Erregistro soila

dc.contributor.authorConde Garrido, Juan Manuel
dc.contributor.authorUgarte Valdivielso, Jone
dc.contributor.authorAizpurua Unanue, José Ignacio
dc.contributor.authorBarrenetxea, Manex
dc.contributor.authorSilveyra, Josefina María
dc.date.accessioned2025-12-10T08:55:43Z
dc.date.available2025-12-10T08:55:43Z
dc.date.issued2025
dc.identifier.issn1941-0069en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=200546en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/14005
dc.description.abstractWe introduce a novel blind optimization method for determining the parameters of the Jiles-Atherton model of hysteresis, eliminating the need for user-provided initial guesses or search spaces. A carefully designed initialization procedure combined with a standard optimizer yields a high-performing, practical method for parameter estimation. Validation against a theoretical benchmark recovers ground-truth parameters in under half a minute with negligible error (relative error < 4×10⁻⁸). When applied to the TEAM32 electrical steel experimental benchmark, our method achieved superior accuracy than previously reported fittings, also converging in under half a minute. Consistently robust performance is further demonstrated across diverse systems, including soft ferrites, nanocrystalline alloys, and magnetostrictive compounds. The presented blind approach offers new insights into magnetic material characterization and is deployed as an automated tool for hysteresis analysis. It advances both fundamental understanding and practical applications by demonstrating the Jiles-Atherton model’s capability to describe anisotropic materials and by revealing its inherent limitations.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2025 IEEEen
dc.subjectMagnetizationen
dc.titleBlind Efficient Method for Optimizing Jiles-Atherton Model Parametersen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceIEEE Transactions on Magneticsen
local.contributor.groupRedes eléctricases
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1109/TMAG.2025.3632479en
local.contributor.otherinstitutionhttps://ror.org/00wvqgd19es
local.contributor.otherinstitutionhttps://ror.org/0081fs513es
local.contributor.otherinstitutionhttps://ror.org/000xsnr85es
local.source.details(Early Access)en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept622en
oaire.funderNameGobierno de Españaen
oaire.funderIdentifierhttps://ror.org/038jjxj40 / http://data.crossref.org/fundingdata/funder/10.13039/501100010198en
oaire.fundingStreamConvocatoria 2021. Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia, del Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023en
oaire.awardNumberCPP2021-008580en
oaire.awardTitleModelización y Diagnóstico de Transformadores (MODITRANS)en
oaire.awardURISin informaciónen
dc.unesco.clasificacionhttp://skos.um.es/unesco6/3307en


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila