatric Symptoms in Real-World Data 

Cernuda, Carlos; Ezpeleta, Enaitz; Alberdi Aramendi, Ane (IOS Press, 2020)
Background: Neuropsychiatric symptoms (NPS) are the leading cause of the social burden of dementia but their role is underestimated. Objective: The objective of the study was to validate predictive models to separately ...
Thumbnail

Calendar Ageing Model for Li-Ion Batteries Using Transfer Learning Methods 

Azkue, Markel ; Aizpuru, Iosu (MDPI, 2021)
Getting accurate lifetime predictions for a particular cell chemistry remains a challenging process, largely dependent on time and cost-intensive experimental battery testing. This paper proposes a transfer learning (TL) ...
Thumbnail

Incorporation of Synthetic Data Generation Techniques within a Controlled Data Processing Workflow in the Health and Wellbeing Domain 

Alberdi Aramendi, Ane; Larrea Lizartza, Xabat (MDPI, 2022)
To date, the use of synthetic data generation techniques in the health and wellbeing domain has been mainly limited to research activities. Although several open source and commercial packages have been released, they have ...
Thumbnail

A novel machine learning‐based methodology for tool wear prediction using acoustic emission signals 

Saez de Buruaga, Mikel; Badiola, Xabier; Vicente, Javier (MDPI, 2021)
There is an increasing trend in the industry of knowing in real-time the condition of their assets. In particular, tool wear is a critical aspect, which requires real-time monitoring to reduce costs and scrap in machining ...
Thumbnail

Machine Learning-Based Fault Detection and Diagnosis of Faulty Power Connections of Induction Machines 

Gonzalez-Jimenez, David; del-Olmo, Jon; Poza, Javier; Garramiola, Fernando; Sarasola, Izaskun (MDPI, 2021)
Induction machines have been key components in the industrial sector for decades, owing to different characteristics such as their simplicity, robustness, high energy efficiency and reliability. However, due to the stress ...
Thumbnail

Gotham Testbed: A Reproducible IoT Testbed for Security Experiments and Dataset Generation 

Sáez-de-Cámara, Xabier; Zurutuza, Urko (IEEE, 2023)
The growing adoption of the Internet of Things (IoT) has brought a significant increase in attacks targeting those devices. Machine learning (ML) methods have shown promising results for intrusion detection; however, the ...
Thumbnail

Goal-Conditioned Reinforcement Learning within a Human-Robot Disassembly Environment 

Arana-Arexolaleiba, Nestor (MDPI, 2022)
The introduction of collaborative robots in industrial environments reinforces the need to provide these robots with better cognition to accomplish their tasks while fostering worker safety without entering into safety ...
Thumbnail

Data‐Driven Low‐Frequency Oscillation Event Detection Strategy for Railway Electrification Networks 

Gonzalez-Jimenez, David; del-Olmo, Jon; Poza, Javier; Garramiola, Fernando; Madina, Patxi (MDPI, 2023)
Low-frequency oscillations (LFO) occur in railway electrification systems due to the incorporation of new trains with switching converters. As a result, the increased harmonic content can cause catenary stability problems ...
Thumbnail

Identification of the Parameter Values of the Constitutive and Friction Models in Machining Using EGO Algorithm: Application to Ti6Al4V 

ARRAZOLA, PEDRO JOSE (MDPI, 2022)
The application of artificial intelligence and increasing high-speed computational performance is still not fully explored in the field of numerical modeling and simulation of machining processes. The efficiency of the ...
Thumbnail

Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation 

Izagirre, Unai; Serradilla, Oscar; Olaizola, Jon; Zugasti, Ekhi; Aizpurua Unanue, Jose Ignacio (MDPI, 2023)
In this paper, a set of best practice data sharing guidelines for wind turbine fault detection model evaluation is developed, which can help practitioners overcome the main challenges of digitalisation. Digitalisation is ...

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta comunidadPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Descubre

AutorAlberdi Aramendi, Ane (2)del-Olmo, Jon (2)Garramiola, Fernando (2)Gonzalez-Jimenez, David (2)Poza, Javier (2)Aizpuru, Iosu (1)Aizpurua Unanue, Jose Ignacio (1)Arana-Arexolaleiba, Nestor (1)ARRAZOLA, PEDRO JOSE (1)Azkue, Markel (1)... másMateria
machine learning (10)
data-driven (2)fault detection (2)Fault diagnosis (2)acoustic emission (1)artificial intelligence (1)artificial neural network (1)Automation (1)Bayesian optimization (1)best practice (1)... másFecha2021 (3)2022 (3)2023 (3)2020 (1)Has File(s)Yes (10)

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace