| dc.contributor.author | Gonzalez-Jimenez, David | |
| dc.contributor.author | del-Olmo, Jon | |
| dc.contributor.author | Poza, Javier | |
| dc.contributor.author | Sarasola, Izaskun | |
| dc.contributor.author | Cabezas Olivenza, Mireya | |
| dc.date.accessioned | 2025-12-16T10:05:00Z | |
| dc.date.available | 2025-12-16T10:05:00Z | |
| dc.date.issued | 2025 | |
| dc.identifier.isbn | 979-8-3315-2075-5 | en |
| dc.identifier.issn | 2694-0264 | en |
| dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=200410 | en |
| dc.identifier.uri | https://hdl.handle.net/20.500.11984/14008 | |
| dc.description.abstract | The increasing demand for reliable electric mobility
solutions highlights the need for advanced fault detection and
diagnosis (FDD) strategies to ensure system reliability and safety.
This paper presents a hybrid approach that integrates physicsbased
models with data-driven techniques for FDD in induction
motors (IMs). A Hardware-in-the-Loop (HiL) platform is used
to generate synthetic data that replicates real-life operating
conditions. In this study, a progressive classification strategy
based on a One-Class Support Vector Machine (OCSVM) is
trained exclusively on healthy operation data and tested with
HiL-generated faulty responses to evaluate its anomaly detection
capabilities. Focusing on railway traction systems, the
research simulates common IM faults, including opposite-phase
wiring, high-resistive connections, and open-phase failures. By
extending the Cross Industry Standard Process for Data Mining
(CRISP-DM) methodology with physics-based model validation
and synthetic data generation, the proposed hybrid strategy
enhances scalability, effectively addressing challenges such as
limited faulty data and inadequate real-time monitoring. This
approach demonstrates significant potential for improving fault
detection in electric traction applications. | en |
| dc.language.iso | eng | en |
| dc.publisher | IEEE | en |
| dc.rights | © 2025 IEEE | en |
| dc.subject | Data-driven methods | en |
| dc.subject | fault diagnosis | en |
| dc.subject | Hardware | en |
| dc.subject | Physics-based model (PBM) | en |
| dc.subject | ODS 7 Energía asequible y no contaminante | es |
| dc.subject | ODS 9 Industria, innovación e infraestructura | es |
| dc.subject | ODS 11 Ciudades y comunidades sostenibles | es |
| dc.title | Hybrid Fault Detection and Diagnosis Approach of Power Connections for Induction Motors | en |
| dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
| dcterms.source | IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) | en |
| local.contributor.group | Accionamientos aplicados a la tracción y a la generación de energía eléctrica | es |
| local.description.peerreviewed | true | en |
| local.identifier.doi | https://doi.org/10.1109/WEMDCD61816.2025.11014155 | en |
| local.contributor.otherinstitution | https://ror.org/00wvqgd19 | es |
| local.source.details | Valletta (Malta), 09-10 April 2025 | en |
| oaire.format.mimetype | application/pdf | en |
| oaire.file | $DSPACE\assetstore | en |
| oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | en |
| oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |
| dc.unesco.tesauro | http://vocabularies.unesco.org/thesaurus/concept621 | en |
| dc.unesco.clasificacion | http://skos.um.es/unesco6/3306 | en |