Registro sencillo

dc.contributor.authorGonzalez-Jimenez, David
dc.contributor.authordel-Olmo, Jon
dc.contributor.authorPoza, Javier
dc.contributor.authorSarasola, Izaskun
dc.contributor.authorCabezas Olivenza, Mireya
dc.date.accessioned2025-12-16T10:05:00Z
dc.date.available2025-12-16T10:05:00Z
dc.date.issued2025
dc.identifier.isbn979-8-3315-2075-5en
dc.identifier.issn2694-0264en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=200410en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/14008
dc.description.abstractThe increasing demand for reliable electric mobility solutions highlights the need for advanced fault detection and diagnosis (FDD) strategies to ensure system reliability and safety. This paper presents a hybrid approach that integrates physicsbased models with data-driven techniques for FDD in induction motors (IMs). A Hardware-in-the-Loop (HiL) platform is used to generate synthetic data that replicates real-life operating conditions. In this study, a progressive classification strategy based on a One-Class Support Vector Machine (OCSVM) is trained exclusively on healthy operation data and tested with HiL-generated faulty responses to evaluate its anomaly detection capabilities. Focusing on railway traction systems, the research simulates common IM faults, including opposite-phase wiring, high-resistive connections, and open-phase failures. By extending the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology with physics-based model validation and synthetic data generation, the proposed hybrid strategy enhances scalability, effectively addressing challenges such as limited faulty data and inadequate real-time monitoring. This approach demonstrates significant potential for improving fault detection in electric traction applications.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2025 IEEEen
dc.subjectData-driven methodsen
dc.subjectfault diagnosisen
dc.subjectHardwareen
dc.subjectPhysics-based model (PBM)en
dc.subjectODS 7 Energía asequible y no contaminantees
dc.subjectODS 9 Industria, innovación e infraestructuraes
dc.subjectODS 11 Ciudades y comunidades sostenibleses
dc.titleHybrid Fault Detection and Diagnosis Approach of Power Connections for Induction Motorsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceIEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)en
local.contributor.groupAccionamientos aplicados a la tracción y a la generación de energía eléctricaes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1109/WEMDCD61816.2025.11014155en
local.contributor.otherinstitutionhttps://ror.org/00wvqgd19es
local.source.detailsValletta (Malta), 09-10 April 2025en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept621en
dc.unesco.clasificacionhttp://skos.um.es/unesco6/3306en


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo