eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   La Biblioteca recoge y difunde tus publicaciones

Con la colaboración de:

Euskara | Español | English
  • Contacto
  • Ciencia Abierta
  • Acerca de eBiltegia
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Aportaciones a congresos
  • Aportaciones a congresos - Ingeniería
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Aportaciones a congresos
  • Aportaciones a congresos - Ingeniería
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ver/Abrir
OBMS_Abstract_JYeregui.pdf (276.3Kb)
2025jyeregui_PINN_Poster_OBMS.pdf (2.082Mb)
Registro completo
Impacto
Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
On-site estimation of battery electrochemical parameters with physics-informed neural networks in dynamic current profiles
Autor-a
Yeregui, Josu cc
Etxeberria, Malen
GARAYALDE, ERIK cc
IRAOLA, UNAI cc
Fecha de publicación
2025
Grupo de investigación
Almacenamiento de energía
Versión
Postprint
Tipo de documento
Contribución a congreso
Idioma
Inglés
Acceso
Acceso abierto
URI
https://hdl.handle.net/20.500.11984/14000
Publicado en
Oxford Battery Modelling Symposium  2025
Palabras clave
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura
ODS 11 Ciudades y comunidades sostenibles
Resumen
The accurate on-site estimation of battery electrochemical parameters is crucial for optimal battery management, enabling advanced control strategies and reliable prognostics. However, physics-based ... [+]
The accurate on-site estimation of battery electrochemical parameters is crucial for optimal battery management, enabling advanced control strategies and reliable prognostics. However, physics-based methods often suffer from high computational costs, require specific testing setups; while data driven solutions lack interpretability, creating a need for solutions including the benefits of both strategies [1]. We present a novel framework for on-site physical parameter estimation, for real-time characterization of lithium-ion batteries, leveraging on the recent attention for hybrid physics-based and data-driven solutions. Our approach utilizes a two-phase modelling strategy that combines Physics-Informed Neural Networks (PINNs) with transfer learning [2]. In an initial ”data-agnostic” phase, a PINN is trained exclusively using the governing physical equations of a single particle model. The model is set to include Fourier Feature transformations on the dependent variables, so that we extend the learning range to dynamic current profiles. During the second phase, critical ageing-related electrochemical parameters are fine-tuned using real-world voltage profile data. This two-phase strategy significantly reduces computational cost compared to traditional optimization methods, making it suitable for implementation on Battery Management Systems, and the dataagnosticism of the initial training phase avoids the need for large chunks of data. We demonstrated the framework’s efficacy through the estimation of diffusivities and active material volume fractions. Experimental and analytical validations showed a relative accuracy of 3.89% in estimating the active material volume fractions. Furthermore, our proposed PINN-based approach outperformed classical optimization techniques in accurately recovering parameters under varied ageing conditions. [-]
Colecciones
  • Aportaciones a congresos - Ingeniería [450]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace