Simple record

dc.contributor.authorAgirrezabala, Eneko
dc.contributor.authorOca, Laura
dc.contributor.authorAizpuru, Iosu
dc.contributor.authorGarrido, David
dc.contributor.authorBaraia-Etxaburu Zubiaurre, Igor
dc.date.accessioned2025-12-10T07:33:20Z
dc.date.available2025-12-10T07:33:20Z
dc.date.issued2025
dc.identifier.isbn979-8-3315-6752-1en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=200522en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/14003
dc.description.abstractThis article presents a Finite Element Modeling (FEM) framework for thermal analysis of power semiconductor modules, combining simulation accuracy with enhanced computational efficiency. Power losses are calculated using a universal estimator validated against Infineon's IPOSIM tool and are applied as heat sources in a COMSOL Multiphysics ® 3D thermal model. The geometry and thermal structure of the power module are modeled and validated by comparing the junction-to-case thermal resistance (Rjc) with datasheet values. To reduce simulation time and memory usage, two strategies are introduced: the application of geometric symmetries and the replacement of complex heat sink structures by thermally equivalent simplified geometries. Additionally, LiveLink TM for MATLAB ® enables full automation of iterative simulations and parametric studies. Three functionalities are implemented: (i) dynamic adjustment of time step to accelerate steady-state convergence and enable highresolution analysis, (ii) recalculation of power losses based on updated temperatures, and (iii) internal geometry modifications to simulate ageing effects such as solder voids. The proposed workflow achieves a simulation time reduction of more than four orders of magnitude compared to fixed-step approaches, while preserving accuracy in thermal distribution. This approach is well suited for long mission profile evaluation and provides a foundation for future integration of physics-based reliability models and lifetime prediction.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2025 IEEEen
dc.subjectSemiconductor device modelingen
dc.subjectThermal modelingen
dc.subjectFEMen
dc.titleOptimising Power Semiconductor Thermal Simulation via Finite Element Modelingen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceEnergy Conversion Congress & Expo Europe (ECCE Europe)en
local.contributor.groupSistemas electrónicos de potencia aplicados al control de la energía eléctricaes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1109/ECCE-Europe62795.2025.11238575en
local.contributor.otherinstitutionhttps://ror.org/00wvqgd19es
local.contributor.otherinstitutionhttps://ror.org/002xeeh02es
local.source.detailsBirmingham, 1-4 September 2025en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept9546en
dc.unesco.clasificacionhttp://skos.um.es/unesco6/221125en


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Simple record