eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak

Con la colaboración de:

Euskara | Español | English
  • Kontaktua
  • Zientzia Irekia
  • eBiltegiari buruz
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Kongresuetara ekarpenak
  • Kongresuetara ekarpenak - Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Kongresuetara ekarpenak
  • Kongresuetara ekarpenak - Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ikusi/Ireki
OBMS_Abstract_JYeregui.pdf (276.3Kb)
2025jyeregui_PINN_Poster_OBMS.pdf (2.082Mb)
Erregistro osoa
Eragina
Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
On-site estimation of battery electrochemical parameters with physics-informed neural networks in dynamic current profiles
Egilea
Yeregui, Josu cc
Etxeberria, Malen
GARAYALDE, ERIK cc
IRAOLA, UNAI cc
Argitalpen data
2025
Ikerketa taldea
Almacenamiento de energía
Bertsioa
Postprinta
Dokumentu-mota
Kongresu-ekarpena
Hizkuntza
Ingelesa
Sarbidea
Sarbide irekia
URI
https://hdl.handle.net/20.500.11984/14000
Non argitaratua
Oxford Battery Modelling Symposium  2025
Gako-hitzak
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura
ODS 11 Ciudades y comunidades sostenibles
Laburpena
The accurate on-site estimation of battery electrochemical parameters is crucial for optimal battery management, enabling advanced control strategies and reliable prognostics. However, physics-based ... [+]
The accurate on-site estimation of battery electrochemical parameters is crucial for optimal battery management, enabling advanced control strategies and reliable prognostics. However, physics-based methods often suffer from high computational costs, require specific testing setups; while data driven solutions lack interpretability, creating a need for solutions including the benefits of both strategies [1]. We present a novel framework for on-site physical parameter estimation, for real-time characterization of lithium-ion batteries, leveraging on the recent attention for hybrid physics-based and data-driven solutions. Our approach utilizes a two-phase modelling strategy that combines Physics-Informed Neural Networks (PINNs) with transfer learning [2]. In an initial ”data-agnostic” phase, a PINN is trained exclusively using the governing physical equations of a single particle model. The model is set to include Fourier Feature transformations on the dependent variables, so that we extend the learning range to dynamic current profiles. During the second phase, critical ageing-related electrochemical parameters are fine-tuned using real-world voltage profile data. This two-phase strategy significantly reduces computational cost compared to traditional optimization methods, making it suitable for implementation on Battery Management Systems, and the dataagnosticism of the initial training phase avoids the need for large chunks of data. We demonstrated the framework’s efficacy through the estimation of diffusivities and active material volume fractions. Experimental and analytical validations showed a relative accuracy of 3.89% in estimating the active material volume fractions. Furthermore, our proposed PINN-based approach outperformed classical optimization techniques in accurately recovering parameters under varied ageing conditions. [-]
Bildumak
  • Kongresuetara ekarpenak - Ingeniaritza [450]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace